
a r / ~ i G l e s

J e a n - M a r c N e r s o n

A p p l y i n g O b j e c t - O r i e n t e d
A n a l y s i s a n d D e s i g n

:ional analysis and design techniques imply constant paradigm shifts, since
manipulate different concepts at each different phase of software develop-
t. The object-oriented technique offers a seamless process that helps viewing

the software architecture in terms of problem space elements. • • • • • • • • •

This article presents an analysis
and design technique relying on a
set of notations and guidelines. It
promotes a descriptive method that
addresses both analysis and design
issues. Key criteria have guided
the definition of the technique:
scalability, reverse engineering sup-
port, documentation aid, structur-
ing mechanisms, systematic design
support and component manage-
ment support. A case study shows
how the technique works and fos-
ters the production of reusable
components.

The Object-Oriented
Development Process
Industrial-quality software produc-
tion of today has become extremely
demanding. Applications tend to be
much larger and more complex
and thus more difficult to develop.
Their functionality is shifting from
processing to system simulation and
integration; from centralized to dis-
tributed computing; from text-
based to graphics and multimedia-
based systems [23].

Highly volatile requirements and
strong competition call for even
shorter development times. This
conflict causes many software prod-
ucts to become delayed, or worse,
released without adequate produc-
tion quality.

The importance of application
portability among a large number
of rapidly changing hardware plat-
forms and the need to be easy to
learn and understand by end users
with different backgrounds, make
things even more difficult.

Therefore, there is no longer any

time to waste on reinvention or in-
efficient implementation of well-
known algorithms and user inter-
face techniques.

In the long run, object-oriented
software is aimed at helping to sim-
plify the way we view the real world
as it is (or as it should be) and trans-
late our view into software systems.
Object-oriented techniques exist to
help manage the complexity ac-
cording to some key points:

* Object-oriented architectures are
decentralized;
• Classification is part of the system
structure;
• The same ideas and concepts are
manipulated from the require-
ments phase down to the imple-
mentation phase.

The object life cycle shown in
Figure 1 and inspired by [9, 16, 18],
conveniently reflects a develop-
ment scheme in which a knowledge
base represented by libraries of
reusable and pluggable compo-
nents impact the different produc-
tion phases. The class reuse and
generalization process is an itera-
tive process influencing both analy-
sis (reuse of frameworks [6]) and
design (reuse of classifications [10]).

Compared to traditional tech-
niques, object-oriented develop-
ment is a seamless process: there is
no paradigm shift between the dif-
ferent stages o f the life cycle. Uni-
form principles apply throughout
the development process. I f types
of objects identified during system
analysis are specified by a name and
a precise set of properties, they will

translate into syntactical units (usu-
ally called "classes") in the final pro-
gram. This observation is both
good news and bad news.

The good news is that once the
intellectual process of object-
oriented development is properly
understood and mastered, it can be
successfully used (with some varia-
tions imposed by the levels of ab-
straction) to the different develop-
ment stages. Tracing requirements
becomes easier since manipulation
of entities is more natural and
smooth.

The bad news is that whenever
inappropriate types of objects are
selected, or whenever awkward
structuring choices are made, the
final architecture reflects these
poor decisions.

Because of the continuous devel-
opment process involved, object-
oriented techniques tend to blur
the borderline between analysis and
design.

In the next sections, we will study
how an object-oriented analysis and
design method and technique is
applied. The technique used is
based on a method and notation
called BON (Better Object Notation
[14, 15]). Although the BON nota-
tion is both graphical and textual,
we shall use the graphical form. In
the remaining text, all BON-
specific terms will appear in bold-
italic type when first introduced.

Object-Oriented Analysis with
an Example
The software to be developed is in-
tended to automate the reservation
and invoicing system of a car rental

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 63

company. A short outline of the
major requirements is given below.

• Vehicles are taken from one location
and returned to the same location.
• Different models of car are grouped
into a small number of price classes.
• Different rental plans are available,
with a special weekend rate to attract
nonbusiness customers.
• The price charged is established in
advance.
• Free options are: automatic or man-
ual transmission, two or four doors,

l=igufe 1. The object-oriented soft-
ware life cycle

smoker or nonsmoker car.
• Nonfitted extras are: roof rack,
trailer, snow chains, child seats. These
extras are charged to the client.
• The system must handle block booking
of cars and keep track of car availabil-
ity.

Object-oriented analysis tries to
identify the type of objects that map
into elements of the application
domain to be modeled. This activity
helps to find the major relation-
ships between the different types of
objects considered as class in-
stances. Classes are defined with
the information they maintain, the

IV USER REQUIREMENTS

INFORMAL 1
REQUIREMENTS

"~ ANALYSIS

I DESCRIPTIVE MODEL I ~ ' " ~ It#

- " - - . 1 ~ ~ REUSABLE /
I DESIGN +] COMPONENTS|

~CONSTRUCTION I /
~ (CLASSES NETWORK) ~ L J

o=
(3

ABSTRACTION/GENERALIZATION

1~ble 1.
Cluster chart of the car rental system

CLUSTER CHART: CAR RENTAL

CLASS

CLIENT

CONTRACT

RENTAL

VEHICLE

MODEL

RATE

DEFINITION

Car renter, individual or corporate customer

Rental terms with payment conditions

Rental information completed when taking
out and returning a vehicle

AutOmObile selected from the rental fleet

Description of selected features

Pricing conditions

services they provide, the con-
straints they comply with and how
they relate to other classes. Analysis
classes must satisfy some functional
requirements and usually reflect a
certain system viewpoint. At the
analysis level all identified class in-
formation is considered public.

Analysis involves some key activi-
ties that represent things to be per-
formed by the analyst to get a better
understanding of what needs to be
done. In that respect, BON pro-
vides a notation and a set of guide-
lines and recommendations appli-
cable to the preanalysis and analysis
phase down to detailed design; the
result being a starting point for the
final class programming in some
object-oriented language.

The notation is backed with a set
of guidelines that specify activities
and deliverables. Although activi-
ties are often listed in sequential
order, they are iterative in practice.
For instance, there is sometimes no
clear distinction between what
really belongs to analysis and what
really belongs to design. Very
roughly one could say that analysis
becomes design whenever imple-
mentation decisions are taken,
whenever nonpubJic information is
introduced in a system, or when-
ever newly introduced classes do
not relate to problem space objects.

Finding, Naming, and Clustering
Classes
Looking for objects and classes is
the very first step of object-oriented
analysis. It resembles the activity of
describing a picture viewing the
problem space for which the system
borderline is the frame.

Both imagination and abstrac-
tion guide the analyst. The subtle
effort is to decouple "nouns" po-
tentially representing services from
those mapping to effective candi-
date classes. No miracle formula
exists in that respect besides experi-
ence and recall of good practices.
Some guidelines exist, but better
serve as checklists to things not to
miss.

We retain basic and simple ideas
as principles: the aim of analysis is

64 September 1992/Vol.35, No.9/COMMUNICATIONS OF T H E ACM

a r t i c l e s

to put some o rde r to our percep-
tion of the real world. The result is
not to produce something that
complicates the problem to solve or
the reality to map. On the contrary,
the purpose is to simplify, to master
the complexity by reformulat ing
the problem. Analysis must remove
noise and overspecification, find
inconsistencies, postpone imple-
mentat ion decisions, part i t ion the
problem space, take a certain view-
point and document it. Object ori-
entat ion simply adds s tructuring
mechanisms for def ining relation-
ships between system elements and
decentralizing local decisions.

A system usually interacts with
di f ferent users. Users are not
equally qualified to access specific
pieces of information. The re are
various reasons for this: the level of
responsibility in an organization;
access rights (user, administrator);
the level of confidence (novice, ad-
vanced user); the level of expert ise
or knowledge of the application
domain. Occupational names give
some ideas about possible classes
for users: engineer, employer, cus-
tomer, etc.

Large systems are expected to be
used in completely di f ferent con-
texts. For a company using a system
operat ing through a communica-
tion network branches, affiliates, sub-
sidiaries, and other manufacturing
plants may be similarly described
regardless of the geographical loca-
tion.

For o ther specific systems, the
place of operat ion impacts the be-
havior. In the case of an embedded
system, the place of execution may
configure the system according to
external constraints: severe or pro-
tected environment , ability to tune
the time/space tradeoff, ability to
limit or extend the accuracy of a
computat ion depend ing on the
context.

Since object-oriented architec-
tures are flexible, they can model
di f ferent problem space descrip-
tions directly as part of the system
description.

Informat ion systems reflect the
way organizations work. In the case

of communicat ion systems, infor-
mation is presented differently ac-
cording to implied actors. A mili-
tary system will not display ground
information in the same fashion for
the army general as for the front-
line soldier. Actors in an organiza-
tion will access the same informa-
tion, but it will be presented
differently. The term "organiza-
tion" here must he unders tood not
only as the mapping of the work
breakdown structure onto a re-
sponsibility assignment chart but
also as a way information must be
detai led or not, depend ing on the
actors' levels of responsibility.

An information system behaves
as a set of black boxes of which the
intrinsics are h idden and the only
visible part is the list of services and
states provided to the user. Al-
though it may be tempt ing to view
the system as a collection of func-
tions, the object approach enforces
the use of data abstraction that en-
capsulates services. Therefore ,
even if services come to mind first,
one should look for the under lying
classes that represent the grouping
of these operations.

Many systems can be defined, at
the requi rement levels, as state
machines. A state-transition dia-
gram, in this case, is not an imple-
mentat ion technique, simply a con-
venient way to express how the
system changes according to inter-
nal events. It is generally too com-
plicated, however, to represent the
entire logic using this model. Look-
ing at the information system mod-
eling techniques, diagrams are pro-
duced to stress the information
flows. Such diagrams are also a var-
iation of the state-transition dia-
gram and can lead to the produc-
tion of system classes.

A first principle is to consider
classes as representat ions of ab-
stract data types as opposed to
"things they do," which is far too
close to procedura l techniques. A
class has an internal state and offers
services.

Then, classes are g rouped into
clusters. The grouping factor may
vary, but in principle it is s impler to

designate a certain viewpoint as the
main focus of interest.

Clusters play various roles. Dur-
ing analysis they help grouping
classes according to proximity crite-
ria based on a subsystem function-
ality, an abstraction level or an end-
user standpoint . Dur ing design
they are often used as a s tructuring
technique to selectively visualize the
coupling between classes. In any
case they should not be confused
with classes.

From the analysis of the car
rental system, an initial set of classes
comes to mind and participates in
the definit ion of a first cluster.

In the early stages of analysis,
BON uses various charts for de-
scribing the di f ferent types of ob-
jects. These charts are used as a
communicat ion tool between end
users and analysts and were in-
spired by the CRC technique [1],
but with a di f ferent rationale.

The cluster chart lists classes par-
ticipating in the identif ied clusters
and gives a short definit ion for each
of them. It is very common to start
with only one general cluster and
then come up with new ones after
doing some class grouping. A sim-
plified cluster chart for the car
rental system is given in Table 1.

It is also impor tant to locate the
place of a class within the overall
structure. This means that f inding
related classes is more impor tant
tha n f inding a single class. Design
will decide whether classes are
l inked by derivation, association,
generalization, or specialization re-
lationships. Table 2 illustrates how
clustering may group together with
a class, say AUTOMOBILE, quite
different classes depend ing on ap-
plication domains.

We will then continue our system
analysis based on two types of rep-
resentation: a dynamic model, show-
ing parts of its behavior and a static
model describing its structure.

Events and Object Communication
Protocols
Two different kinds of events that
act on system behavior must be
sorted out: external events and in-

COMMUNICATIONS OF THE ACM/September 1992/%1.35, No.9 6 S

ternal events.
External events are actions initi-

ated by the external interactor.,~ that
produce an incoming data flour that
crosses the boundary of the system.
They refer to stimuli received from
the outside upon which the system
reacts according to a certain behav-
ior. External events help to f ind
classes that interface the system
with the outside world. '] 'hey
should not be considered as "unex-
pected" events. They are things
that can possibly happen but over
which the system has no control on
whether or when they may occur.
External events may become classes
or input pa ramete r data passed to
class features.

In ternal events are t ime-related
stimuli that may be relative or abso-
lute. They refer to parts of system
behavior that simply translate into
class features that will lead to mes-
sages def ining the object communi-
cation protocols. Since they act on
the system state, they also translate
into assertions that control the
p rope r behavior of the system.

This technique relates to princi-
ples appl ied in "Object Behavior
Analysis" [19].

Table 3 gives an example of
events applicable to the car rental
system and can be compared with a
nonre la ted system (a traffic light
controller).

Events help to introduce the
dynamic model that complements
the static system structure. I t high-
lights objects relevant to selected
system behaviors. The dynamic
model consists of scenarios demon-
strating significant object commu-
nication protocols. The purpose is

twofold: it helps to validate the
static model and to make sure ob-
jects are reachable from others; it
maps the system behavior better as
opposed to the static model that
only reflects the structure.

Deciding which model should be
p roduced first really depends on
the nature of the application and
the analyst 's level of confidence.

Def in ing Classes and Sketching
Out t he Kernel Arch i tec tu re
From the initial list of classes, class
charts are then filled out. For each
class entry in the initial cluster
chart, a class chart is def ined ac-
cording to three basic types of in-
formation:

• The questions: what informat ion
can other classes ask from the class?
• The commands: what services can
other classes ask the class to pro-
vide?
• The constraints: what knowledge
must the class maintain?

The chart is s t ructured in three col-
umns, filled with f ree-format Eng-
lish text.

The class chart describes a type
of object that should cor respond to
a class entry in the cluster chart. It

is also possible to state that the de-
scribed type of object is suspected
to behave like other types of object.
This may help refining the inheri-
tance classification later in the pro-
cess. Examples of class charts are
given in Figure 2.

Analysis proceeds using a more
formal way to represent the system
structure and behavior. The static
model shows the system structure
by its decomposit ion, its elements
and their relationships, along with
the constraints that the classes must
fulfill. Two levels of detail are sup-
por ted: the class level and the clus-
ter level that defines relationships
between logically g rouped classes.
The model introduces typed infor-
mation very early in the analysis
process. In practice, this means that
any class definit ion introduces a
type definition.

Relationships between clusters
are mostly structural. They help
scaling up or down the system ac-
cording to g rouping factors or ab-
straction levels. Class relationships
may capture addit ional semantic
informat ion that translate into class
annotat ions. Relationships between
classes are represented in a quite
d i f ferent manner compared with

Table 2.
Class AUTOMOBILE wi th related cluster classes

APPLICATION DOMAIN

AutOmobile manufacturer

Traffic-light controller

Repair station

Car rental company

CLASSES RELATED TO AUTOMOBILE

LIMO, COUPE, SEDAN, STATION_WAGON

PEDESTRIAN, BIKE, VEHICLE

FOREIGN_CAR, DOMESTIC_CAR

TRUCK, TRAILER, COMPACT_CAR,
LUXURY_CAR

Table 3.
Event charts

APPLICATION DOMAIN EXTERNAL EVENT INTERNAL EVENT

Car rental company Customer makes a car reservation. Rental contract pr inted when car returned.
A rented car breaks down. Tank refil led on return,
A new car joins the f leet Mileage checked on return.
A car is returned. Car inspection done on leave and on return,

Traffic-light controller A vehicle is arriving at the intersection. Light turns green.
A vehicle is leaving the intersection, Red light starts flashing.
A road is closed to traffic.

66 September 1992/Vol.35, N o . 9 / C O M M U N I C A T I O N S OF THE AC:M

a r t i c l e s

techniques such as the entity-rela-
tionship model. Tables 4 and 5
make a parallel between the entity-
to-entity relationships in the rela-
tional model and the class-to-class
structuring mechanisms of the ob-
ject model. The class structuring
mechanism is based on two basic
relationships: the inheritance rela-
tionship and the client-supplier rela-
tionship. The client-supplier rela-
tionship usually encompasses two
things: the association relationship
and the aggregation relationship, as
explained in [13].

Classes always belong to a cluster

usually displayed in abstracted
form, that is only with their header.
Figure 3 illustrates static and dy-
namic model notations used in
BON.

T a b l e 4.
Semantics of entity

relationships In the relational
model

TYPE OF RELATIONSHIP (multipliCity)

has_a(1:1)
owns, contains, is-contained-ln(l:m)
consists-of(re:m)
is-a(l: l l

Object-Or iented Design w i th
an Example
Object-oriented design transforms
the analysis classes into a computer-
ized model that belongs to the solu-
tion space. This activity starts from
the analysis classes and produces
additional types of objects that be-
come classes not directly related to
the problem space. These classes
extend, generalize, or implement
the initial set of analysis classes.
Primitives introduced during de-
sign are not necessarily public and
may relate to implementation deci-
sions such as to determine which

Table s.
Semantics of Inheritance and client-supplier relationships In the object-oriented model

CLASS TYPE OF RELATIONSHIP CLASS

inheritance
relationships

descendant is-a parent
descendant behaves-like parent
descendant implements parent
descendant combines parents
parent defers-to descendant
parent factors-out descendants

Client/Supplier
relationships

client uses suppliers
client needs suppliers
client has-a supplier
client consists-of suppliers
supplier provides-to clients

CONTRA CT

Cluster name: CAR RENTAL SYSTEM

Behaves like: TYPE OF OBJECT:
Rental terms with payment conditions

Questions I CO mmands

PURCHASE ORDER

Constraints

Means of paymenL Invoice clienL Corporate customers
Individual or Acknowledge do not get weeX-end
corporate customer, a reservation, rate discounts.
Rental documents.

VEHICLE

Cluster name: RENTAL PROPERTIES
TYPE OF OBJECT: Behaves like:
Automobile selected from RENTED_ITEM
the rental fleet

I
Questions Commands Constraints

[Model of c a r , Checkmileage, Departing and
License_plate. Refill gas tank. returning locations
Availability. Change oil. are the same.
Departing location.
Returning location.

CUENT

Cluster name: CONTRACT ELEMENTS

TYPE OF OBJECT: Behaves like:
Car renter, individual or PERSON
corporate customer

Questions Commands Constraints

Name. Enter in Client has already
Address, date b a s e . reserved or rented
Corporate customer. Give special a car.
Special rate. rate.

RENTAL

Cluster name: CONTRACT ELEMENTS
TYPE OF OBJECT: Behaves like:
Rental Information completed when
taking out and returning vehicle

QuesUone Commands Constraints

Selected automobile.
List of authorized drivers,
Selected insurance policy.
Applicable rate.
Extra choices,
Starting and ending mileage.
Departing and returning dates.

Starting mileage <=
ending_mileage.
Departing date <=
returning date,

F i g u r e | . Class charts o f the car rental system

COMMUNICATIONS OF THE ACM/Scptember 1992/Vol.35, No.9 67

classes will interface to the outside
of the system, deal with machine or
system dependen t information,
lead to persistent objects, be in
charge of e r ror recovery, etc.

Describing, Indexing and
Ins tant ia t ing Classes
During design with BON, class
charts are translated into class de-
scriptions. These class descriptions
rephrase the same informat ion in a
more s t ructured and formal man-
ner that will help the generat ion of
prefi l led class templates in an ap-
propr ia te object-oriented language.
The descript ion details class fea-
tures and contract ing conditions.
Class descriptions first focus on vis-

Figure 3. Graphical notations used in
BON static and dynamic models

ible features.
Class chart column entries be-

come comments associated to class
features; which means that any
consistency checking at that level
can only be done by an automated
tool. The translation scheme is
s t raightforward:

• Questions are m a p p e d into at tr i-
butes (state variables) or functions in
the Eiffel sense;
• Commands are m a p p e d into pro-
cedures;
• Constraints are m a p p e d into as-
sertions and class invariants;
• Behavior resemblance translates
into inheri tance (see [11]).

Routine signatures (input or output
parameters, pre- and posteonditions)
are also listed. In addi t ion to this,
one should recall that internal
events may become class features.

Figure 4 is the translation to class
descriptions of the class charts de-
fined dur ing the analysis stage. The
explanat ion of some symbols is also
given in an associated table. Classes
are now fully described: with their
header and their body. The class
body is decomposed into di f ferent
parts. The most commonly de-
scribed parts are: the reference to a
direct parent , the list of typed fea-
tures with their assertions and com-
ments, if any, and the class invari-
ant, if any.

For instance, the RENTAL class
should make sure that whenever a
vehicle is re turned , it has previously
been taken out. This obvious state-
ment avoids possible misuse of the
system. T h e r e is always a strange
situation which is a potential source
of er ror : drivers of the same com-
pany that have each rented a car

#*
/

pilot
owner

% ,s

I TRANSPORTATION

Static model (left side):

I
I
I
I
I
!

2'-5-~D" I DRIVER i
A car is purchased by someone I
The driver enters the car 2
The car's engine starts and runs 3
The car's engine stops 4
The driver leaves the car 5

• Clusters are represented with rounded corner rectangles drawn with dashed lines and are tagged with a name.
• Classes are represented as a name inside an ellipse, with optional annotations: deferred classes are topped with

a star sign, non-deferred descendant classes are topped with a plus sign, reused classes have an underlined name.
• Inheritance relationships are represented with a single line ending by an arrowhead oriented from the descendant

to the parent Client-supplier relationships are represented with a double line ending by an arrowhead in case of
association and with an open curly bracket in case of aggregation. The double line may be tagged with class feature
names involved in the client-supplier relationship. Relationships are defined between classes and can be extended
to clusters

Dynamic model (right side):
• Objects are represented inside rectangles. A shadowed rectangle denotes multiple instances.
• Communication protocols are represented with dash lines, labeled with numbers. These numbers are then referred

to in commented scenarios

68 Septernbcr 1992/Vo1.35, N o . 9 / C O M M U N i C A T I O N $ OF T H E A C M

a r t i c l e s

and then switched them without
notifying the rental company. In
that case, the class invariant serves
as a system consistency checker.

In the CONTRACT class, the in-
variant translates a management
rule stated in the initial set of re-
quirements: corpora te customers
do not have access to special week-

end fees. From the descript ion o f
the classes, a first draf t of the archi-
tecture is then def ined and appears
in Figure 5. A dynamic scenario is
given in Figure 6. The design tech-
nique emphasizes the system flexi-
bility with respect to its possible ex-
tensions or adaptations. High-level
classes can easily be customized or

part icularized using inheritance.
Classes are appl icat ion-depen-

dent. The only way to solve the
problem of f inding suitable classes
for reuse is to add class indexing

F i g u r e 4. Class descriptions of the
c a r r e n t a l s y s t e m

~ l l cense_ plate
KEY

type
MODEL

status

AVAILABILITY
departing_from, returning_to

LOCATION

J

I E-" SET [OPTION] [
I availability date I

means_ of payment
MEANS OF PAYMENT

client
.. Individual or corporate custome

CLIENT
documents

- - R e n l a l contracts
SET [RENTAL]

invoice
-- D o the invoicing

means_of_payment #= ,~

make_ reservation

client ~ ,-~

J

vehicle

-- Se lec ted automobi le

VEHICLE
authorized_ drivers

SET [DRIVER]
Insurance_policy

INSURANCE
discount

-- Rate used to compute the tee
RATE

extra_ Items
SET [EXTRA]

starting_mileage, returning_mileage
VALUE

taking_out_date, returning_date
DATE

J

Symbols used

Input argument --;-]

Output argument

Routine precondition -- I

Routine postconditlon I - -

Class Invarlanl

Void reference ,,~

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 69

: : : ~ i ¢ l e s

and documenting information to
retrieve them easily from libraries
or databases of components accord-
ing to given selection criteria.

To implement automated tools
managing indexing techniques, it is
necessary to prepare the future
reuse by enforcing design guide-
lines by which any completed class

F i g u r e 5. Partial static model of the
car rental system

should be documented according to
a prefilled header template. Class
header templates include refer-
ences to the covered application
domains, to project management
information, to requirement docu-
ments, etc. An example of such an
indexing clause is given in Figure 7.

Once analysis and design classes
are all identified, we need to know
how their instances are created
under certain circumstances. The
static architecture only defines class

relationships; the dynamic model
only emphasizes selected communi-
cation protocols between objects.
Therefore, a way to map one model
to the other is to produce during
the design phase an object creation
chart.

The purpose of this chart is to
determine which class is responsible
for the creation of the instances of
other classes. At this level of de-
scription, one should concentrate
only on classes found during the

/

f %

I C A R _ R E N T A L S Y S T E M I

of_payment, client,
(documents) / d %~

I I departing_date 1 " ",
returning_date t "~

, . name . NS_OF PA I

@ , ,
, . . ,' "" ,."~s , ~ ;,~-z_-~ ~ ~Z~ '

I , .SUPPORT s ,, - - . ,

V E H I C L E _ P R O P E R T I E S

@ , ' @ @
I !
! I

I I @ , - -
• I

i I

.1 (options)

'~ OPTIONS " , ~ "

I

RENTAL_PROPERTIES -'~'

%

<-;we;peR;-> i
UAL_G l

% I
% I

~. OPTION. TYPE

%.

7 0 S e p t e m b e r 1 9 9 2 / % 1 . 3 5 , No.9/COMMUNICATIONS OF T H E ACM

a r l ~ | ¢ l e s

very first stages. Table 6 shows an
example of the object creat ion table
co r r e spond ing to the car renta l
example reviewed earlier.

Abstracting and Classifying
What really makes object-or iented
software so attractive is that its
s t ructure "is" its own classification
and that this classification is
achieved so as to be genera l e n o u g h
to accommodate any possible ex-
tens ion or modif icat ion without
impac t ing or complicat ing the ex-
isting architecture.

F i g u r e G. Example of a dynamic sce-
nario

F i g u r e 7. Indexing clause of the class
VEHICLE

Refe r r ing to [10], which con-
cerns the des ign of a l ibrary of re-
usable componen t s , it is in te res t ing
to note that any of a wide r ange of
data s t ructures could always be
l inked to one of the following classi-
fication criteria:

• T h e storage; a classification di-
mens ion that captures whe ther the
data s t ructure is b o u n d e d , fixed,
resizable, . . .
• T h e traversing; a classification
d imens ion that captures the struc-
tural relat ion be tween the data
s t ructure elements , . . .
• T h e access method; a classification
d imens ion that captures the ways
e lements are accessed.

Thus , it becomes m u c h easier to

I
12
I

" - - - - " - RENTA, i
:4

A contract is prepared for a client: 1 V
Requested rented cars are grouped by client: 2, 3] VEHICLE I
A rentalplan Is established for a specific vehicle: 4

I
A vehicle modelis chosen: 5 ~5
Selected mode/is a two-door manual gear car:. 6

p.'8
I] 1 I

f

synonyms: car, transportation mean
application domains: car rental, car lease
author: J. M. Nerson
date: May 1, 1992

revision: 2.1
spec-refs: srs. 1.3.3, srs.3.4.7
keywords: rental, agency, car, vehicle, automobile

J

11nble 6.
Object c reat ion tab le

l~/pe of object

CONTRACT
RENTAL
VEHICLE

Creates

RENTAL, RATE
VEHICLE
MODEL

produce any k ind of data s t ructure
simply by picking and assembling
classes f rom these three basic classi-
fications.

Yet a classification is never per-
fect. It is i n t e n d e d to reflect as
closely as possible a reality which
has no simple order . A
nonsof tware- re la ted example is the
periodical classification of chemical
e lements by Mendelei 'v: it fits real-
ity very well, bu t no t exactly. T h e r e
are some "holes"; no t because min-
eral e lements are yet to be found ,
bu t because in some cases the classi-
fication scheme is bet ter repre-
sented in 3D whereas it was initially
des igned in 2D.

Back to object-or iented software,
assume that a l ibrary m a n a g e m e n t
software is des igned a r o u n d the
assumpt ion that book authors are
h u m a n beings. To cap ture this idea,
a classification is de f ined so as to
make class AUTHOR a descendan t
o f class PERSON. Unfor tuna te ly ,
some t ime later, a new book is
added to the l ibrary stock that is no t
wri t ten by a pe rson bu t by a g roup
of u n k n o w n authors us ing a pseu-
donym. What to do then without
d a m a g i n g the exist ing archi tecture?
T h e only possible solut ion is to de-
fine a new class, WRITER for in-
stance, probably a de fe r red one,
which is a new pa ren t o f AUTHOR
(this will no t change the interface of
AUTHOR) and to ex tend the classi-
fication down f rom the WRITER
class so as to in t roduce a class
ACRONYM..A UTHOR.

As a conclusion we can state:

• A classification, p roper ly laid out
by the analyst according to the un-
de r s t and ing of the p rob lem space,
models reality;

• Objec t -or iented facilities permi t
modif icat ion of the model wi thout

GOMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 7 1

breaking the core architecture
when extensions or special cases
show up.

Generalization of the Example
At the complet ion of the object-
or iented analysis and design, be-
fore class coding has even started, a
generalization process must begin.
Looking at our system architecture,
we may wonder if it is sufficiently
general to maximize future reuse.
The answer usually varies accord-
ing to the domain of activity of the
deve lopment team. In the case of a
large software house, it may be
appropr ia te to do some extra work
to generalize the initial architec-
ture. High-level class abstractions
usually do not come first to mind.
The improvement process often
results in the following scenario:

• A first version of the system is
written.
• Later, specialized versions of" ex-
isting classes are w r i t t e n . T h e y are
heir classes of the existing classes,
ex tending or re implement ing par-
ent features.
• Since the initial set o f classes ap-
pears too problem-specific, some
common features are factored out
into very high-level classes. These
high-level classes serve as parent
classes of the classes belonging to
the initial system and to the classes
newly introduced. These new
classes keep the same interface as
the ones they are paren t of.

Before the implementa t ion of
the car rental system is completed,
one may ask how to pave the way
for coping with other systems simi-
lar to our initial problem such as:

• A boat rental system (motor boat
and sail boat);
• A sport equipment loan system
(snow skis, diving material, etc).

Referr ing to our initial car rental
system, many common features
exist, but o ther elements must
change: there is little chance that
the price of a pair of skis can be
l inked to a number o f miles for
example.

Even applications such as a hotel

reservation system or a box office
ticketing system have similarities
with our initial system. From this
observation, two options are possi-
ble:

• Do nothing and the benefit
gained from applying object-
or iented techniques is limited to the
s t ructur ing of the application.
• Do some extra work involving the
search for more general structures.

Looking at our cur ren t system
architecture; classes inside the
CONTRACT._ELEMENTS cluster
can possibly be kept after some
minor modifications. Classes inside
the RENTAL_PROPERTIES cluster
are much too problem-specific. To
be generalized, new classes have to
be in t roduced as ancestor classes.
Classes such as VEHICLE, DRIVER,
RATE, INSURANCE may now be
def ined as descendant classes of
more general and abstract classes
that could respectively be: PROD-
UCT, CONSUMER, PRICE, WAR-
RANTY.

These classes in t roduce features
that will be implemented or reim-
p lemented in our previously de-
f ined classes. For instance, the
PRODUCT class is initially def ined
by abstracting features originally
in t roduced in the VEHICLE class.
The car rental system classes listed
inside the RENTAL cluster can now
be rewrit ten according to the gen-
eralization process. Consequently,
the VEHICLE class changes as de-
tailed in Figure 8.

Some class invariants initially in-
t roduced in the VEHICLE class are
now moved up into the PRODUCT
class. Since feature license_plate is
adapted from feature serial_number
in t roduced in paren t class PROD-
UCT, a plus symbol sign (+) is ap-
pended to the feature name. Fea-
tures listed in the VEHICLE class
now simply address car rental sys-
tem specifics. It is worth noting that
some features now in t roduced in
class PRODUCT, such as serial-
_number or stocking place, may simply
be kept under a new name in class
PRODUCT, which is why their

names are also appended with a
plus sign.

This will not happen though,
with feature type that is only rele-
vant to the class VEHICLE as out-
lined dur ing our initial analysis.

BON and Tools
The methodology and notation
presented result f rom an ESPRIT
Project ("Business Class" [8]) in
which an object-oriented analysis
and design technique was devel-
oped after exper iment ing on pilot
projects d i f ferent existing method-
ologies [2, 5, 7, 17, 20, 22, 24]. Spe-
cific at tention was also devoted to
possible enhancements o f a model-
ing technique named O* [3, 4] with
a strong database orientat ion and
some similarities to OOSA [21].

This inspired the BON object-
or iented analysis and design model
and notat ion designed so as to sup-
por t the following capabilities:

• A n a l y s i s a n d d e s i g n : the formal-
ism helps the analyst in sketching a
first set of classes and relationships
that can directly be translated into a
system design, itself translatable
into a set of p rog ramming language
classes.

• Scalabil i ty: the formalism for
represent ing groups of classes
scales up and supports problem
part i t ioning based on layers of ab-
straction using class clustering tech-
niques.

• R e v e r s e e n g i n e e r i n g : since any
kind of informat ion is stored in a
coherent internal data structure, it
is possible to reuse existing systems
and translate them back into a sche-
matic form. This enables the ana-
lyst to visualize existing class l ibrar-
ies not developed with a model ing
technique, or for which the accom-
panying analysis and design docu-
mentat ion does not come with the
off- the-shelf product .

• D o c u m e n t a t i o n : any e lement
that appears in the schematic dia-
gram or in the textual form should
be traceable. A reposi tory o f classes,
propert ies , relationships and de-
pendencies is mainta ined and can

I ~ September 1992/Vol.35, No.9/COMMUNICATIONS OF THE ACM

a r t i c l e s

be queried to produce browser-like
information or cross-reference
forms.

• Structuring mechanism: the
model offers two graphical repre-
sentations: a static diagram and a
dynamic graph. The static diagram
represents classes and clusters of
classes all linked through different
kinds of relationships. It permits
the definition and visualization o f
well-decentralized software archi-
tectures promoted by object-
oriented techniques. The dynamic
graph illustrates communication
scenarios between objects.

• Systematic design: the model
fosters the application of the con-
tract model between classes. Asser-
tions such as pre- and postcondi-
tions of class invariants, can be
expressed with a formalism relying
on symbols commonly used in set
theory and then directly imple-
mented in Eiffel.

• Component management: soft-
ware elements such as classes, fea-
tures, clusters, relationships are
kept under configuration manage-
ment control, thanks to the index-
ing clauses. Each class is known by
its version and other key informa-
tion can potentially be interfaced
with adapted querying tools.

A summary of the different meth-
odological steps to follow is given in
Table 7. Any object-oriented analy-
sis and design technique must be
backed with supporting CASE
tools. In the scope of "Business
Class" a workbench supporting
BON is being implemented:
EiffelCase. This workbench, de-
signed with BON and programmed
in Eiffel [11], consists of two differ-
ent components.

The first EiffelCase component
is a drawing tool that supports the
notation and generates class tem-
plates from an internal form of
clusters and system dependencies.
At any time, three different views
can be displayed and manipulated:

• The class charts;
• The clusters;

• The class descriptions.

For these three views a consistent
internal structure is maintained.
Any change made to one of the
views is automatically propagated
into the other two as soon as some
"commit" operation is triggered.

The class chart view offers forms
to fill out. The graphical view offers
a drawing-tool interface, with a pal-
ette of graphical elements to be se-
lected and placed on the screen.
The layout of the graphical classes
and clusters remains under the
user's control.

The second EiffelCase compo-
nent is aimed at helping the analyst
to find and manage collections of

classes. It is a large-scale browser
that queries and updates a database
of class information according to
various criteria. The supporting
repository is layered on top of the
PCTE (Portable Common Tool
Environment) Object Management
System emerging as a CASE tools
integration standard.

Acknowledgments
I am very grateful t o Bertrand
Meyer for his constant support and
for suggesting bright and produc-
tive ideas. ! also thank very much

II=lguTe 8. Modified VEHICLE class de-
scription

f-serial_number
KEY

stocking_place
LOCATION

status*
ACCESSIBILITY

Heir of: PRODUCT " ~

l icense_plate +
K E Y

d e p a r t i n g _ f r o m + , returning_to
LOCATION

status +
AVAILABILITY

type
MODEL

I departing_from = returning_to I
J

T a b l e 1.
S u m m a r y o f B0N m e t h o d o l o g i c a l steps

• DELINEATE THE SYSTEM BORDERLINE
° LIST CANDIDATE CLASSES OBSERVED IN THE PROBLEM DOMAIN
• GROUP CLASSES INTO CLUSTERS
• DEFINE CANDIDATE CLASSES IN TERMS OF QUESTIONS/COMMANDS/

CONSTRAINTS
• DEFINE BEHAVIORS: EVENTS, OBJECT COMMUNICATION PROTOCOLS, OBJECT

CREATION CHART
• DEFINE CLASS FEATURES, INVARIANTS AND CONTRACTING CONDITIONS
• REFINE CLASS DESCRIPTIONS
• WORK ON GENERALIZATION
• COMPLETE AND REVIEW ARCHITECTURE

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 73

Kim Walden an d all the reviewers
for their ext remely helpful com-
ments . []

References
1. Beck, K., Cunningham, W. A labo-

ratory for teaching object-oriented
thinking. OOPSLA'89, Oct. 1.989,
pp. 1-6.

2. Booch, G. Object Oriented Design with
Applications. The Benjamin/
Cummings Publishing Company,
Inc. 1991.

3. Brunet, J. Modeling the world with
semantic objects. University of Paris
I, Internal Report, 1991.

4. Cauvet, C., Roland, C., Proix, C. A
design methodology for object ori-
ented database. International Con-
ference on Management of Data,
Hyderabad, India, 1989.

5. Coad, P. and Yourdon, E. Object Ori-
ented Analysis, Second Edition, Pren-
tice-Hall, Englewood Cliffs, N.J.,
1991.

6. Coad, P. Object-oriented patterns.
Commun. ACM 35, 9 (Sept. 1992).

Give the gift of life.

Call (800)877-5833 for information

~ S T . J U D E C H / L D R E N ' S

~ RESEARCH H O S P / T A L
II~mn r~Nr~*i. Founder

7. Duke, R., King, P., Rose, G.,
Smith, G. The object-Z specification
language. In Proceedings TOOLS 5,
(Santa Barbara, July-August 1991),
Prentice Hall, Englewood Cliffs,
N.J., 1991, pp. 465-483.

8. ESPRIT II, Business Class Techni-
cal Annex. Project #5311, Commis-
sion of the European Economic
Community, Bruxelles, Sept. 1990.

9. Henderson-Sellers, B. BOOK of Ob-
ject-Oriented Knowledge. Object Ori-
ented Series, Prentice-Hall, Engle-
wood Cliffs, N.J., 1991.

10. Meyer, B. Tools for the new cul-
ture: Lessons from the design of the
Eiffel libraries, Commun. ACM 33, 9
(Sept. 1990), 69-88.

11. Meyer, B. Eiffel: The Language. Ob-
ject Oriented Series, Prentice-Hall,
Englewood Cliffs, N.J., 1992.

12. Meyer, B. Design by contract. In
Advances in Object-Oriented Software
Engineering, D. Mandrioli and
B. Meyer, Ed., Object-Oriented
Series, Prentice-Hall, Englewood
Cliffs, N.J., 1991, pp. 1-50.

13. Monarchi, D., Puhr, G,I. A research
typology for object-oriented analy-
sis and design. Commun. ACM 35, 9
(Sept. 1992).

14. Nerson, J. Extending Eiffel toward
O-O analysis and design. In Proceed-
ings TOOLS 5, (Santa Barbara, Ju ly-
August 1991), Prentice Hall, Engle-
wood Cliffs, N.J., 1991, pp. 377-
392.

15. Nerson, J. Object-Oriented Architec-
tures: Analysis and Design of Reliable
Systems. Prentice Hall, Englewood
Cliffs, N.J. To appear.

16. Nierstraz, O., Tsichritzis, D.,
Gibbs, S. Component-Oriented
software development. Commun.
ACM 35, 9 (Sept. 1992).

17. Page-Jones, M., Constantine, L. and
Weiss, S. Modeling object oriented
systems: the uniform object nota-
tion. Comput. Lang. 7, (Oct. 1990),
69-87.

18. Potter, J. Software development
with Eiffel, TOOLS 4 Tutorial
Notes, Paris, June 1990.

19. Rubin, K., Goldberg, A. Object be-
havior analysis. Commun. ACM 35, 9
(Sept. 1992).

20. Rumbaugh, J., Blaha, M., Premer-
lani, W., Eddy, F. and Lorensen, W.
Object Oriented Modeling and Design.
Prentice-Hall, Englewood Cliffs,
N.J., 1991.

21. Shlaer, S. and Mellnr, S.J. Object
Oriented Systems Analysis, Modeling the
World in Data. Yourdnn Press Corn-

puting Series, Prentice-Hall, Engle-
wood Cliffs, N.J., 1988.

22. Wasserman, A. I., Pircher, P.A.,
Muller, R.J. Concepts of object-
oriented structured design. In Pro-
ceedings TOOLS '89 Conference, Paris,
Nov. 1989, pp. 269-280.

23. Winblad, A.L., Edwards, S.D.,
King, D.R. Object Oriented Software.
Addison-Wesley Publishing Com-
pany, 1990.

24. Wirfs-Brock, R., Wilkerson, B. and
Weiner, L. Designing Object-Oriented
Software. Prentice-Hall, Englewood
Cliffs, N.J., 1990.

CR Categories and Subject Descrip-
tors: D.2.1 [Software]: Software Engi-
neering - - requirements / specifications;
D.2.10 [Software]: Software Engi-
neering-design; 1.6.0 [Computing
Methodologies]: Simulation and Mod-
eling-general; 1.6.3 [Computing Meth-
odologies]: Simulation and Modeling--
applications; K.6.3 [Computing
Milieux]: Management of Computing
and Information Systems--software
management; K.6.4 [Computing
Milieux]: Management of Computing
and Information Systems--system man-
agement

General Terms: Design, Experimen-
tation

Additional Key Words and Phrases:
Analysis, design, flexible software archi-
tecture, object-oriented notation and
methodology, object-oriented software
engineering, reliable component reus-
ability, static class model and dynamic
object model

About the Author:
JEAN-MARC NERSON is managing
director of the Soci4t~ des Outils du
Logiciel (Paris). Current research inter-
ests include the analysis and design of
reliable systems.

Author's Present Address: Soci~t6 des
Outils du Logiciel, 104 rue Castagnary,
75015 Paris, France; email: marc@
eiffel.fr

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

©ACM0002-0782/92/0900-063 $1.50

7 4 September 1992/Vol.35, No.9/COMMUNICATIONS OF THE ACM

