
Department of Computer Engineering
1

Sharif University of Technology

Agile Software 

Development 

Lecturer: Raman Ramsin

Lecture 9

Refactoring – Part 3



Agile Software Development – Lecture 9

Department of Computer Engineering
2

Sharif University of Technology

Refactoring APIs: Separate Query from Modifier

 Separate Query from Modifier

 You have a method that returns a value but also changes the state of an object.

 Create two methods, one for the query and one for the modification.



Agile Software Development – Lecture 9

Department of Computer Engineering
3

Sharif University of Technology

Refactoring APIs: Parameterize Function

 Parameterize Function

 Several functions do similar things but with different values contained in the 
function body.

 Create one function that uses a parameter for the different values.



Agile Software Development – Lecture 9

Department of Computer Engineering
4

Sharif University of Technology

Refactoring APIs: Remove Flag Argument

 Remove Flag Argument

 You have a Function that runs different code depending on the values of an 
enumerated parameter.

 Create a separate function for each value of the parameter.



Agile Software Development – Lecture 9

Department of Computer Engineering
5

Sharif University of Technology

Refactoring APIs: Preserve Whole Object

 Preserve Whole Object

 You are getting several values from an object and passing these values as 
parameters in a function call.

 Send the whole object instead.



Agile Software Development – Lecture 9

Department of Computer Engineering
6

Sharif University of Technology

Refactoring APIs: Replace Parameter with Query

 Replace Parameter with Query

 A function call passes in a value that the function can just as easily determine 
for itself.

 Remove the parameter and let the receiver determine the value.



Agile Software Development – Lecture 9

Department of Computer Engineering
7

Sharif University of Technology

Dealing with Inheritance: Pull-Up/Push-Down Method/Field

 Pull Up Method/Field

 A method/field is present in all the subclasses.

 Move the method/field to the superclass.

 Push Down Method/Field

 A method/field of the superclass is not relevant to all the subclasses.

 Move the method/field to the relevant subclasses.



Agile Software Development – Lecture 9

Department of Computer Engineering
8

Sharif University of Technology

Dealing with Inheritance: Pull Up Constructor Body

 Pull Up Constructor Body

 You have constructors on subclasses with mostly identical bodies.

 Create a superclass constructor; call this from the subclass methods.



Agile Software Development – Lecture 9

Department of Computer Engineering
9

Sharif University of Technology

Dealing with Inheritance: Extract Subclass/Superclass

 Extract Subclass

 A class has features that are used only in some instances.

 Create a subclass for that subset of features.

 Extract Superclass

 You have two classes with similar features.

 Create a superclass and move the common features to the 
superclass.



Agile Software Development – Lecture 9

Department of Computer Engineering
10

Sharif University of Technology

Dealing with Inheritance: Extract Interface

 Extract Interface

 Several clients use the same subset of a class's interface, or two classes have 
part of their interfaces in common.

 Extract the subset into an interface.



Agile Software Development – Lecture 9

Department of Computer Engineering
11

Sharif University of Technology

Dealing with Inheritance: Collapse Hierarchy

 Collapse Hierarchy

 A superclass and subclass are not very different.

 Merge them together.



Agile Software Development – Lecture 9

Department of Computer Engineering
12

Sharif University of Technology

Dealing with Inheritance: Form Template Method

 Form Template Method

 You have two methods in subclasses that perform similar 
steps in the same order, yet the steps are different.

 Get the steps into methods with the same signature, so that 
the original methods become the same. Then you can pull 
them up.



Agile Software Development – Lecture 9

Department of Computer Engineering
13

Sharif University of Technology

Dealing with Inheritance: Form Template Method



Agile Software Development – Lecture 9

Department of Computer Engineering
14

Sharif University of Technology

Dealing with Inheritance: Replace Superclass with Delegate

 Replace Superclass with Delegate

 A subclass uses only part of a superclass’s interface or does not want to inherit 
data.

 Create a field for the superclass, adjust methods to delegate to the superclass, 
and remove the subclassing.



Agile Software Development – Lecture 9

Department of Computer Engineering
15

Sharif University of Technology

Big Refactorings: Tease Apart Inheritance

 Tease Apart Inheritance

 You have an inheritance hierarchy that is doing two jobs at 
once.

 Create two hierarchies and use delegation to invoke one 
from the other.



Agile Software Development – Lecture 9

Department of Computer Engineering
16

Sharif University of Technology

Big Refactorings: Tease Apart Inheritance



Agile Software Development – Lecture 9

Department of Computer Engineering
17

Sharif University of Technology

Big Refactorings: Convert Procedural Design to Objects

 Convert Procedural Design to Objects

 You have code written in a procedural style.

 Turn the data records into objects, break up the behavior, 
and move the behavior to the objects.



Agile Software Development – Lecture 9

Department of Computer Engineering
18

Sharif University of Technology

Big Refactorings: Convert Procedural Design to Objects



Agile Software Development – Lecture 9

Department of Computer Engineering
19

Sharif University of Technology

Big Refactorings: Separate Domain from Presentation

 Separate Domain from Presentation

 You have GUI classes that contain domain logic.

 Separate the domain logic into separate domain classes.



Agile Software Development – Lecture 9

Department of Computer Engineering
20

Sharif University of Technology

Big Refactorings: Extract Hierarchy

 Extract Hierarchy

 You have a class that is doing too much work, at least in 
part through many conditional statements.

 Create a hierarchy of classes in which each subclass 
represents a special case.



Agile Software Development – Lecture 9

Department of Computer Engineering
21

Sharif University of Technology

Big Refactorings: Extract Hierarchy



Agile Software Development – Lecture 9

Department of Computer Engineering
22

Sharif University of Technology

Reference

 Fowler, M., Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

 Fowler, M., Refactoring: Improving the Design of Existing Code,
2nd Edition, Addison-Wesley, 2019.


