
Department of Computer Engineering
1

Sharif University of Technology

Agile Software

Development

Lecturer: Raman Ramsin

Lecture 8

Refactoring – Part 2

Agile Software Development – Lecture 8

Department of Computer Engineering
2

Sharif University of Technology

Moving Features: Move Function

 Move Function

 A function is, or will be, using or used in another context than the context in
which it currently resides.

 Create a new function with a similar body in the new context. Either turn the old
function into a simple delegation, or remove it altogether.

Agile Software Development – Lecture 8

Department of Computer Engineering
3

Sharif University of Technology

Moving Features: Move Field

 Move Field

 A field is, or will be, used by another context more than the context in which it
already resides.

 Create a new field in the target context, and change all its users.

Agile Software Development – Lecture 8

Department of Computer Engineering
4

Sharif University of Technology

Moving Features: Slide Statements

 Slide Statements

 Several lines of code access the same data structure, but they are intermingled
with code accessing other data structures.

 Move them together.

Agile Software Development – Lecture 8

Department of Computer Engineering
5

Sharif University of Technology

Moving Features: Split Loop

 Split Loop

 You’re doing two different things in the same loop, and whenever you need to
modify the loop you have to understand both things.

 Split the loop into two independent ones.

Agile Software Development – Lecture 8

Department of Computer Engineering
6

Sharif University of Technology

Moving Features: Replace Loop with Pipeline

 Replace Loop with Pipeline

 You are using loops to iterate over a collection of objects.

 Use Collection Pipelines instead, which describe the processing as a series of
operations, each consuming and emitting a collection.

Agile Software Development – Lecture 8

Department of Computer Engineering
7

Sharif University of Technology

Moving Features: Remove Dead Code

 Remove Dead Code

 Unused code is becoming a significant burden when trying to understand how
the software works.

 Remove it mercilessly.

Agile Software Development – Lecture 8

Department of Computer Engineering
8

Sharif University of Technology

Organizing Data: Split Variable

 Split Variable

 A variable has more than one responsibility within the method.

 It should be replaced with multiple variables, one for each responsibility.

Agile Software Development – Lecture 8

Department of Computer Engineering
9

Sharif University of Technology

Organizing Data: Change Reference to Value

 Change Reference to Value

 There is a changeable object, or data structure, nested within another.

 Provide immutable copies of it (such as Value Objects) to pass around.

Agile Software Development – Lecture 8

Department of Computer Engineering
10

Sharif University of Technology

Organizing Data: Change Value to Reference

 Change Value to Reference

 Immutable copies of an object or data structure are passed around, but they
need to be updated based on changes made to the original.

 Change the copied data into a single reference.

Agile Software Development – Lecture 8

Department of Computer Engineering
11

Sharif University of Technology

Simplifying Conditional Logic: Decompose Conditional

 Decompose Conditional

 You have a complicated conditional (if-then-else) statement.

 Extract methods from the condition, then part, and else parts.

Agile Software Development – Lecture 8

Department of Computer Engineering
12

Sharif University of Technology

Simplifying Conditional Logic: Consolidate Conditional Expression

 Consolidate Conditional Expression

 You have a sequence of conditional tests with the same result.

 Combine them into a single conditional expression and extract it.

Agile Software Development – Lecture 8

Department of Computer Engineering
13

Sharif University of Technology

Simplifying Conditional Logic: Replace Nested Conditional with Guards

 Replace Nested Conditional with Guard Clauses

 A method has conditional behavior that does not make clear the normal path of
execution.

 Use guard clauses for all the special cases.

Agile Software Development – Lecture 8

Department of Computer Engineering
14

Sharif University of Technology

Simplifying Conditional Logic: Replace Conditional with Polymorphism

 Replace Conditional with Polymorphism

 You have a conditional that chooses different behavior depending on the type of an
object.

 Move each leg of the conditional to an overriding method in a subclass. Make the
original method abstract.

Agile Software Development – Lecture 8

Department of Computer Engineering
15

Sharif University of Technology

Simplifying Conditional Logic: Introduce Special Case

 Introduce Special Case

 Many users of a data structure check a specific value, and then do the same
thing.

 Use the Special Case pattern to create a special-case element that captures all
the common behavior.

Agile Software Development – Lecture 8

Department of Computer Engineering
16

Sharif University of Technology

Simplifying Conditional Logic: Introduce Special Case: Null Object

 Introduce Null Object

 You have repeated checks for a null value.

 Replace the null value with a null object.

Agile Software Development – Lecture 8

Department of Computer Engineering
17

Sharif University of Technology

Simplifying Conditional Logic: Introduce Assertion

 Introduce Assertion

 Sections of code work only if certain conditions are true. Such assumptions are
not stated and can only be deduced by looking through the algorithm.

 Use assertions to state the conditions explicitly; failure of an assertion indicates
a programmer error.

Agile Software Development – Lecture 8

Department of Computer Engineering
18

Sharif University of Technology

Reference

 Fowler, M., Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

 Fowler, M., Refactoring: Improving the Design of Existing Code,
2nd Edition, Addison-Wesley, 2019.

