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Refactoring: Definition

m Refactoring:

A change made to the internal structure of software to
make it

m easier to understand, and
= cheaper to modify.

The observable behavior of the software should not be
changed.
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Refactoring: Why?

= Why Should You Refactor?

Refactoring Improves the Design of Software
Refactoring Makes Software Easier to Understand
Refactoring Helps You Find Bugs

Refactoring Helps You Program Faster
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Refactoring: When?

m When Should You Refactor?

Refactor the third time you do something similar (The Rule
of Three)

Refactor When You Add Function
Refactor When You Need to Fix a Bug

Refactor As You Do a Code Review
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-
Symptoms of Bad Code (1)

1. Mysterious Name

2. Duplicated Code

3. Long Function

4. Long Parameter List
5. Global Data

6. Mutable Data

7. Divergent Change: When one class is commonly changed in different
ways for different reasons.

8. Shotgun Surgery: When every time you make a kind of change, you
have to make a lot of little changes to a lot of different classes.
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Symptoms of Bad Code (2)

9. Feature Envy: A method that seems more interested in a class other than
the one it actually is in.

10. Data Clumps: Bunches of data that reqularly appear together.

11. Primitive Obsession: Excessive use of primitives, due to reluctance to
use small objects for small tasks.

12. Repeated Switches

13. Loops

14. Lazy Element: An Element that isn't doing enough to justify its
maintenance.

15. Speculative Generality: Classes and features have been added just
because a need for them may arise someday.
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Symptoms of Bad Code (3)

16.
17.
18.
19.
20.
21,
22,
23.

24,
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Temporary Field: An attribute that is set only in certain circumstances.
Message Chains: Transitive visibility chains.

Middle Man: Excessive delegation.

Insider Trading: Excessive interaction and coupling.

Large Class

Alternative Classes with Different Interfaces

Data Class

Refused Bequest: When children don't fulfill their parents’ commitments.

Comments: When comments are used to compensate for bad code.
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Refactoring Patterns: Categories

m First Set: The most commonly used refactorings

m Encapsulation: Enhancing information hiding

m Moving Features: Moving elements between contexts
m Organizing Data: Making data easier to work with

m Simplifying Conditional Logic: Making conditional logic less error-
prone

m Refactoring APIs: Making interfaces easy to understand and use

m Dealing with Inheritance: Moving features around a hierarchy of
inheritance
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Agile Software Development — Lecture 7

First Set: Extract Function

m Extract Function
You have a code fragment that can be grouped together.
Turn the fragment into a function whose name explains the purpose of the

function.
void printOwing() {
printBanner () ;

//print details
System.out.println ("name: " + name);
System.out.println ("amount " + getOutstanding()) ;

U

void printOwing() {
printBanner() ;
printDetails (getOutstanding() ) ;

}

void printDetails (double outstanding) {
System.out.println ("name: " + name);
System.out.println ("amount " + outstanding) ;

}
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Agile Software Development — Lecture 7

First Set: Inline Function

= Inline Function
A function's body is just as clear as its name.
Put the function's body into the body of its callers and remove the function.

int getRating()
return (moreThanFivel.ateDeliveries()) ? 2 : 1;

boolean moreThanFivelateDeliveries () {
return numberOfLateDeliveries > 5;

!

int getRating() {
return ( numberOflLateDeliveries > 5) ? 2 : 1;
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Agile Software Development — Lecture 7

First Set: Encapsulate Variable

m Encapsulate Variable

You are accessing a variable directly, but the coupling to the variable is

becoming awkward.

Create getting and setting functions for the variable and use only those to

access the variable.

private int _low, _high;
boolean includes (int arg) {

return arg >= _low && arg <= _high;
}

[}

hvd

private int low, high;
boolean includes (int arg) {

}

int getLow() {return low;}
int getHigh() {return high;}
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return arg >= getLow() && arg <= getHigh() ;
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Agile Software Development — Lecture 7

First Set: Introduce Parameter Object

m Introduce Parameter Object
You have a group of parameters that naturally go together.
Replace them with an object.

function amountInvoiced(startDate, endDate) {...}
function amountReceived(startDate, endDate) {...}
function amountOverdue(startDate, endDate) {...}

function amountInvoiced(aDateRange) {...}
function amountReceived(aDateRange) {...}
function amountOverdue(aDateRange) {...}

Customer Customer
amountinvoicedin(stan: Date, end: Date) 4"> amountinvoicedin(DateRange)
amountReceivedin(start; Date, end: Date) / amountRecevedin(DateRange)
amountOverduein(start: Date, end: Dale) amounlOverdueln{DaleRange)
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Agile Software Development — Lecture 7

First Set: Combine Functions into Class

m  Combine Functions into Class
A group of functions operate closely together on a common body of data
Form a class to contain the functions,

function base(aReading) {...}
function taxableCharge(aReading) {...}
function calculateBaseCharge(aReading) {...}

class Reading {
base() {...}
taxableCharge() {...}
calculateBaseCharge() {...}

}
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Agile Software Development — Lecture 7

First Set: Split Phase

m Split Phase
1 The code is dealing with two or more different things.
T Split it into separate modules.

const orderData = orderString.split(/\s+/);
const productPrice = pricelList[orderData[@].split("-")[1]];
const orderPrice = parselnt(orderData[l]) * productPrice;

| ———
——
| — ¢
const orderRecord = parseOrder(order);
const orderPrice = price(orderRecord, pricelist);
function parseOrder(aString) {
const values = aString.split(/\s+/); ¢
return ({

productID: values[0].split("-")[1],
quantity: parseInt(values[1]),
Hs
}

function price(order, pricelist) {
return order.quantity * pricelist[order.productID];
}
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Agile Software Development — Lecture 7

Encapsulation: Encapsulate Record

m Encapsulate Record
You have a mutable data record.

Turn it into a class and create getting and setting methods to access the
variables.

organization = {name: "Acme Gooseberries", country: "GB"};

class Organization { C Yl

constructor(data) { r
this._name = data.name; - =
this. country = data.country; T

}

get name() {return this. name;}

set name(arg) {this. name = arg;}

get country()  {return this. country;}

set country(arg) {this. country = arg;}

A

e
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Agile Software Development — Lecture 7

Encapsulation: Encapsulate Collection

m Encapsulate Collection
A method returns a collection.
Make it return a read-only view and provide add/remove methods.

Person Person
I\ _ .
getCourses():Set ﬁ,> getCourses():Unmodifiable Set
. addCourse(:Course)
setCourses(:Set) -
removeCourse(:Course)

Department of Computer Engineering 16 Sharif University of Technology



Agile Software Development — Lecture 7

Encapsulation: Replace Primitive with Object

m Replace Primitive with Object
You have a data item that needs additional data or behavior.
Turn the data item into an object.

Order

customer: String

Order

[}

vV

Customer
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name: String
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Agile Software Development — Lecture 7

Encapsulation: Extract Class

m Extract Class
You have one class doing work that should be done by two.

Create a new class and move the relevant fields and methods from the old class
into the new class.

Person — Telephone Number
Mami \ oflice Telephone
officeAreaCode _f> name = ”;ﬂ‘h
officeNurber - f
T Number
T dmonetioner et Telephone getTelephoneNumber
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Agile Software Development — Lecture 7

Encapsulation: Inline Class

m Inline Class
A class isn't doing very much.
Move all its features into another class and delete it.

— Telephone Number Persan
I n-ﬂ'u:elelepmne} areaCade \ > zaraerrﬁ
member — aCod
gelTelephoneNumber T — number
get getTelephoneNumber
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Agile Software Development — Lecture 7

Encapsulation: Hide Delegate

m Hide Delegate

A client is calling a delegate class of an object.
Create methods on the server to hide the delegate.

Client Class
| | I
1 I
I i
I I
------ 1 b e e
| |
| :
I
Yy '
Person Depariment
geiDepartment getManager
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Client Class
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Agile Software Development — Lecture 7

Encapsulation: Remove Middle Man

m Remove Middle Man

A class is doing too much simple delegation.
Get the client to call the delegate directly.

Client Class

|
!

Person

getManager
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Client Class
1 |
1 |
1 |
| |
—————— ] |
—.r> | |
W Y
Person Depariment
getDepartment 7| getManager
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