Agile Software
Development

| ecturer: Raman Ramsin

Lecture /

Refactoring — Part 1

Department of Computer Engineering Sharif University of Technology

Refactoring: Definition

m Refactoring:

A change made to the internal structure of software to
make it

m easier to understand, and
= cheaper to modify.

The observable behavior of the software should not be
changed.

Department of Computer Engineering Sharif University of Technology

Refactoring: Why?

= Why Should You Refactor?

Refactoring Improves the Design of Software
Refactoring Makes Software Easier to Understand
Refactoring Helps You Find Bugs

Refactoring Helps You Program Faster

Department of Computer Engineering Sharif University of Technology

Refactoring: When?

m When Should You Refactor?

Refactor the third time you do something similar (The Rule
of Three)

Refactor When You Add Function
Refactor When You Need to Fix a Bug

Refactor As You Do a Code Review

Department of Computer Engineering Sharif University of Technology

-
Symptoms of Bad Code (1)

1. Mysterious Name

2. Duplicated Code

3. Long Function

4. Long Parameter List
5. Global Data

6. Mutable Data

7. Divergent Change: When one class is commonly changed in different
ways for different reasons.

8. Shotgun Surgery: When every time you make a kind of change, you
have to make a lot of little changes to a lot of different classes.

Department of Computer Engineering Sharif University of Technology

Symptoms of Bad Code (2)

9. Feature Envy: A method that seems more interested in a class other than
the one it actually is in.

10. Data Clumps: Bunches of data that reqularly appear together.

11. Primitive Obsession: Excessive use of primitives, due to reluctance to
use small objects for small tasks.

12. Repeated Switches

13. Loops

14. Lazy Element: An Element that isn't doing enough to justify its
maintenance.

15. Speculative Generality: Classes and features have been added just
because a need for them may arise someday.

Department of Computer Engineering Sharif University of Technology

Symptoms of Bad Code (3)

16.
17.
18.
19.
20.
21,
22,
23.

24,

Department of Computer Engineering

Temporary Field: An attribute that is set only in certain circumstances.
Message Chains: Transitive visibility chains.

Middle Man: Excessive delegation.

Insider Trading: Excessive interaction and coupling.

Large Class

Alternative Classes with Different Interfaces

Data Class

Refused Bequest: When children don't fulfill their parents’ commitments.

Comments: When comments are used to compensate for bad code.

Sharif University of Technology

Refactoring Patterns: Categories

m First Set: The most commonly used refactorings

m Encapsulation: Enhancing information hiding

m Moving Features: Moving elements between contexts
m Organizing Data: Making data easier to work with

m Simplifying Conditional Logic: Making conditional logic less error-
prone

m Refactoring APIs: Making interfaces easy to understand and use

m Dealing with Inheritance: Moving features around a hierarchy of
inheritance

Department of Computer Engineering Sharif University of Technology

Agile Software Development — Lecture 7

First Set: Extract Function

m Extract Function
You have a code fragment that can be grouped together.
Turn the fragment into a function whose name explains the purpose of the

function.
void printOwing() {
printBanner () ;

//print details
System.out.println ("name: " + name);
System.out.println ("amount " + getOutstanding()) ;

U

void printOwing() {
printBanner() ;
printDetails (getOutstanding()) ;

}

void printDetails (double outstanding) {
System.out.println ("name: " + name);
System.out.println ("amount " + outstanding) ;

}

Department of Computer Engineering Sharif University of Technology

Agile Software Development — Lecture 7

First Set: Inline Function

= Inline Function
A function's body is just as clear as its name.
Put the function's body into the body of its callers and remove the function.

int getRating()
return (moreThanFivel.ateDeliveries()) ? 2 : 1;

boolean moreThanFivelateDeliveries () {
return numberOfLateDeliveries > 5;

!

int getRating() {
return (numberOflLateDeliveries > 5) ? 2 : 1;

Department of Computer Engineering 10 Sharif University of Technology

Agile Software Development — Lecture 7

First Set: Encapsulate Variable

m Encapsulate Variable

You are accessing a variable directly, but the coupling to the variable is

becoming awkward.

Create getting and setting functions for the variable and use only those to

access the variable.

private int _low, _high;
boolean includes (int arg) {

return arg >= _low && arg <= _high;
}

[}

hvd

private int low, high;
boolean includes (int arg) {

}

int getLow() {return low;}
int getHigh() {return high;}

Department of Computer Engineering 11

return arg >= getLow() && arg <= getHigh() ;

Sharif University of Technology

Agile Software Development — Lecture 7

First Set: Introduce Parameter Object

m Introduce Parameter Object
You have a group of parameters that naturally go together.
Replace them with an object.

function amountInvoiced(startDate, endDate) {...}
function amountReceived(startDate, endDate) {...}
function amountOverdue(startDate, endDate) {...}

function amountInvoiced(aDateRange) {...}
function amountReceived(aDateRange) {...}
function amountOverdue(aDateRange) {...}

Customer Customer
amountinvoicedin(stan: Date, end: Date) 4"> amountinvoicedin(DateRange)
amountReceivedin(start; Date, end: Date) / amountRecevedin(DateRange)
amountOverduein(start: Date, end: Dale) amounlOverdueln{DaleRange)

Department of Computer Engineering Sharif University of Technology

12

Agile Software Development — Lecture 7

First Set: Combine Functions into Class

m Combine Functions into Class
A group of functions operate closely together on a common body of data
Form a class to contain the functions,

function base(aReading) {...}
function taxableCharge(aReading) {...}
function calculateBaseCharge(aReading) {...}

class Reading {
base() {...}
taxableCharge() {...}
calculateBaseCharge() {...}

}

Department of Computer Engineering Sharif University of Technology

13

Agile Software Development — Lecture 7

First Set: Split Phase

m Split Phase
1 The code is dealing with two or more different things.
T Split it into separate modules.

const orderData = orderString.split(/\s+/);
const productPrice = pricelList[orderData[@].split("-")[1]];
const orderPrice = parselnt(orderData[l]) * productPrice;

| ———
——
| — ¢
const orderRecord = parseOrder(order);
const orderPrice = price(orderRecord, pricelist);
function parseOrder(aString) {
const values = aString.split(/\s+/); ¢
return ({

productID: values[0].split("-")[1],
quantity: parseInt(values[1]),
Hs
}

function price(order, pricelist) {
return order.quantity * pricelist[order.productID];
}

Department of Computer Engineering Sharif University of Technology

14

Agile Software Development — Lecture 7

Encapsulation: Encapsulate Record

m Encapsulate Record
You have a mutable data record.

Turn it into a class and create getting and setting methods to access the
variables.

organization = {name: "Acme Gooseberries", country: "GB"};

class Organization { C Yl

constructor(data) { r
this._name = data.name; - =
this. country = data.country; T

}

get name() {return this. name;}

set name(arg) {this. name = arg;}

get country() {return this. country;}

set country(arg) {this. country = arg;}

A

e

Department of Computer Engineering Sharif University of Technology

15

Agile Software Development — Lecture 7

Encapsulation: Encapsulate Collection

m Encapsulate Collection
A method returns a collection.
Make it return a read-only view and provide add/remove methods.

Person Person
I\ _ .
getCourses():Set ﬁ,> getCourses():Unmodifiable Set
. addCourse(:Course)
setCourses(:Set) -
removeCourse(:Course)

Department of Computer Engineering 16 Sharif University of Technology

Agile Software Development — Lecture 7

Encapsulation: Replace Primitive with Object

m Replace Primitive with Object
You have a data item that needs additional data or behavior.
Turn the data item into an object.

Order

customer: String

Order

[}

vV

Customer

Department of Computer Engineering

17

name: String

Sharif University of Technology

Agile Software Development — Lecture 7

Encapsulation: Extract Class

m Extract Class
You have one class doing work that should be done by two.

Create a new class and move the relevant fields and methods from the old class
into the new class.

Person — Telephone Number
Mami \ oflice Telephone
officeAreaCode _f> name = ”;ﬂ‘h
officeNurber - f
T Number
T dmonetioner et Telephone getTelephoneNumber

Department of Computer Engineering 18 Sharif University of Technology

Agile Software Development — Lecture 7

Encapsulation: Inline Class

m Inline Class
A class isn't doing very much.
Move all its features into another class and delete it.

— Telephone Number Persan
I n-ﬂ'u:elelepmne} areaCade \ > zaraerrﬁ
member — aCod
gelTelephoneNumber T — number
get getTelephoneNumber

Department of Computer Engineering Sharif University of Technology

19

Agile Software Development — Lecture 7

Encapsulation: Hide Delegate

m Hide Delegate

A client is calling a delegate class of an object.
Create methods on the server to hide the delegate.

Client Class
| | I
1 I
I i
I I
------ 1 b e e
| |
| :
I
Yy '
Person Depariment
geiDepartment getManager

Department of Computer Engineering 50

Client Class

Sharif University of Technology

Agile Software Development — Lecture 7

Encapsulation: Remove Middle Man

m Remove Middle Man

A class is doing too much simple delegation.
Get the client to call the delegate directly.

Client Class

|
!

Person

getManager

Department of Computer Engineering

Client Class
1 |
1 |
1 |
| |
——————] |
—.r> | |
W Y
Person Depariment
getDepartment 7| getManager

21

Sharif University of Technology

Reference

m Fowler, M., Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

m Fowler, M., Refactoring.: Improving the Design of Existing Code,
2nd Edition, Addison-Wesley, 2019.

Department of Computer Engineering Sharif University of Technology

22

