Agile Software Development

Lecturer: Raman Ramsin

Lecture 10

Scrum: Sprint Execution
Sprint Execution

- **When?**
 - Sprint execution accounts for the majority of time during a sprint. It begins after sprint planning and ends when the sprint review starts.
 - On a two-week-long sprint, execution might account for eight of the ten days.

- **By whom?**
 - The full Scrum team:
 - Development team members self-organize and determine the best way to meet the goal established during sprint planning.
 - The Scrum Master acts as the coach, facilitator, and impediment remover.
 - The product owner is available during sprint execution to
 - answer clarifying questions,
 - review intermediate work and provide feedback to the team,
 - discuss adjustments to the sprint goal if conditions warrant, and
 - verify that the acceptance criteria of PBIs have been met.
Sprint Execution: Process

Inputs: Sprint goal and Sprint backlog, which collectively form the commitment.

Activities: Planning, Flow management, Performing tasks, and Communicating.

Outputs: Potentially shippable product increment, which is a set of PBIs completed to a high degree of confidence according to the definition of done.
Sprint Execution: Process

[Image of a diagram showing the process of sprint execution with inputs, sprint goal, sprint backlog, outputs, potentially shippable product increment, task planning, daily scrums, flow management, task performance, and communicating.]

[Rubin 2012]
Planning

- Some up-front planning is typically done for exposing important task-level dependencies.
 - Preparing a Gantt chart, however, is typically not worth the effort.

- A good principle for sprint execution is to approach task-level planning in an opportunistic, flexible and ongoing manner.
 - Allow task planning to occur continuously during sprint execution as the team adapts to the evolving circumstances of the sprint.
Flow Management

- It’s the team’s responsibility to manage the flow of work during sprint execution to meet the sprint goal.

- The team must make decisions on:
 - How much work the team should do in parallel.
 - When work should begin on a specific item.
 - How the task-level work should be organized.
 - What work needs to be done.
 - Who should do the work.

- When answering these questions, teams should discard old behaviors, such as
 - trying to keep everyone 100% busy,
 - believing that work must be done sequentially, and
 - having each person focus on just their part of the solution.
An important part of managing flow is determining how many PBIs the team should work on in parallel to maximize delivered value.

- Working on too many items at once leads to multitasking, which increases the time required to complete individual items, and reduces quality.
- Working on too few items at a time leads to underutilization of member skills and capacity, resulting in less work done and less value delivered.
- To find the proper balance, teams work on the number of items that leverages, but does not overburden, their skills and available capacity.

[Rubin 2012]
Flow Management: Swarming

- **Swarming**: Team members with available capacity gather to work on an item to finish what has already been started before working on new items.
 - Teams with a **Musketeer attitude** and some degree of **T-shaped skills** swarm.
 - **Musketeer attitude**: “All for one and one for all.” Team members collectively own the responsibility of getting the job done.
 - **T-shaped skills**: Having deep skills in a preferred functional area, discipline, or specialty, but also able to work outside the specialty area.

- **Misconceptions**:
 - Swarming is not a strategy to ensure that team members are 100% busy.
 - Swarming does not necessarily mean working on only one PBI at a time.
 - Sprint execution should not be treated like a **mini-waterfall** project.
 - In this approach, we work on all PBIs at the same time: We first analyze all the items, then design them all, then code them all, and then test them all.
 - This approach is very risky: If the team does not finish all the testing, we could end up with 90% of each feature complete, but no feature 100% done.
Risks of Mini-Waterfall Approach to Sprint Execution

[Rubin 2012]
Flow Management: Important Concerns

- **Which PBI to Start:** The simplest way is to select the next highest-priority item as specified by the product owner.
 - However, technical dependencies or skills capacity constraints might dictate that items be selected in a different order.

- **How to Organize Task Work in a PBI:** Value-delivery-focused method.
 - Team members opportunistically organize the tasks and who will work on them, and work is highly interleaved. Swarming is encouraged.

- **What Task-Level Work Should Be Done:** Ultimately, the team decides; product-owners/managers empower the team, but can affect their work by:
 - Defining the scope of a feature and its acceptance criteria.
 - Providing business-facing requirements for the definition of done.
 - Working with the team to ensure that their technical or feature-specific decisions are made in an economically sensible way.
Flow Management: Daily Scrum

- The daily scrum is a critical, inspect-and-adapt activity.
 - A 15-minute, timeboxed activity that takes place once every 24 hours.
- It serves as an inspection, synchronization, and daily adaptive planning activity that helps a self-organizing team do its job better.
 - Scrum team convenes to share the big picture of what is happening so that they can collectively understand
 - how much to work on,
 - which items to start working on, and
 - how to best organize the work among the team members.
 - The daily scrum helps avoid waiting: If there is an issue that is blocking flow, the team would never have to wait more than a day to discuss it.
Performing Tasks: Technical Practices

- Team members should be skilled in agile technical practices (such as automated testing); most of these are attributed to XP.

[Rubin 2012]
Communicating: Task Board

- In Scrum, communicating progress is done by using simple charts as their principal **Information Radiators**:
 - although any highly visible way of communicating progress can be used, most teams use a task board along with a burndown chart and/or burnup chart.

- **Task Board**: Shows the evolving state of the sprint backlog over time.
 - Each product backlog item planned to be worked on during the sprint is shown with the set of tasks necessary to get the item done.
 - All tasks initially start off in the “to do” column.
 - As the team starts to work on the tasks of a PBI, these tasks are moved from the “to do” column to the “in progress” column.
 - When a task is completed, it is moved to the “completed” column.
 - A team may choose to put other columns on its task board if it thinks that visualizing the flow of work through other states is helpful.
Communicating: Task Board

<table>
<thead>
<tr>
<th>PBIs</th>
<th>Tasks to do</th>
<th>Tasks in progress</th>
<th>Tasks completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature A15</td>
<td>Code the UI, Hours = 5</td>
<td>HTML mockup, Hours = 10</td>
<td>Audio recording, Hours = 6</td>
</tr>
<tr>
<td>Feature B13</td>
<td>Automate tests, Hours = 8</td>
<td>Create DB schema, Hours = 6</td>
<td></td>
</tr>
<tr>
<td>Feature C18</td>
<td>Create icons, Hours = 8</td>
<td>Buffer test, Hours = 2</td>
<td></td>
</tr>
<tr>
<td>Feature D12</td>
<td>Install graphics lib, Hours = 8</td>
<td>Refactor DB, Hours = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automate tests, Hours = 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create list widget, Hours = 8</td>
<td>Performance tuning, Hours = 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update icons, Hours = 8</td>
<td>DB migration, Hours = 6</td>
<td></td>
</tr>
</tbody>
</table>

Department of Computer Engineering

[Sharif University of Technology]

[Rubin 2012]
Communicating: Progress Charts

- Each day during sprint execution, team members update the estimate of how much effort remains (in hours) for each task.
 - A table can be used to visualize this data.
 - The number of hours remaining for each task follows the general trend of being smaller each day during the sprint.
 - If a task has not yet been started yet, the size of the task might appear the same from day to day until the task is started.
 - If a task turns out to be larger than expected, its size may increase day over day, or remain the same even after the team has started working on it.
 - New tasks related to the committed PBIs can also be added to the sprint backlog at any time, and will be reflected in the corresponding table.
Communicating: Task Progress Table

<table>
<thead>
<tr>
<th>Tasks</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>...</th>
<th>D15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td>12</td>
<td>8</td>
<td>16</td>
<td>14</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Tasks 8–30</td>
<td>151</td>
<td>139</td>
<td>143</td>
<td>134</td>
<td>118</td>
<td>99</td>
<td>89</td>
<td>101</td>
<td>84</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>180</td>
<td>190</td>
<td>175</td>
<td>155</td>
<td>130</td>
<td>115</td>
<td>113</td>
<td>90</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

[Rubin 2012]
Communicating: Sprint Burndown Chart

Sprint Burndown Chart: The result of plotting the “Total” row, which is the sum of the remaining effort-hours across all tasks on a given day, on a graph.

- Vertical axis numbers are the estimated effort-hours remaining, and horizontal axis numbers are days within a sprint.
- Each day we update this chart to show the total estimated effort remaining across all of the uncompleted tasks.

Sprint burndown charts are useful for tracking progress and can also be used as a leading indicator to predict when work will be completed.

- At any point in time, we can compute a trend line based on historical data and use it to see when we are likely to finish if the current pace and scope remain constant.
 - When the trend line intersects the horizontal axis close to the end of the sprint duration, we can infer that we’re in reasonable shape (“On time”).
 - When it lands significantly to the left, we should probably take a look to see if we can safely take on additional work (“Early”).
 - When it lands significantly to the right (“Late”), it warns us that we’re not proceeding at the expected pace or that we’ve taken on too much work.
Communicating: Sprint Burndown Chart

[Rubin 2012]
Communicating: Sprint Burndown Chart (with Trend Lines)

[Rubin 2012]
Communicating: Sprint Burnup Chart

- **Sprint Burnup Chart**: Represents the amount of work completed toward achieving the sprint goal.

- In sprint burnup charts, work can be represented in either effort-hours (as in the burndown chart) or in story points; story points are preferred because:
 1. At the end of the sprint, the only thing that really matters to the Scrum team is business-valuable work that was completed.
 2. At a glance, we can get a good feel for how the work is flowing and how the team is completing PBIs through the sprint.
Communicating: Sprint Burnup Chart

[Rubin 2012]
References
