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-
Software Development Methodology (SDM)

m A framework for applying software engineering practices with the specific
aim of providing the necessary means for developing software-intensive
systems

m Consisting of two main parts:

O A set of modeling conventions comprising a Modeling Language
(syntax and semantics)

O A Process, which
= provides guidance as to the order of the activities,

» specifies what artifacts should be developed using the Modeling
Language,

s directs the tasks of individual developers and the team as a whole,
and

m Offers criteria for monitoring and measuring a project’s products
and activities.
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m Specifically aimed at viewing, modeling and implementing the system as a
collection of interacting objects

Object-Oriented Software Development Methodology (OOSDM)

m First appeared in late 1980s

m Categorized as
O Seminal (First and Second Generations)
O Integrated (Third Generation)
O Agile

m UML was the result of the ‘war' among seminal methodologies

m Process has now replaced modeling language as the main contentious issue
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Agile Development: Brief History

m First appeared in 1995.

m The once-common perception that agile methodologies are nothing
but controlled code-&-fix approaches, with little or no sign of a
clear-cut process, is only true of a small — albeit influential —
minority.

0 Essentialln based on practices of program design, coding and testing
that are believed to enhance software development flexibility and
productivity.

m Most agile methodologies incorporate explicit processes, although
striving to keep them as lightweight as possible.
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-
Major Agile Methodologies

m DSDM - Dynamic Systems Development Method (1994..2014)
m Scrum (1995..2020)

m XP — Extreme Programming (1996, 1999, 2004, 2013)

m ASD — Adaptive Software Development (1997)

m Crystal Family: Orange, Orange Web, Clear (1998, 2001, 2004)
m FDD — Feature-Driven Development (1999, 2002)

m AUP — Agile Unified Process (2005)

m DAD - Disciplined Agile Delivery (2012, 2020)
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Agile Software Development — Lecture 1

Agile Methodologies: Evolution Map
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Agile Methodologies: Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to Change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.
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Agile Methodologies: Principles

m Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

m \Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.

m Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

m Business people and developers must work together daily
throughout the project.
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Agile Methodologies: Principles (Contd.)

m Build projects around motivated individuals. Give them the
_enB/idronment and support they need, and trust them to get the
job done.

m The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

m \Working software is the primary measure of progress.

m Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.
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Agile Methodologies: Principles (Contd.)

m Continuous attention to technical excellence and good design
enhances agility.

m Simplicity—the art of maximizing the amount of work not
done—is essential.

m The best architectures, requirements, and designs emerge
from self-organizing teams.

m At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behaviour accordingly.
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m Agile development is not the proper solution in all problem situations.

m We will discuss agile development’s applicability based on the

categories of problem situations proposed by the Cynefin
Framework.

Applicability of Agile Development

Cynefin, pronounced ‘ku-nev-in’, is a Welsh word for habitat:

m [t signifies the factors in our environment/experience that influence us in
incomprehensible ways.

The Cynefin Framework is a sense-making framework that helps us
understand the situation in which we have to operate, and decide on a
situation-appropriate approach.

m Defines and compares the characteristics of five different domains: Simple
(Obvious), Complicated, Chaotic, Complex, and Disorder.
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Agile Software Development — Lecture 1

Cynefin Framework
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m In complex problems, things are more unpredictable than they are predictable.

m [f there is a right answer, we will know it only with hindsight; this is the
domain of emergence.

m We need to probe to learn about the problem, then sense and respond
based on our learning.

m  Working in complex domains requires creative and innovative approaches.
Routine solutions simply don't apply.

m We need to create a safe-fail environment for experimentation so that we can
discover important information.

m In this environment high levels of interaction and communication are essential.

m Innovative new-product development falls into this category, as does
enhancing existing products with innovative new features.

m Agile methodologies are particularly well suited for operating in a complex
domain.

Cynefin: Complex Domain
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Cynefin: Complicated Domain

m In complicated problems, things are more predictable than unpredictable.
m Complicated problems are the domain of good practices dominated by experts.

m  There might be multiple right answers, but expert diagnosis is required to
figure them out.

m The approach is to sense what's coming in, analyze using expert knowledge,
and respond by deciding on and applying good practices.

m Suitable methodologies:

Lighter agile methodologies such as Scrum can work in a complicated domain (e.g.,
software maintenance), but they might not be the best solutions.

Heavier agile methodologies such as DSDM and DAD are better suited because they
are analysis and design processes based on expert knowledge and good practices.

As complexity increases, model-based heavyweight methodologies prevail.
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Cynefin: Simple (Obvious) Domain

m In simple (obvious) problems, the domain is stable and everyone can see
cause and effect.

m Often the right answer is obvious and undisputed.
m This is the domain of legitimate best practices; there are known solutions.

m Once we assess the facts of our situation and categorize them, we can
respond by determining and applying the proper predefined solution.

m Agile methodologies can be used in a simple (obvious) domain, but they may
not be the most efficient tools.

Using a process with a well-defined, repeatable set of steps that are known to solve
the problem would be a better fit.

For example, if we want to reproduce the same product over and over again, a
well-defined assembly-line process would be a better fit than Scrum.
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Cynefin: Chaotic Domain

m In chaotic problems, there is a crisis and we need to act immediately to
prevent further harm and reestablish at least some order.

m There is no clear cause and effect.

m There are many decisions to make, and no time to think.

m No one knows the answers.

m We have to look for what works instead of the right answers.

m We need to act immediately, then inspect to see if the situation has
stabilized, and then adapt to migrate the context to the complex domain.

m Agile methodologies are not the best solutions in a chaotic domain.

In such domains, we are not interested in prioritizing a backlog of work and
determining what work to perform in the next iteration. We need to act fast.
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-
Cynefin: Disorder

m You are in the disorder domain when you don’t know which of the other
domains you are in.

This is a dangerous place to be because you don’t know how to make sense of your
situation.

In such cases, people tend to interpret and act according to their personal
preferences for action; this is often a recipe for disaster.

m  When in the disorder domain, the way out is to break down the situation into
constituent parts and assign each to one of the other four domains.

m You are not trying to apply methodologies in the disorder domain; you are
trying to get out of this domain.
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Interrupt-Driven Contexts
m Plan-based agile methodologies (such as Scrum) are not well suited to
highly interrupt-driven (or request-driven) work.

Interrupts may disrupt your plans and constantly change your priorities,
prohibiting reliable planning of iterations of a week or more.

For example, during product support, the plan (or backlog) is populated
continuously as you receive support requests.

m In interrupt-driven environments you would be better off considering
an alternative agile approach called Kanban.

Kanban is not a stand-alone process solution, but instead an approach that
is overlaid on an existing process.
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-
Cynefin and Software Development

m The many facets of software development and support will not fit nicely
into just one Cynefin domain.

m Most software development work falls in the domains of complicated or
complex.

m However, software development is a rich endeavor, with aspects that
overlap and activities that fall into all of the different domains.

It should be noted that the spectrum of work can range from innovative
new-product development to maintenance/support.
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