
Department of Computer Engineering
1

Sharif University of Technology

Agile Software

Development

Lecturer: Raman Ramsin

Lecture 1

Agile Development: Basics

Agile Software Development – Lecture 1

Department of Computer Engineering
2

Sharif University of Technology

Software Development Methodology (SDM)

 A framework for applying software engineering practices with the specific
aim of providing the necessary means for developing software-intensive
systems

 Consisting of two main parts:

 A set of modeling conventions comprising a Modeling Language
(syntax and semantics)

 A Process, which

 provides guidance as to the order of the activities,

 specifies what artifacts should be developed using the Modeling
Language,

 directs the tasks of individual developers and the team as a whole,
and

 offers criteria for monitoring and measuring a project’s products
and activities.

Agile Software Development – Lecture 1

Department of Computer Engineering
3

Sharif University of Technology

Object-Oriented Software Development Methodology (OOSDM)

 Specifically aimed at viewing, modeling and implementing the system as a
collection of interacting objects

 First appeared in late 1980s

 Categorized as

 Seminal (First and Second Generations)

 Integrated (Third Generation)

 Agile

 UML was the result of the ‘war' among seminal methodologies

 Process has now replaced modeling language as the main contentious issue

Agile Software Development – Lecture 1

Department of Computer Engineering
4

Sharif University of Technology

Agile Development: Brief History

 First appeared in 1995.

 The once-common perception that agile methodologies are nothing
but controlled code-&-fix approaches, with little or no sign of a
clear-cut process, is only true of a small – albeit influential –
minority.

 Essentially based on practices of program design, coding and testing
that are believed to enhance software development flexibility and
productivity.

 Most agile methodologies incorporate explicit processes, although
striving to keep them as lightweight as possible.

Agile Software Development – Lecture 1

Department of Computer Engineering
5

Sharif University of Technology

Major Agile Methodologies

 DSDM – Dynamic Systems Development Method (1994..2014)

 Scrum (1995..2020)

 XP – Extreme Programming (1996, 1999, 2004, 2013)

 ASD – Adaptive Software Development (1997)

 Crystal Family: Orange, Orange Web, Clear (1998, 2001, 2004)

 FDD – Feature-Driven Development (1999, 2002)

 AUP – Agile Unified Process (2005)

 DAD – Disciplined Agile Delivery (2012, 2020)

Agile Software Development – Lecture 1

Department of Computer Engineering
6

Sharif University of Technology

Agile Methodologies: Evolution Map

[Abrahamsson et al. 2003]

Agile Software Development – Lecture 1

Department of Computer Engineering
7

Sharif University of Technology

Agile Methodologies: Agile Manifesto

Agile Software Development – Lecture 1

Department of Computer Engineering
8

Sharif University of Technology

Agile Methodologies: Principles

 Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

 Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.

 Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

 Business people and developers must work together daily
throughout the project.

Agile Software Development – Lecture 1

Department of Computer Engineering
9

Sharif University of Technology

Agile Methodologies: Principles (Contd.)

 Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

 The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

Agile Software Development – Lecture 1

Department of Computer Engineering
10

Sharif University of Technology

Agile Methodologies: Principles (Contd.)

 Continuous attention to technical excellence and good design
enhances agility.

 Simplicity—the art of maximizing the amount of work not
done—is essential.

 The best architectures, requirements, and designs emerge
from self-organizing teams.

 At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behaviour accordingly.

Agile Software Development – Lecture 1

Department of Computer Engineering
11

Sharif University of Technology

Applicability of Agile Development

 Agile development is not the proper solution in all problem situations.

 We will discuss agile development’s applicability based on the
categories of problem situations proposed by the Cynefin
Framework.

 Cynefin, pronounced ‘ku-nev-in’, is a Welsh word for habitat:

 It signifies the factors in our environment/experience that influence us in
incomprehensible ways.

 The Cynefin Framework is a sense-making framework that helps us
understand the situation in which we have to operate, and decide on a
situation-appropriate approach.

 Defines and compares the characteristics of five different domains: Simple
(Obvious), Complicated, Chaotic, Complex, and Disorder.

Agile Software Development – Lecture 1

Department of Computer Engineering
12

Sharif University of Technology

Cynefin Framework

[Rubin 2012]

Agile Software Development – Lecture 1

Department of Computer Engineering
13

Sharif University of Technology

Cynefin: Complex Domain

 In complex problems, things are more unpredictable than they are predictable.

 If there is a right answer, we will know it only with hindsight; this is the
domain of emergence.

 We need to probe to learn about the problem, then sense and respond
based on our learning.

 Working in complex domains requires creative and innovative approaches.
Routine solutions simply don’t apply.

 We need to create a safe-fail environment for experimentation so that we can
discover important information.

 In this environment high levels of interaction and communication are essential.

 Innovative new-product development falls into this category, as does
enhancing existing products with innovative new features.

 Agile methodologies are particularly well suited for operating in a complex
domain.

Agile Software Development – Lecture 1

Department of Computer Engineering
14

Sharif University of Technology

Cynefin: Complicated Domain

 In complicated problems, things are more predictable than unpredictable.

 Complicated problems are the domain of good practices dominated by experts.

 There might be multiple right answers, but expert diagnosis is required to
figure them out.

 The approach is to sense what’s coming in, analyze using expert knowledge,
and respond by deciding on and applying good practices.

 Suitable methodologies:

 Lighter agile methodologies such as Scrum can work in a complicated domain (e.g.,
software maintenance), but they might not be the best solutions.

 Heavier agile methodologies such as DSDM and DAD are better suited because they
are analysis and design processes based on expert knowledge and good practices.

 As complexity increases, model-based heavyweight methodologies prevail.

Agile Software Development – Lecture 1

Department of Computer Engineering
15

Sharif University of Technology

Cynefin: Simple (Obvious) Domain

 In simple (obvious) problems, the domain is stable and everyone can see
cause and effect.

 Often the right answer is obvious and undisputed.

 This is the domain of legitimate best practices; there are known solutions.

 Once we assess the facts of our situation and categorize them, we can
respond by determining and applying the proper predefined solution.

 Agile methodologies can be used in a simple (obvious) domain, but they may
not be the most efficient tools.

 Using a process with a well-defined, repeatable set of steps that are known to solve
the problem would be a better fit.

 For example, if we want to reproduce the same product over and over again, a
well-defined assembly-line process would be a better fit than Scrum.

Agile Software Development – Lecture 1

Department of Computer Engineering
16

Sharif University of Technology

Cynefin: Chaotic Domain

 In chaotic problems, there is a crisis and we need to act immediately to
prevent further harm and reestablish at least some order.

 There is no clear cause and effect.

 There are many decisions to make, and no time to think.

 No one knows the answers.

 We have to look for what works instead of the right answers.

 We need to act immediately, then inspect to see if the situation has
stabilized, and then adapt to migrate the context to the complex domain.

 Agile methodologies are not the best solutions in a chaotic domain.

 In such domains, we are not interested in prioritizing a backlog of work and
determining what work to perform in the next iteration. We need to act fast.

Agile Software Development – Lecture 1

Department of Computer Engineering
17

Sharif University of Technology

Cynefin: Disorder

 You are in the disorder domain when you don’t know which of the other
domains you are in.

 This is a dangerous place to be because you don’t know how to make sense of your
situation.

 In such cases, people tend to interpret and act according to their personal
preferences for action; this is often a recipe for disaster.

 When in the disorder domain, the way out is to break down the situation into
constituent parts and assign each to one of the other four domains.

 You are not trying to apply methodologies in the disorder domain; you are
trying to get out of this domain.

Agile Software Development – Lecture 1

Department of Computer Engineering
18

Sharif University of Technology

Interrupt-Driven Contexts

 Plan-based agile methodologies (such as Scrum) are not well suited to
highly interrupt-driven (or request-driven) work.

 Interrupts may disrupt your plans and constantly change your priorities,
prohibiting reliable planning of iterations of a week or more.

 For example, during product support, the plan (or backlog) is populated
continuously as you receive support requests.

 In interrupt-driven environments you would be better off considering
an alternative agile approach called Kanban.

 Kanban is not a stand-alone process solution, but instead an approach that
is overlaid on an existing process.

Agile Software Development – Lecture 1

Department of Computer Engineering
19

Sharif University of Technology

Cynefin and Software Development

 The many facets of software development and support will not fit nicely
into just one Cynefin domain.

 Most software development work falls in the domains of complicated or
complex.

 However, software development is a rich endeavor, with aspects that
overlap and activities that fall into all of the different domains.

 It should be noted that the spectrum of work can range from innovative
new-product development to maintenance/support.

Agile Software Development – Lecture 1

Department of Computer Engineering
20

Sharif University of Technology

References

 Ramsin, R., Paige, R.F., “Process-centered review of object-
oriented software development methodologies.” ACM Computing
Surveys, Vol. 40, No. 1 (February), Article 3, pp. 1–89, 2008.

 Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J., “New
directions on agile methods: A comparative analysis.” In
Proceedings of the International Conference on Software
Engineering (ACM/ICSE 2003), pp 244–254, 2003.

 Beck, K., et al., “Manifesto for Agile Software Development.”
2001, Available online at: http://agilemanifesto.org (Last visited:
14 September 2024).

 Snowden, D.J., Boone, M.E., “A Leader’s Framework for Decision
Making.” Harvard Business Review, November 2007.

http://agilemanifesto.org/

