Agile Software
Development

| ecturer: Raman Ramsin

Lecture 1

Agile Development: Basics

Department of Computer Engineering Sharif University of Technology

-
Software Development Methodology (SDM)

m A framework for applying software engineering practices with the specific
aim of providing the necessary means for developing software-intensive
systems

m Consisting of two main parts:

O A set of modeling conventions comprising a Modeling Language
(syntax and semantics)

O A Process, which
= provides guidance as to the order of the activities,

» specifies what artifacts should be developed using the Modeling
Language,

s directs the tasks of individual developers and the team as a whole,
and

m Offers criteria for monitoring and measuring a project’s products
and activities.

Department of Computer Engineering Sharif University of Technology

m Specifically aimed at viewing, modeling and implementing the system as a
collection of interacting objects

Object-Oriented Software Development Methodology (OOSDM)

m First appeared in late 1980s

m Categorized as
O Seminal (First and Second Generations)
O Integrated (Third Generation)
O Agile

m UML was the result of the ‘war' among seminal methodologies

m Process has now replaced modeling language as the main contentious issue

Department of Computer Engineering Sharif University of Technology

Agile Development: Brief History

m First appeared in 1995.

m The once-common perception that agile methodologies are nothing
but controlled code-&-fix approaches, with little or no sign of a
clear-cut process, is only true of a small — albeit influential —
minority.

0 Essentialln based on practices of program design, coding and testing
that are believed to enhance software development flexibility and
productivity.

m Most agile methodologies incorporate explicit processes, although
striving to keep them as lightweight as possible.

Department of Computer Engineering Sharif University of Technology

-
Major Agile Methodologies

m DSDM - Dynamic Systems Development Method (1994..2014)
m Scrum (1995..2020)

m XP — Extreme Programming (1996, 1999, 2004, 2013)

m ASD — Adaptive Software Development (1997)

m Crystal Family: Orange, Orange Web, Clear (1998, 2001, 2004)
m FDD — Feature-Driven Development (1999, 2002)

m AUP — Agile Unified Process (2005)

m DAD - Disciplined Agile Delivery (2012, 2020)

Department of Computer Engineering Sharif University of Technology

5

Agile Software Development — Lecture 1

Agile Methodologies: Evolution Map

Fiction of universal methods
(Malouin and Landry, 1983)

Intemect technologies,
distributed software

development \

Synch-and-stabilize
approach (Microsoft)
(Cusumano and Selby, 1995;

A 4

v
Methodology
Engineering Amethodological IS
(Kumar and development

Welke, 1992) (Baskerville, 1992;

Truex et al., 2001)

Open Source
Software (OSS)
development

IS development in

Internet-speed development
(Cusumano and Yoffie, 1999,
Baskerville et al., 2001;
Baskerville and Pries-Heje, 2001)

emergent organizations
(Truex et al., 1999)

e

Prototyping methodology
(e.g., Lantz, 1986)
Spiral model
Evolutionary life-cycle (Bochm, 1986)
{Gilb, 1988)
New product development game
(Takeuchi and Nonaka, 1986)
Object oriented
approaches
1990 - Rapid application
development (RAD)
(c.g., Martin, 1991)
/ Scrum development
process
RADical software {Schwaber, 1995;
development (Bayer Dynamic systems Schwaber and
i ith, 1994
and Highsmith,) development method Beedle, 2001)
v (DSDM, 1995) 1597)
Unified modeling
language (UML)} Crystal family
of methodologies -
R Extreme Programming (XP)
001
(Cockburn, 1998; 2001) (Beck, 1999)
. :
“s Adaptive Software Development !
2000 - Rational Unified “\._.\ (ASD) (mghmﬂ.h. 2000) E ',
Process (RUP) sy H [I
(Kruchten, 2000) 'y v P ey -
Agile manifesto] Pragmatic
Feature-Driven (Beck etal , 2001) ®=-mmmmmme=s =~ | Programming (PP)
Development (FDD}) (Hunt and Thomas,
(Palmer and Felsing, 2002) Agile Modeling (AM) 2000)
L 9 | (Ambler, 2002) ¢
A

Department of Computer Engineering

[Abrahamsson et al. 2003]

Sharif University of Technology

Agile Methodologies: Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to Change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Department of Computer Engineering Sharif University of Technology

Agile Methodologies: Principles

m Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

m \Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.

m Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

m Business people and developers must work together daily
throughout the project.

Department of Computer Engineering Sharif University of Technology

Agile Methodologies: Principles (Contd.)

m Build projects around motivated individuals. Give them the
_enB/idronment and support they need, and trust them to get the
job done.

m The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

m \Working software is the primary measure of progress.

m Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

Department of Computer Engineering Sharif University of Technology

Agile Methodologies: Principles (Contd.)

m Continuous attention to technical excellence and good design
enhances agility.

m Simplicity—the art of maximizing the amount of work not
done—is essential.

m The best architectures, requirements, and designs emerge
from self-organizing teams.

m At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behaviour accordingly.

Department of Computer Engineering Sharif University of Technology

10

m Agile development is not the proper solution in all problem situations.

m We will discuss agile development’s applicability based on the

categories of problem situations proposed by the Cynefin
Framework.

Applicability of Agile Development

Cynefin, pronounced ‘ku-nev-in’, is a Welsh word for habitat:

m [t signifies the factors in our environment/experience that influence us in
incomprehensible ways.

The Cynefin Framework is a sense-making framework that helps us
understand the situation in which we have to operate, and decide on a
situation-appropriate approach.

m Defines and compares the characteristics of five different domains: Simple
(Obvious), Complicated, Chaotic, Complex, and Disorder.

Department of Computer Engineering 11 Sharif University of Technology

Agile Software Development — Lecture 1

Cynefin Framework

Department of Computer Engineering

Complex Complicated
Frobe, Sense, Regpond Sense, Analyze, Recpond

- Explore to learn about problem, then
inspect, and then adapt

- Ke,ciuim‘; creative/innovative approaches

- Create cafe—fail environment for
experimentation to discover patterns

- Acsess the cituation, in\/egﬁﬂai'e, ceveral
options, base reSponse on 3ood practice

- Use experts to 3ain ingithr

- Use metrics to ﬂain control

- Domain of ﬂood Prac;ﬁc/eg

- Multiple Viﬂh’i‘ answers

- Cause and effect are discoverable but not

immedfa'mif] apparent

More Pre,dio‘hab!e than unpredio‘fabfe

- lncrease levels of interaction/communication
- Domain of emergence

- We'll know in hind‘;fﬂh*f

« More unpredidrabl'e than Pmdid’abfe,

 Chaotic

Act, Sense, Respond

Simple
Sense, Cateqorize, Recpond

- Act immedfaf‘efg, then inspect to cee if
Situation has <tabilized, then adapt to hfﬂ
to miﬁraf‘e context to complex domain

- Manj decisions to make; no time to think

- Immediate action to reestablich order

- Look for what works instead of rfﬂhf
answers

- Domain of the novel

= No one knong

- No clear cause and effect

- Agcess situation facts, c/a‘feﬂorfz_e them,
bace responce on establiched practice

- Domain of best Praoﬁoeé

- Stable domain (not fike!ﬂ to ohanﬂe)

- Clear cause—and-effect relationships
are evident to everyone

- A corvect answer exicts

Fact-baced manaaemen-f‘

[Rubin 2012]

12 Sharif University of Technology

m In complex problems, things are more unpredictable than they are predictable.

m [f there is a right answer, we will know it only with hindsight; this is the
domain of emergence.

m We need to probe to learn about the problem, then sense and respond
based on our learning.

m Working in complex domains requires creative and innovative approaches.
Routine solutions simply don't apply.

m We need to create a safe-fail environment for experimentation so that we can
discover important information.

m In this environment high levels of interaction and communication are essential.

m Innovative new-product development falls into this category, as does
enhancing existing products with innovative new features.

m Agile methodologies are particularly well suited for operating in a complex
domain.

Cynefin: Complex Domain

Department of Computer Engineering Sharif University of Technology

13

Cynefin: Complicated Domain

m In complicated problems, things are more predictable than unpredictable.
m Complicated problems are the domain of good practices dominated by experts.

m There might be multiple right answers, but expert diagnosis is required to
figure them out.

m The approach is to sense what's coming in, analyze using expert knowledge,
and respond by deciding on and applying good practices.

m Suitable methodologies:

Lighter agile methodologies such as Scrum can work in a complicated domain (e.g.,
software maintenance), but they might not be the best solutions.

Heavier agile methodologies such as DSDM and DAD are better suited because they
are analysis and design processes based on expert knowledge and good practices.

As complexity increases, model-based heavyweight methodologies prevail.

Department of Computer Engineering Sharif University of Technology

14

Cynefin: Simple (Obvious) Domain

m In simple (obvious) problems, the domain is stable and everyone can see
cause and effect.

m Often the right answer is obvious and undisputed.
m This is the domain of legitimate best practices; there are known solutions.

m Once we assess the facts of our situation and categorize them, we can
respond by determining and applying the proper predefined solution.

m Agile methodologies can be used in a simple (obvious) domain, but they may
not be the most efficient tools.

Using a process with a well-defined, repeatable set of steps that are known to solve
the problem would be a better fit.

For example, if we want to reproduce the same product over and over again, a
well-defined assembly-line process would be a better fit than Scrum.

Department of Computer Engineering Sharif University of Technology

15

Cynefin: Chaotic Domain

m In chaotic problems, there is a crisis and we need to act immediately to
prevent further harm and reestablish at least some order.

m There is no clear cause and effect.

m There are many decisions to make, and no time to think.

m No one knows the answers.

m We have to look for what works instead of the right answers.

m We need to act immediately, then inspect to see if the situation has
stabilized, and then adapt to migrate the context to the complex domain.

m Agile methodologies are not the best solutions in a chaotic domain.

In such domains, we are not interested in prioritizing a backlog of work and
determining what work to perform in the next iteration. We need to act fast.

Department of Computer Engineering Sharif University of Technology

16

-
Cynefin: Disorder

m You are in the disorder domain when you don’t know which of the other
domains you are in.

This is a dangerous place to be because you don’t know how to make sense of your
situation.

In such cases, people tend to interpret and act according to their personal
preferences for action; this is often a recipe for disaster.

m When in the disorder domain, the way out is to break down the situation into
constituent parts and assign each to one of the other four domains.

m You are not trying to apply methodologies in the disorder domain; you are
trying to get out of this domain.

Department of Computer Engineering Sharif University of Technology

17

Interrupt-Driven Contexts
m Plan-based agile methodologies (such as Scrum) are not well suited to
highly interrupt-driven (or request-driven) work.

Interrupts may disrupt your plans and constantly change your priorities,
prohibiting reliable planning of iterations of a week or more.

For example, during product support, the plan (or backlog) is populated
continuously as you receive support requests.

m In interrupt-driven environments you would be better off considering
an alternative agile approach called Kanban.

Kanban is not a stand-alone process solution, but instead an approach that
is overlaid on an existing process.

Department of Computer Engineering 18 Sharif University of Technology

-
Cynefin and Software Development

m The many facets of software development and support will not fit nicely
into just one Cynefin domain.

m Most software development work falls in the domains of complicated or
complex.

m However, software development is a rich endeavor, with aspects that
overlap and activities that fall into all of the different domains.

It should be noted that the spectrum of work can range from innovative
new-product development to maintenance/support.

Department of Computer Engineering 19 Sharif University of Technology

-
References

m Ramsin, R., Paige, R.F., "Process-centered review of object-
oriented software development methodologies.” ACM Computing
Surveys, Vol. 40, No. 1 (February), Article 3, pp. 1-89, 2008.

m Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J., "New
directions on agile methods: A comparative analysis.” In
Proceedings of the International Conference on Software
Engineering (ACM/ICSE 2003), pp 244-254, 2003.

m Beck, K., et al., "Manifesto for Agile Software Development.”
2001, Available online at: http://agilemanifesto.org (Last visited:
14 September 2024).

m Snowden, D.J., Boone, M.E., “A Leader’s Framework for Decision
Making.” Harvard Business Review, November 2007.

Department of Computer Engineering Sharif University of Technology

20

http://agilemanifesto.org/

