) 38lp y (owaige (Wbl)5 (6l (golesiloy Aol y

o yawd 38 (33T (w30 Aol () el 0099 Suzite (GLROLLINS o Ay (] iy y25 (GLno A WSlod S Sl
.(http://sites.computer.org/ccse/SE2004Volume.pdf :cawl oasls 0ls 41,8 pgos

S|Pl y (owdien Lol (g0

Jold Blus b (owld)l5 adaiio 53 Hl38lp 5 (o Gaily (owyd 4y JEEE g ACM sleslay 32b
o Lol (wgyo il slcid acgomo 90 Joll IEEE g ACM (golpacioy 4ol p .ol Lol (o culun
sloi gjlwoskyy 9 Ll 1y oS «gdliriin A g0mn 55 ol cmt 5 Wlgi oo ATl oo oSN 45 ol 3810
aid,5 5 IEEE g ACM (solpiciion aoliy 31 Lue 45« gy0 ol (1 usdlboaw tilons Gy D3 dc gozxo 93 (x)
BT a3 Cu,8 8T (Wlasd)5 g jlwaawlin 3590 o U oy (gla Joleo) wilouss 08,9 v wilxiuo 4o cilonss
IS o @ (W)l b (oWl)5 (gyd B 53) Wigdh oo Al Lo (gaoliils 0 (4951 v 90 Acgocmo (wg)d

bl ombo olpl slp pgs acgommo 45wy o0 SIS &

P90 AL gaxe J9l aegozxo
(85 axio ACM/IEEE asbiys 31 433)5) (88 axio ACM/IEEE 4ok 51 43,5)
SE-201 ,138ls 5 okt y2 (ldoile) SE-201 ,138lp 5 omdito y2 (Sldoile-)
SE-212(B) 138l 5 (owiideo 30 5 guols g ylanil Jolai ¥ SE-211(A) ,l33lp 5 el ¥

SE-213(A))3 6,1 lp 5 gbailols gyloxe 9 o>yl ¥ [SE-212(B) 5381 55 ookt 35 s gmpols 5 oybusil Jolsi ¥

SE-221(C) ,l38lp 5 cya03F ¥ SE-311(D) ,33lp 5 5 ylono g o>Isb ¥

SE-312(D) 33l 5 heais >y SE-321(C) 33l 5 (9031 3 CandeS comoudi &
SE-313(F) ,1j8lp 3 oo 33 ooy sltcday SE-322(E) ,1j8lp 5 slaaialys Joloi-
SE-324(E) 53l y olms! gy 9 sl ¥ SE-323(F) ,1j8lp 5 o9 J 55 ¥

Sl po 93 0fgy (nl DIl S owato 2l 039x A | Gl po 93 0ign (ul HIBle (et (2l 0l x A
J.Ma:u PT JLw L 4.5"\"3 dw ()yo 90 u.‘l&)9 S J-MM PT JLm L 6..\9'5 dw (o 9o les 399 S

SE-400 59 0 41,1 - Jlgio Jlunoss 95 53— SE-400 59 0 4511 - g0 Jlunoss 95 53—
[se23a) | se3zm) | » [sesn@ | [se2tia) |o[sesum |
SE321 (C
© 121 sessep
BRE -

YY 1Y axen

http://sites.computer.org/ccse/SE2004Volume.pdf

=P 4ol p SO 50 4li8le § (waigen (ol (w0 oSl

tailoasdy e IEEE ¢ ACM Golpgdion aolip o)|}5|,°)3 eI wb.&)ls ol p 3l goumin gladiges
iy Sy olgi e wigSe Legi 45 wBd so yLis (ACM/IEEE (g0l iy 5 i 5l 4id)) Jour

Dgd &yl cwrdigeo 0uSilS SO o 1y I8l 5w (ol)5

(WA 0uSllD U o 438l (W IR0 ‘:»L’wi'a)ls 0590 digoi—) Jguo

Yearl Year 2 Year 3 Year 4
Sem 1A Sem 1B Sem 2A Sem 2B | Sem 3A | Sem 3B Sem 4A Sem 4B
CS101 CS102 CS103 CS220 CS226 | CS270T SE400 SE400
Calc 1 Cale 2 CS106 SEA MA271 SED SEF Tech elect
NTI181 CS105 SE201 SE212 SEC SEE Tech elect | Tech elect
Physics 1 Physics 2 NT272 Lin Alg | NT291 | Tech elect | Tech elect | Tech elect
Chemistry | Engineering | Calc 3 Gened | Gened | Gened Gen ed Gen ed

o pod JuB axivo jo a5 (SE Wighiay U) ,l38le s owdigw w950 3l jf) Jguzr 50 euld sols Ll 4ol
HCS Wigiay L) Consd 55 1) i guolS pole (a3 Jols oy

CS101 Programming Fundamentals

CS102 Object-Oriented Paradigm (OO Programming)
CS103 Data Structures and Algorithms

CS105 Discrete Structures |

CS106 Discrete Structures 11

CS220 Computer Architecture

CS226 Operating Systems and Networking

CS270T Databases

o058 15 B po il s i 51 45 wicd 5B b 4l (ogee (w30 Elgil 31 Jguar (w90 ylw

Olodgs 0uSiild o (w5 U Jiiwo 4l y O ygu0) 090 (3| &1yl gl (olosiion

SE- &5, 6yl¥dley sable s loxe g 21k SE-201 ;13810 5w p (glaodio (w)o dw ouy i &
P ob 5 dx) 990 030 s B 30 T peaii b ylgF g0 1y SE-312(D) ,l33le 55 ohoarii o>1,b 5 213(A)
SE-400)‘)3'.6)4 (e A0 Sl yog0 03595 ‘)i.g..b d).b 31.0,5 &l (/)f;b.w ‘f/).b ‘)/)340)4‘;“;4.«6.0 i

sl Gl B8 ol) U5 05 51 9 1350 47 (mokigeo T 29290 303 93

Slnyl ey pioke 9wyl SE-212(B) 138l y (wtiteo 59 FgmolS 9 lusl ol 131 o jlee ouilandly (o0 ke

Js! so 39 SE-313(F) ,l58l 5 (owsien 50 oom) Uiy, 9 SE-221(C) ,l38l0 5 (9051 SE-324(E) ,l38le
Lo‘ ‘..\39.&‘5» ‘\j‘)‘ u\ai))‘ éhM)Q)ig’é ud)n) 9& fu\ﬁ,ﬂi!‘sn ‘G‘)‘ Om‘é)Q Gml;.&)U é.b.b.n)n))&él} JL>)Q

106 saolisls jo (wgyo (w3l (2 bdiged) dg0i 214 "] &lp i) 5 0590 cowbo dasus ylgs o0

YY 5V axin

ol)5 lad 4ol)0 09290 4930 sz (IR Wb 50 Ll ol iz Ol Slesday sl (90 29229
25 0990 45 w3 o0 LS ol ily ol 53 l3dle i cwaige (bl Aclip b dwglie taigd I3l 5

09 Jb s w0 Yl Ayl Glp b cud P e B aadsiwd (ol (5)L 6l (b ol s

OleMbl aid plon b3k)
Eguan ga— ¥

o Olawlro— Y

3T+ Jlas s s > F

plil pye b

Crmnnoly ol

YY Y axio

SE-201 Introduction to Software Engineering

Course description
Main Topics:

Noook~owdpE

Principles of software engineering: Requirements, design and testing.
Review of principles of object orientation.

Obiject oriented analysis using UML.

Frameworks and APIs.

Introduction to the client-server architecture.

Analysis, design and programming of simple servers and clients.
Introduction to user interface technology.

Learning objectives
Upon completion of this course, students will have the ability to:

Develop clear, concise, and sufficiently formal requirements for extensions to an existing
system, based on the true needs of users and other stakeholders

Apply design principles and patterns while designing and implementing simple
distributed systems-based on reusable technology

Create UML class diagrams which model aspects of the domain and the software
architecture

Create UML sequence diagrams and state machines that correctly model system behavior
Implement a simple graphical user interfaces for a system

Apply simple measurement techniques to software

Demonstrate an appreciation for the breadth of software engineering

Suggested sequence of teaching modules

carwNE

=~

11.

12.

0.

Software engineering and its place as an engineering discipline

Review of the principles of object orientation

Reusable technologies as a basis for software engineering: Frameworks and APIs.
Introduction to client-server computing

Requirements analysis

UML class diagrams and object-oriented analysis; introduction to formal modeling using
OCL. Examples of building class diagrams to model various domains

Design patterns (abstraction-occurrence, composite, player-role, singleton, observer, etc.)
Use cases and user-centered design

Representing software behavior: Sequence diagrams, state machines, activity diagrams
General software design principles: Decomposition, decoupling, cohesion, reuse,
reusability, portability, testability, flexibility, etc.

Software architecture: Distributed architectures, pipe-and-filter, model-view-controller,
etc.

Introduction to testing and project management

YY 5| F axin

Sample labs and assignments

e Evaluating the performance of various simple software designs

e Adding features to an existing system

e Testing a system to verify conformance to test cases

e Building a GUI for an application

e Numerous exercises building models in UML, particularly class diagrams and state
machines

e Developing a simple set of requirements (to be done as a team) for some innovative
client-server application of very small size

e Implementing the above, using reusable technology to the greatest extent possible

ol Gl 8 " W pptns 51,5 (o (25" (ol) ()0 b 05w U ey)]

YY 510 axin

SE-211 Software Construction

Course Description
Main Topics:

10-
11-
12-

General principles and techniques for disciplined low-level software design.
BNF and basic theory of grammars and parsing.

Use of parser generators.

Basics of language and protocol design.

Formal languages.

State-transition and table-based software design.

Formal methods for software construction.

Techniques for handling concurrency and inter-process communication.
Techniques for designing numerical software.

Tools for model-driven construction.

Introduction to Middleware.

Hot-spot analysis and performance tuning.

Prerequisite: (SE201 or SE200), CS103 and CS105.

Learning objectives
Upon completion of this course, students will have the ability to:

Apply a wide variety of software construction techniques and tools, including state-based
and table-driven approaches to low-level design of software

Design simple languages and protocols suitable for a variety of applications

Generate code for simple languages and protocols using suitable tools

Create simple formal specifications of low-level software modules, check the validity of
these specifications, and generate code from the specifications using appropriate tools
Design simple concurrent software

Analyze software to improve its efficiency, reliability, and maintainability

Suggested sequence of teaching modules

Basics of formal languages; syntax and semantics; grammars; Backus Naur Form.
Parsing; regular expressions and their relationship to state diagrams

Lexical Analysis; tokens; more regular expressions and transition networks; principles of
scanners

Using tools to generate scanners; applications of scanners. Relation of scanners and
compilers

Parsing concepts; parse trees; context free grammars, LL Parsing

YY 517 axan

5- Overview of principles of programming languages. Criteria for selecting programming
languages and platforms

6- Tools for automating software design and construction. Modeling system behavior with
extended finite state machines

7- SDL

8- Representing concurrency, and analyzing concurrent designs

Sample labs and assignments

e Use of software engineering tools to create designs
e Use of parser generators to generate languages

0,5 ol 2l Gelliils y138lp 55 (wiige (ad (953 (o 58 (S203 Jolro ()3 (o lo EMbI (o &5 (2> U

YY 5V axan

SE-212 Software Engineering Approach to HCI

Course Description
Main Topics:

CoNO~WNE

Psychological principles of human-computer interaction.
Evaluation of user interfaces.

Usability engineering.

Task analysis, user-centered design, and prototyping.
Conceptual models and metaphors.

Software design rationale.

Design of windows, menus, and commands.

Voice and natural language 1/0.

Response time and feedback.

. Color, icons, and sound.

. Internationalization and localization.
. User interface architectures and APIs.
. Case studies and project.

Prerequisite: SE201 or SE200

Learning objectives
Upon completion of this course, students will have the ability to:

Evaluate software user interfaces using heuristic evaluation and user observation
techniques

Conduct simple formal experiments to evaluate usability hypotheses.

Apply user centered design and usability engineering principles as they design a wide
variety of software user interfaces

Suggested sequence of teaching modules

1.

CoNR~WN

Background to human-computer interaction. Underpinnings from psychology and
cognitive science

More background. Evaluation techniques: Heuristic evaluation

More evaluation techniques: Videotaped user testing; cognitive walkthroughs
Task analysis. User-centered design

Usability engineering processes; conducting experiments

Conceptual models and metaphors

Designing interfaces: Coding techniques using color, fonts, sound, animation, etc.
Designing interfaces: Screen layout, response time, feedback, error messages, etc.
Designing interfaces for special devices. Use of voice I/0

YY 5IA axin

10. Designing interfaces: Internationalization, help systems, etc. User interface software
architectures
11. Expressing design rationale for user interface design

Sample labs and assignments

e Evaluation of user interfaces using heuristic evaluation

e Evaluation of user interfaces using videotaped observation of users

e Paper prototyping of user interfaces, then discussing design options in order to arrive at a
consensus design

e Writers-workshop for style critiquing of prototypes presented by others

e Implementation of a system with a significant user interface component using a rapid
prototyping environment

ol Gdai’ B " i gapols g Ll Jolai" (ol)5 (6)lS] (o0 b 3L 9w B w0 o]

YY 519 axin

SE-213 Design and Architecture of Large Software Systems

Course Description
Main Topics:

Modeling and design of flexible software at the architectural level.
Basics of model-driven architecture.

Architectural styles and patterns.

Middleware and application frameworks.

Configurations and configuration management.

Product lines.

Design using Commercial Off-The-Shelf (COTS) software.

NoogokrwdpE

Prerequisites: SE201 or SE200, and CS103

Learning objectives
Upon completion of this course, students will have the ability to:

e Take requirements for simple systems and develop software architectures and high-level
designs

e Use configuration management tools effectively, and apply change management
processes properly

e Design simple distributed software

e Design software using COTS components

e Apply a wide variety of frameworks and architectures in designing a wide variety of
software

e Design and implement software using several different middleware technologies

ol Gadai B " 15800 5 (5 lore! allyl (bl)l (w3 b (6305 9 U (oo ()

YY 1Y axio

SE-221 Software Testing

Course Description
Main Topics:

1. Testing techniques and principles: Defects vs. failures, equivalence classes, boundary
testing.

Types of defects.

Black-box vs. Structural testing.

Testing strategies: Unit testing, integration testing, profiling, test driven development.
State based testing; configuration testing; compatibility testing; web site testing.
Alpha, beta, and acceptance testing.

Coverage criteria.

Test instrumentation and tools.

. Developing test plans.

10. Managing the testing process.

11. Problem reporting, tracking, and analysis.

COoNoORWN

Prerequisites: SE201 or SE200

Learning objectives
Upon completion of this course, students will have the ability to:

Analyze requirements to determine appropriate testing strategies.

Design and implement comprehensive test plans

Apply a wide variety of testing techniques in an effective and efficient manner
Compute test coverage and yield according to a variety of criteria

Use statistical techniques to evaluate the defect density and the likelihood of faults.
Conduct reviews and inspections.

sl i JiB " 515810 35 (53051 syl (b)5 (030 b (3L 5 92 U (y0

YY 5 asio

SE-311 Software Design and Architecture

Course Description
Main Topics:

1- An in-depth look at software design.

2- Continuation of the study of design patterns, frameworks, and architectures.

3- Survey of current middleware architectures.

4- Design of distributed systems using middleware.

5- Component-based design.

6- Measurement theory and appropriate use of metrics in design.

7- Designing for qualities such as performance, safety, security, reusability, reliability, etc.
8- Measuring internal qualities and complexity of software.

9- Evaluation and evolution of designs.

10- Basics of software evolution, reengineering, and reverse engineering.

Prerequisites: SE211

Learning objectives
Upon completion of this course, students will have the ability to:

e Apply a wide variety of design patterns, frameworks, and architectures in designing a
wide variety of software
e Design and implement software using several different middleware technologies

e Use sound quality metrics as objectives for designs, and then measure and assess designs
to ensure the objectives have been met

e Modify designs using sound change control approaches
e Use reverse engineering techniques to recapture the design of software

YY 5 axio

SE-312 Low-Level Design of Software

Course Description
Main Topics:

Detailed software design and construction in depth.
In-depth coverage of design patterns and refactoring.
Introduction to formal approaches to design.
Analysis of designs based on internal quality criteria.
Performance and maintainability improvement.
Reverse engineering.

Disciplined approaches to design change.

NoogokrwdpE

Prerequisite: SE213

Learning objectives
Upon completion of this course, students will have the ability to:

e Apply a wide variety of software construction techniques and tools, including state-based
and table driven approaches to low-level design of software

Use a wide variety of design patterns in the design of software

Perform object-oriented design and programming with a high level of proficiency
Analyze software in order to improve its efficiency, reliability, and maintainability.
Modify designs using sound change control approaches

Use reverse engineering techniques to recapture the design of software

518 0 2l el l381p 55 mviigen (b (1990 (et 53 (S8 Jolre (w30 (il epyle MBI (0 &5 (il b

YY Y axio

SE-313 Formal Methods in Software Engineering

Course Description
Main Topics:

1.
2.

Review of mathematical foundations for formal methods.
Formal languages and techniques for specification and design, including specifying
syntax using grammars and finite state machines.

3. Analysis and verification of specifications and designs.
4.
5. Automated program and design transformation.

Use of assertions and proofs.

Prerequisite: SE312.

Learning objectives
Upon completion of this course, students will have the ability to:

Create mathematically precise specifications and designs using languages such as OCL,
Z, etc.

Analyze the properties of formal specifications and designs

Use tools to transform specifications and designs

ol Gadai’ B " ol (wly g g alyl (ol) oy b (g3 5 0 B gy ()

YY VY axio

SE-321 Software Quality Assurance and Testing

Course Description
Main Topics:

Quality: how to assure it and verify it, and the need for a culture of quality.
Avoidance of errors and other quality problems.

Inspections and reviews.

Testing, verification and validation techniques.

Process assurance vs. Product assurance.

Quality process standards.

Problem analysis and reporting.

Statistical approaches to quality control.

Prerequisite: SE201 or SE200

Learning objectives
Upon completion of this course, students will have the ability to:

Conduct effective and efficient inspections

Design and implement comprehensive test plans

Apply a wide variety of testing techniques in an effective and efficient manner
Compute test coverage and yield, according to a variety of criteria

Use statistical techniques to evaluate the defect density and the likelihood of faults
Assess a software process to evaluate how effective it is at promoting quality

Suggested sequence of teaching modules

1-
2-

O-

10-
11-

Introduction to software quality assurance
Inspections and reviews

Principles of software validation

Software verification

Software testing

Specification based test construction techniques
White-box and grey-box testing

Control flow oriented test construction techniques
Data flow oriented test construction techniques
Cleanroom approach to quality assurance
Software process certification

YY 510 axio

Sample labs and assignments

Use of automated testing tools

Testing of a wide variety of software

Application of a wide variety of testing techniques

Inspecting of software in teams; comparison and analysis of results

sl Gl BB " 515810 35 (53031 oyl b)5 o3 b (g B oy (]

YY V8 amio

SE322 Software Requirements Analysis

Course Description
Main Topics:

8-
O-

10-
11-
12-
13-

Domain engineering.

Techniques for discovering and eliciting requirements.

Languages and models for representing requirements.

Analysis and validation techniques, including need, goal, and use case analysis.
Requirements in the context of system engineering.

Specifying and measuring external qualities: performance, reliability, availability, safety,
security, etc.

Specifying and analyzing requirements for various types of systems: embedded systems,
consumer systems, web-based systems, business systems, systems for scientists and other
engineers.

Resolving feature interactions.

Requirements documentation standards.

Traceability.

Human factors.

Requirements in the context of agile processes.

Requirements management: Handling requirements changes.

Prerequisites: SE201 or SE200.

Learning objectives
Upon completion of this course, students will have the ability to:

Discover or elicit requirements using a variety of techniques

Organize and prioritize requirements

Apply analysis techniques such as needs analysis, goal analysis, and use case analysis
Validate requirements according to criteria such as feasibility, clarity, freedom from
ambiguity, etc.

Represent functional and non-functional requirements for different types of systems using
formal and informal techniques

Specify and measure quality attributes

Negotiate among different stakeholders in order to agree on a set of requirements

Detect and resolve feature interactions

YY 5V axio

Suggested sequence of teaching modules

10-
11-

Basics of software requirements engineering

Requirements engineering process: requirements elicitation, specification, analysis, and
management

Types of requirements: functional, non-functional, quality attributes

Requirements elicitation: identifying needs, goals, and requirements. Customers and
other stakeholders. Interviews and observations

Requirements specification: textual and graphical notations and languages (UML, User
Requirements notation). Techniques to write high-quality requirements. Documentation
standards

Requirements analysis: inspection, validation, completeness, detection of conflicts and
inconsistencies. Feature interaction analysis and resolution

Goal- and use-case-oriented modeling, prototyping, and analysis techniques
Requirements for typical systems: embedded systems, consumer systems, web-based
systems, business systems, systems for scientists and other engineers

Requirements management: traceability, priorities, changes, baselines, and tool support
Requirements negotiation and risk management

Integrating requirements analysis and software processes (including agile ones)

Sample labs and assignments

Writing good requirements.

Analysis of a wide variety of existing software systems: Measuring qualities, and reverse
engineering requirements.

Interviewing users, and translating the results into prototypes iteratively

Use of tools for managing requirements.

Modeling, prototyping, and analyzing requirements with UML/URN tools

Resolving feature interactions

09 (o0 4] g yol oINS 5 L (w50 (2l JOlro e lo gl (30 &5 (2l U

YY A axio

SE323 Software Project Management

Course Description
Main Topics:

1- Project planning, cost estimation, and scheduling.

2- Project management tools.

3- Factors influencing productivity and success.

4- Productivity metrics.

5- Analysis of options and risks.

6- Planning for change.

7- Management of expectations.

8- Release and configuration management.

9- Software process standards and process implementation.
10- Software contracts and intellectual property.

11- Approaches to maintenance and long-term software development.
12- Case studies of real industrial projects.

Prerequisites: SE321 and SE322

Learning objectives
Upon completion of this course, students will have the ability to:

e Develop a comprehensive project plan for a significant development effort

Apply management techniques to projects that follow agile methodologies, as well as

methodologies involve larger-scale iterations or releases

Effectively estimate costs for a project using several different techniques.

Apply function point measurement techniques

Measure project progress, productivity and other aspects of the software process

Apply earned-value analysis techniques

Perform risk management, dynamically adjusting project plans

Use configuration management tools effectively, and apply change management

processes properly

e Draft and evaluate basic software licenses, contracts, and intellectual property
agreements, while recognizing the necessity of involving legal expertise

e Use standards in project management, including 1ISO 10006 (project management quality)
and ISO 12207 (software development process) along with the SEI’s CMM model

YY 59 axin

Suggested sequence of teaching modules

1- Basic concepts of project management
2- Managing requirements

3- Software lifecycles

4- Software estimation

5- The project plan

6- Monitoring the project

7- Risk analysis

8- Managing quality

9- People problems

Sample labs and assignments

e Use a commercial project management tool to assist with all aspects of software project
management. This includes creating Gantt, PERT, and Earned Value charts

Make cost estimates for a small system using a variety of techniques

Developing a project plan for a significant system

Writing a configuration management plan

Using change control and configuration management tools

Evaluating a software contract or license

D18 (Slgron Mogp Cu o't (owlisd)lS uyo b 3w U (pys (1

VY S amao

SE-324 Software Process and Management

Course Description
Main Topics:

1.
2.

Software processes: standards, implementation, and assurance.

Project management with a focus on requirements management and long-term evolution:
Eliciting and prioritizing requirements, cost estimation, planning and tracking projects,
risk analysis, project control, change management.

Prerequisites: SE201 or SE200, plus at least two additional software engineering
courses at the 2 level or higher.

Learning objectives
Upon completion of this course, students will have the ability to:

Elicit requirements using a variety of techniques

Organize and prioritize requirements

Design processes suitable for different types of project

Assess a software process, to evaluate how effective it is at promoting quality
Develop a comprehensive project plan for a significant development effort
Measure project progress, productivity and other aspects of the software process
Effectively estimate costs for development and evolution of a system using several
different techniques

Perform risk management, dynamically adjusting project plans

Use standards for quality, process and project management

Perform root cause analysis, and work towards continual improvement of process

S gdgase" ulyl wlid)5 wyo b (gu> G g Mojg Cu pae'" (cwlil)5 wyo b ol aa b)0

D10 Gligmod M 13800 5 Sl

YY 5IVY axio

SE-400 Software Engineering Capstone Project

Course Description

This is a two-semester senior course focusing on development of a significant software system,
employing knowledge gained from courses throughout the program. Includes development of
requirements, design, implementation, and quality assurance. Students may follow any suitable
process model, must pay attention to quality issues, and must manage the project themselves,
following all appropriate project management techniques. Success of the project is determined in
large part by whether students have adequately solved their customer’s problem.

Sample deliverables

Students should be expected to deliver one or several iterations of a software system, along with
all artifacts appropriate to the process model they are using. These would likely include a project
plan (perhaps updated regularly, and containing cost estimations, risk analysis, division of the
work into tasks, etc.), requirements (including use cases), architectural and design documents,
test plans, source code, and installable system.

YY 5IVY axio

