
Towards a Framework for the Application of Model-Driven Development in
Situational Method Engineering

Zahra Zohrevand, Yusef Mehrdad Bibalan, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

e-mail: zohrevand@ce.sharif.edu, bibalan@alum.sharif.edu, ramsin@sharif.edu

Abstract—Model-Driven Development (MDD) is a promising
approach to software development, mainly due to the pivotal
role of models in its process, and the high potential it provides
for automated model/software generation. Since software
processes can themselves be considered as software, any
technique or approach applied in the context of software
development is also of potential use in the development of
software development processes. Accordingly, the MDD
approach can potentially be applied in the context of
Situational Method Engineering (SME) � a branch devoted to
the study of developing bespoke software development
processes and methods based on the specific characteristics of
the development project at hand.

The authors propose a Model-Driven Situational Method
Engineering (MDSME) framework by defining different levels
of abstraction for process models, in compliance to the multi-
level model abstraction and transformation approach
prescribed by the Model-Driven Architecture (MDA). The
framework can be used by method engineers to construct
custom software development methodologies through an MDD
approach that facilitates automation, enhances the accuracy of
the development process produced, and improves the
portability of process models.

Keywords–Situational Method Engineering; Model-Driven
Development; Model-Driven Architecture; Model
Transformation

I. INTRODUCTION
 As a result of widespread use of complex software

systems, Software Development Processes (SDPs) have
become highly complex. This has in turn resulted in the
emergence of the Method Engineering (ME) discipline,
which is aimed at studying, designing, and developing
custom SDPs. Situational Method Engineering (SME) is one
of the most prevalent branches of ME which focuses on the
development of a custom SDP based on the specific
requirements of the target organization and the project
situation at hand [1].

Software Engineering (SE) is continuously becoming
enriched with new techniques and approaches; applying new
techniques as well as comparing them with existing ones can
be essential for finding suitable methods to deal with ever-
increasing challenges in SE contexts. In SME, as in SE, we
can eliminate existing problems through examining new
approaches. Compared to SE, SME is an immature

discipline, and therefore suffers from numerous unresolved
problems, including accuracy, portability, and automation.

Model-Driven Development (MDD) has been recognized
as an effective SE approach for enhancing portability and
automation in SDPs. In MDD, models are the essential
software artifacts, from which the final software code is
generated [2]. Model-Driven Architecture (MDA) is the
OMG’s particular vision of MDD. MDA can be regarded as
a subset of MDD which encompasses three levels of
modeling, each producing models at a different level of
abstraction: Computation-Independent Model (CIM),
Platform-Independent Model (PIM), and Platform-Specific
Model (PSM). In MDA, software development is performed
through transforming the CIM into the PIM, the PIM into the
PSM, and the PSM into code, with a particular emphasis on
increasing the level of automation [3]. The information of an
enterprise system is usually obtained from various sources,
e.g. system engineers, managers, software engineers, and
quality engineers, each representing specific views and levels
of abstraction [4]. They subsequently have to be integrated
into a consistent form; this can be effectively addressed
through applying different levels of modeling and model
transformation, as prescribed by MDA.

Due to its positive effect on portability and automation,
MDD is a promising means for ameliorating the status quo in
SME. In this paper, the authors investigate the possibility of
using MDD in SME, and propose a Model-Driven
Situational Method Engineering framework (MDSME) for
applying MDD in SME projects. The proposed framework
encompasses four modeling levels, specifically targeted at
SME contexts: Enactment-Independent Model (EIM),
Paradigm-Independent Model (ParIM), Paradigm-Specific
Model (ParSM), and Platform-Specific Model (PSM).
Process models can thus obtain an enhanced level of
portability, since high-level models can be mapped to
different platforms. Required model transformations and
approaches for their automation have also been addressed in
this paper, so that the burden of SME activities is passed
from method engineers to tools, thereby increasing accuracy
and development agility.

In addition to enhancing portability and automation, this
framework promises to also resolve certain other problems
that currently afflict the SME discipline: Most SME
approaches are subjective, whereas in MDSME, due to the
specific characteristics of MDD, all ME activities are
positioned within a well-defined engineering process;

2011 18th Asia-Pacific Software Engineering Conference

1530-1362/11 $26.00 © 2011 IEEE

DOI 10.1109/APSC.2011.55

122

2011 18th Asia-Pacific Software Engineering Conference

1530-1362/11 $26.00 © 2011 IEEE

DOI 10.1109/APSEC.2011.55

122

furthermore, in this framework, methods will be engineered
through enriching models, thus making use of all the
advantages that multilevel modeling has to offer.

Having delineated the outline of our approach, the rest of
this paper is organized as follows: Section 2 briefly reviews
MDD and SME concepts and the research related to this
work; Section 3 proposes an MDD framework for SME
(MDSME) by delineating modeling levels, and complements
the framework with definitions for the model transformations
required between these modeling levels; Section 4 evaluates
MDSME via comparing it with MDD frameworks that are
used in other contexts, as well as with existing SME
approaches; and Section 5 presents the concluding remarks
and discusses possible directions for furthering this research.

II. CONCEPTS AND RELATED RESEARCH
The set of concepts and the research related to our

proposed framework (MDSME) span two distinct areas: A)
MDD, as used in contexts other than SME, and B) existing
SME approaches. We will focus on these areas in separate
subsections.

A. Model Driven Development
In MDD, models have a pivotal role: software

implementations are generated through applying
transformation mechanisms on models. The widespread
adoption of MDD is mainly due to its potential for automatic
implementation and code generation, thus eliminating
repetitive manual low-level tasks. In MDD, these tasks are
encapsulated in the form of transformations. MDD can
therefore reduce development costs while improving
software consistency, maintainability and quality [2].
Changes in implementation strategies can be achieved
through modifying the transformations. Shifting engineering
concerns to platform-independent levels allows developers to
focus on designing applications without involvement in
platform- specific concepts.

MDD has already been applied to contexts other than
software engineering: The approach in [4] investigates the
applicability of MDD to process engineering by using new
meta-modeling techniques; it addresses the organization of
process meta-models, their relationships with other meta-
models, and mechanisms for producing executable platform-
specific workflows from generic business processes. Since
the advent of MDD, it has been applied to various areas of
software engineering: It has been shown that the model-
driven approach is suitable for use in a Service-Oriented
context [5], [6]; its utilization for Web Engineering has also
been reported [7], [8], [9]; and its applicability has been
explored in the development of Context-Aware systems [10],
[11], [12].

B. Situational Method Engineering
It has been observed that different organizational settings

and projects requirements cannot be satisfied by any single
software development methodology. This is the driving force
behind Situational Method Engineering (SME), which
promotes the idea of retrieving, adapting, assembling, and
tailoring process components for engineering made-to-order

methodologies; methodologies that are tailored to fit the
specific situations of the development project at hand [13].

Various approaches have been proposed for SME,
including: Paradigm-based [14], Extension-based [15],
Assembly-based [16], and a combination of Assembly-based
and Roadmap-Driven[16]. None of them, however, explicitly
addresses SME’s accuracy, portability, and automation
problems. In [17] and[18], two SME approaches are reported
which propose the application of modeling in method
engineering; the approach proposed in [18] even leads to a
Computer-Aided Method Engineering (CAME) tool.
However, they fail to address the problems of accuracy and
portability, mainly due to their subjective processes.

III. MDSME FRAMEWORK
We propose MDSME as a framework for applying MDD

in SME. This approach is novel in two main aspects:
• It uses MDD in a novel context: MDD has thus far

been only used in the context of software and process
engineering [4]. We define MDD modeling levels and
transformations that are specifically intended for SME.

• It proposes a new approach for SME: MDSME is
specifically intended for addressing SME problems.
The MDSME framework will be explained throughout

the rest of this section. However, before delving into the
details, the fundamental components of the framework will
be introduced; these are the components that should be
included an MDD framework to guarantee its completeness.
These components have been identified through studying
MDD approaches which have been proposed and applied in
various contexts (as referred to in section 2) and a number of
other MDD frameworks that have been used in software
engineering[19], [20],[21]. Based on this study, the
necessary components of an MDD framework include
modeling levels, and the necessary transformations between
these models. Accordingly, four levels of modeling have
been identified for our proposed MDSME framework. These
levels, and the necessary transformations between them, are
described in the following sections.

A. MDSME Framework: Modeling Levels
In order to define MDSME modeling levels, accurate

boundaries have to be distinguished between them.
1) Boundaries of modeling levels

 To identify boundaries for our modeling levels, we first
explore the boundaries defined in the MDA approach, as
practiced in software engineering; these will then be mapped
into the SME context. In MDA, the boundaries between the
modeling levels are based on two important concepts:
Computation and Platform. In order to delineate boundaries
for the levels of modeling in SME, we will first have to map
these two concepts to the SME context.

a) Computation in SME
Computation is a distinguishing feature in MDD,

defining the boundary between the Computation-
Independent Model (CIM) and the Platform-Independent
Model (PIM). The requirements of the system, as well as the
situation in which the system will be used, are modeled in

123123

the CIM. Information about automated data processing
systems and their implementation details are also concealed
in the CIM [3]. CIM thus shows the relationships between
the system and its environment as to the expectations from
the system, whereas PIM is dependent on the implementation
features of the system regardless of platform specifications.

The definitions of CIM and PIM reveal that the software
system, which is the final product of the MDD process, plays
the role of a computational element. On the other hand, in
SME, the software development methodology is the final
product; thus, it corresponds to the software system that is
produced in SE. However, we cannot consider the produced
methodology as a computational element in the MDSME
framework, because it does not have a role concerned with
automation in its environment (except where methods must
be executable, such as in a Process-Centered Software
Engineering Environment–PSEE). The engineered
methodology, along with other extant control rules, will be
applied as the management rules that govern the
organization. Therefore, we have replaced computation with
enactment – a set of principles and practical rules which can
be independently used to control a software engineering
process without conflict; the produced methodology plays
the role of an enactable entity in the context of SME.
Accordingly, CIM is replaced with EIM (Enactment-
Independent Model) which models the organizational
behavior and the expectations from the methodology.

b) Platform in SME
In MDD, the notion of platform separates the Platform-

Independent Model (PIM) from the Platform-Specific Model
(PSM). It may denote various types of concepts, such as:
execution environments, programming languages, and
constraints on firmware or hardware. There may be different
levels of abstraction for platforms. That is, we might have a
PSM that is independent from a certain platform [3]. In other
words, based on the abstraction levels of platforms, there
may exist various levels of PSM: PSM1, PSM2, …, PSMn.

The same holds true for SME: There are different method
platforms, even though they have differences with their SE
counterparts. In this regard, method models may have to
abide by various constraints on elements such as: software
modeling language (such as UML), the method Process
Modeling Language (such as UPM or PROMENADE), and
the method development environment; selection of these
elements may be based on the project situation identified.

During the process of mapping between SE platforms
and their SME counterparts, situations were encountered that
couldn’t be mapped to a specific platform, even though they
had a higher priority in comparison to other platforms. These
situations denoted high-level concepts of software
methodologies which specify the methodology’s paradigm.
They thus constitute a new constraint in SME that should be
applied before the platform. We will describe this constraint
in the following section.

PARADIGM
Various definitions have been proposed for the notion of

paradigm[22], [23], [24], [25], but none of them offer a

comprehensive definition of the concept. In[22], descriptions
have been offered for the Engineering Paradigm and the
Scientific Paradigm; each of these paradigms can be used for
Engineering (practical) or Scientific purposes. Methodology
modeling conforms to the situation where an Engineering
Paradigm is being used for an Engineering purpose: it
proposes an engineering approach which will be used in an
engineering context (SE). In this situation, a paradigm is
used as an engineering tool and is equivalent to models or
patterns that guide us through modeling in software
development[22]. Method paradigms can have a spectrum of
effects on the method: From coarse-grained (such as
specifying the method’s viewpoint to real-world entities, as
in the agent-oriented approach) to fine-grained (such as
prescribing that a simple Add operation be carried out in a
structured way).

To apply a paradigm that is related to one or more
situations, its general model has to be designed (if not
already available), and should then be combined with the
methodology’s structure. Paradigm models can be presented
in various forms. For example, some may be modeled as a
meta-model (e.g., object-oriented paradigm), while others
may be presented in the form of a set of rules and restrictions
(e.g., formal aspects of a technique).

2) MDSME Modeling levels
Based on the boundaries defined for MDA modeling

levels and their mappings to SME, four levels of models
have been proposed for MDSME:
• EIM (Enactment-Independent Model): Enterprise

process model that is independent of enactment and
method concerns.

• ParIM (Paradigm-Independent Model): Method model
independent of any particular paradigm.

• ParSM (Paradigm-Specific Model): Method model
based on a particular paradigm, but independent of any
particular platform.

• PSM (Platform-Specific Model): Method model based
on a particular platform.

These modeling levels are described in more detail in the
following subsections.

a) EIM
At this level, the enterprise process will be modeled as

independent of enactment concerns. The models required at
the EIM level include:
• As-Is process model: this model is produced to identify

the environment workflow and the business process
within which the current software development
methodology is applied.
o Different notations, such as BPMN or UML, can be

used for this purpose. As an example, we have
conducted a case study in which the behavioral aspects
and interactions of the enterprise process have been
modeled using a UML activity diagram (as shown in
Fig. 1). Analogously, class diagrams can be used to
model the structural aspects of the enterprise process.

124124

Figure 1. Example of an Enactment Independent Model

• To-Be Process Model: This model defines what the
future enterprise process should be. The boundary
between methodology and organizational processes, as
well as their interactions, is determined in this model.
o This model can be depicted by the same diagram types

as those used for modeling the As-Is Process.
• Method Situation Model: this model portrays the

desirable situations and their relationships, and spans the
method’s functional and non-functional situations. This
model can be extracted from the To-Be Process Model.
o The situation model of our case study is depicted using

a new diagram (shown in Fig. 2), the metamodel of
which is a subset of the class diagram’s metamodel.

Figure 2. A) Method Situation Metamodel, B) Example of a Method

Situation Model

b) ParIM and ParSM
As explained in the previous section, Paradigm is what
distinguishes ParIM from ParSM and ParIM is a
methodology model which is produced regardless of any
specific paradigm concerns. It can be represented at several
levels of abstraction (named as ParIM1, ParIM2, …,
ParIMn). The Paradigmi independent model, which is ParIMi
and ParSMi at the same time, can be considered as the
methodology architecture in relation to Paradigmi, since it
depicts a relatively higher-level view of the method. After
applying Paradigmi to ParIMi, it becomes ParSMi or
ParIMi+1, which can be considered as the detailed design
model of the methodology regarding this paradigm. Thus,
analogous to the levels defined for ParIM, ParSM is also
constructed at different levels of abstraction (ParSM1,
ParSM2, …, ParSMn). The models required at the
ParIM/ParSM level include:
• Structural Model of the Method: This model portrays

method elements, e.g. roles and activities, and their
positions relative to each other.
o Any Process Modeling Language (PML) can be used

for this purpose. In our case study, we have used the
Unified Process Model (UPM) [26] as the PML; in
UPM, class diagrams are used for modeling structural
aspects. Fig. 3 depicts an example.

• Behavioral Model of the Method: This model portrays
the process of method by depicting how the internal
elements interact to achieve the desired objectives.
o When using UPM, the behavioral aspects can be

depicted using an activity diagram, as shown in Fig. 4.
c) PSM

At this level, the method model is bound to one or more
items of the method engineering platform. Similar to ParSM,
there may be several levels of PSM, named as: PSM1, …,
PSMm. PSMm is the final model of this type, representing the
produced methodology which should be applicable in the
target organization.

The types of diagrams used for representing PSM depend
on the elements of the platform, and the same types of
diagrams are not necessarily used at all levels. However,
structural and behavioral models of the method should be
provided at each level. Moreover, the PML should also have
facilities for modeling the metamodels of a software
modeling language at the appropriate level (where the
notation should be determined for the target methodology).

B. MDSME Framework: Transformations
Model transformation spans both model-to-model and

model-to-code transformations. This section presents the
different types of transformations required between the
MDSME framework’s modeling levels, as well as the
appropriate approaches for executing them. To this aim, a set
of transformation features will first be specified. The types of
these transformations will then be expressed based on the
specific features of the modeling levels in MDSME, and the
transformation approaches will be analyzed and selected.

(A)

(B)

125125

1) MDSME Model Transformation Features
Model transformation approaches are classified in

various categories, based on their specific features. Sets of
these features have been presented in [27], [28] and [29].
Although these are provided in a software development
context, they have been defined based on the engineering
aspects of process models. On the other hand, they are
independent of the products of the engineering process.
Therefore, comparison and selection of model transformation
approaches in SME can be performed with regard to the
same features. Proposed approaches in this framework,
which have been selected based on the features presented in
[29], include: Specification, Transformation Rules, Rule
Application Control, Rule Organization, Source-Target
Relationship, Directionality, Tracing, and Incrementality.

In SME, there are certain important issues that should be
addressed in transformations:
• The process aspect of the methodology is very significant,

and the behavioral interactions occurring at different
levels of granularity can be quite complicated. Thus, in
SME, transformation approaches should be able to cope
with complex interactions.

• Practicality of a methodology and its deficiencies are
usually detected during the application of the
methodology. Thus, providing facilities for improving the
methodology is a necessary feature for SME approaches.
To this aim, Incrementality is very important in this
context, so that the method can be improved just by
modifying the Situation Model.
2) Model Transformations

This section presents the transformations required in the
MDSME framework. The most appropriate transformation
approaches are then proposed based on the classification
presented in [29]. These transformation approaches are
classified into two main categories, which are consistent with
the classification provided by [28].

a) Vertical transformation
This category includes inter-level transformations where

the source and target models are at different levels of
abstraction; namely:

• EIM to ParIM: ParIM resides at a lower abstraction level
than EIM. This type of transformation often requires
changes to the method PML and therefore it can be
considered as an Exogenous transformation [28]. The
transformation of the models depicted in Fig. 1 and Fig. 2
into the model of Fig. 3 is of this type.
o Transformation from EIM to ParIM requires

decision-making solutions which are often associated
with the change of language. To automate solution-
based transformations in this context, the pattern-
based approach is proposed. It can be combined with
the structure-based approach, which provides
facilities for accommodating the change of language.

• ParIM to ParSM: This type of transformation will be
carried out based on a paradigm; therefore, a paradigm
model should be applied to the methodology. It can
therefore be categorized as a Model Merging
Transformation [3], and since it is a Vertical
transformation in the same process modeling language, it
can be considered as Formal Refinement [28].
o Based on the paradigm model, the appropriate

transformation approach may differ. For example, if the
metamodel of the elements after applying the paradigm
exists, then the structure-based approach would be
useful, since this approach is based on the hierarchical
structure of the source and target models, and these
metamodels provide mapping facilities for applying the
transformation. When the paradigm model is
represented in the form of a set of constraints and
relationships, a declarative approach (such as
Relational) is more appropriate, since it is not necessary
to address how to perform the conversions. Rather, it
only needs to present the target model in the form of a
set of rules and relationships, which can be obtained
from the paradigm model. Fig. 5 and Fig. 6 show
ParSM diagrams which are the results of transforming
the ParIM models shown in Fig. 3 and Fig. 4,
respectively; Delivery Strategy is the paradigm applied.

 Figure 3. Example of a Structural Model

126126

Figure 4. Example of a Behavioral Model

• ParSM to PSM (with a change in abstraction level): This
type of transformation is also Exogenous, so it can be
considered as Code Generation based on [28].
o The suitable approach for this type of transformation

can be quite different depending on the type of
platform. For example, transition from a method PML
to another can be easily done via structure-based
approaches. Whereas the situation is quite different for
the definition of a software modeling language: if the
goal is the creation of a new modeling language, then
there will be a very low potential for automation; thus,
a facility to define and carry out transformations using
Direct Manipulation or the Operational approach is
recommended. On the other hand, where the use of
existing modeling languages is being considered, the
pattern-based approach will be advisable.
b) Horizontal transformation

This category includes all types of intra-level
transformations.

• Model Refinement: This type of transformation is
applied to restructure the models in order to improve them
(also called Refactoring) [28].
o Since model refinement is mainly based on human

decisions and comparisons, provisions are required for
facilitating selection and replacement. Direct
Manipulation or the Operational approach can be
utilized to create the appropriate interfaces.

• Diagram conversion: As a result of this type of
transformation, diagrams will be created at the same level
of abstraction. It is used to simplify other types of
transformations, or to display other aspects of existing
models.
o Since all diagrams should be compatible with each

other, multidirectional transformation methods, such as
Relational approaches (which use multi-directional
rules with high incrementality), are more desirable.

Figure 5. Example of a ParSM Structural Model: Result of transforming the ParIM model shown in Fig. 3

127127

Figure 6. Example of a ParSM Behavioral Model : Result of transforming the ParIM model shown in Fig. 4

IV. MDSME FRAMEWORK EVALUATION
The MDSME framework can be considered both as a

new MDD framework and also as a new approach to SME.
In this section, MDSME is evaluated through 1) comparison
with other MDD frameworks, and 2) comparison with other
SME approaches.

A. Comparison of MDSME with other MDD frameworks
Unfortunately, an all-inclusive set of criteria for

evaluating MDD frameworks is not available. This
comparison is therefore carried out based on a set of basic
principles and rules which any MDD approach should adhere
to. The results of this evaluation are shown in table I.

B. Comparison of MDSME with other SME approaches
There is no a standard set of criteria for comparing and

evaluating different SME approaches. In[30], a set of
evaluation criteria has been proposed for comparing two
SME approaches, but these criteria are specifically aimed at
assembly-based approaches. Thus, in this section, the
process evaluation criteria defined for SE have been mapped
to the SME context. The results of the evaluation are shown
in table II. Moreover, scrutinizing the patterns of SME [31]
(presented in the form of a framework), reveals that there is a
design seam in fragment-based SME between Method
Initiation and Method Construction; this shortcoming can be
adequately addressed by MDSME’s ParIM/ParSM models.

Table I. MDSME Framework in comparison to other MDD frameworks

MDSME Model Driven Process Engineering [4] MDA
Viewpoint abstraction:

• Enactment-independent viewpoint
• Paradigm-independent viewpoint
• Paradigm-specific viewpoint
• Platform-specific viewpoint

 Linguistic metamodeling

Viewpoint abstraction:
• Business viewpoint
• System viewpoint
• Software viewpoint

Approach to definition of levels

• Vertical
• Horizontal

• Horizontal (If abstraction level of target
language is lower, then can be Vertical)

• Vertical
• Horizontal Transformation Type

High N/A Low Problem-to-solution transformation
automation potential

• Method platforms (in solution domain)
• Situations (in the transition to solution domain for each

situation)

• Process execution environment (particularly
PML)

• Platforms (in solution
domain) Portability to

Table II. MDSME Framework in comparison to other SME approaches
 Generic process for SME [1] MDSME Framework MEMA-Model [17] Eng’ng Method from MRS [18]

Design Model N/A (Seamed) ParIM1,…, ParIMn (multilevel design) Semi-open method Decisional metamodel

Potential for Process
Automation Low (selection and use of method fragments) High (systematic transformations) N/A High

Portability of
Method model Low (limited to paradigm-based approach) High (hierarchy of situations and method

platforms)
Medium to High
(project situations)

Medium (relation types and
detailed descriptions)

Complexity
management Weak Medium Medium Medium

Maintainability Low (due to its requirements-to-components
mapping approach) High (automation capabilities, strong design) Medium to High High (metamodeling approach)

Environment and
tool dependency Low (due to need for repository) High dependency (transformation tools) Low (manual process) High dependency (instantiation

environment)

128128

V. CONCLUSIONS AND FUTURE WORK
Development methodologies such as MASTER, C3, and

MODA have employed the principles and concepts of
Model-Driven Architecture in order to take advantage of the
approach in software engineering. In this paper, a new
framework for Model-Driven SME (MDSME) is proposed
which provides the means to engineer suitable methods for
specific situations by employing the MDD approach.

Similar to other MDD approaches, MDSME models are
not just used as documentation for engineering. Rather, they
have a fundamental role in development processes through
which the final product will be obtained by following
specific steps. The shift from implicit modeling to explicit
modeling is a characteristic of every model-based approach
[4]. This, along with the different modeling levels of the
proposed framework, helps SME activities to be expressed
more clearly. Also, by implementing the identified
transformations, SME activities will be automated. Increased
accuracy and production speed for SME are therefore other
advantages of this framework. Portability of the method
models is also increased through multilevel modeling.

To utilize the MDSME framework, concrete processes
have to be composed based on it. Future research can focus
on proposing these MDSME-based processes; automated
tools can then be developed for applying the framework.

ACKNOWLEDGEMENT
We wish to thank Mr. Massood Khaari for assisting in

the revision of this paper.

REFERENCES
[1] B. Henderson-Sellers and J. Ralyte, “Situational Method Engineering:

State-of-the-Art Review”, J. Universal Computer Science, 16(3),
2010, pp. 424-478.

[2] P. Swithinbank et al., “Patterns: Model-Driven Development Using
IBM Rational Software Architect”, IBM Redbook, 2005.

[3] J. Miller and J. Mukerji, “MDA Guide: Version 1.0.1”, 2003,
Available online at: http://www.omg.org/cgi-bin/apps/doc?omg/03-
06-01.pdf [Accessed: May 2011].

[4] E. Breton and J. B´ezivin, “Model driven process engineering”, Proc.
25th IEEE Annual International Computer Software and Applications
Conference (COMPSAC’01), 2001, pp. 225–230.

[5] C. Emig, K. Krutz, S. Link, C. Momm, and S. Abeck., “Model-driven
development of SOA services”, Technical Report, Forschungsbericht,
2007.

[6] P. Mayer, A. Schroeder, and N. Koch, "MDD4SOA: Model-Driven
Service Orchestration", Proc. 12th IEEE International Enterprise
Distributed Object Computing Conference (EDOC’08), 2008, pp.
203-212.

[7] X. Qafmolla, “Automation of Web Services Development Using
Model Driven Techniques”, Proc. ICCAE’10, 2010, pp. 190-194.

[8] F. Daniel, “Context-Aware Applications for the Web: A Model-
Driven Development Approach”, Context-Aware Mobile and
Ubiquitous Computing for Enhanced Usability–Adaptive
Technologies and Applications: IGI Global, 2009, pp. 59-82.

[9] J. Escalona and A. Gustavo, “NDT: A Model-Driven Approach for
Web Requirements”, J. IEEE Transactions on Software Engineering,
34(3), 2008, pp. 377-390.

[10] D. Ayed, D. Delanote, and Y. Berbers, “MDD Approach for the
Development of Context-Aware Applications”, Proc. 6th

International and Interdisciplinary Conference on Modeling and
Using Context (CONTEXT’07), LNAI 4635, 2007, pp. 15–28.

[11] Z. Jaroucheh, X. Liu, and S. Smith, “Apto: A MDD-Based Generic
Framework for Context-Aware Deeply Adaptive Service-Based
Processes”, Proc. 8th IEEE International Conference on Web Services
(ICWS’10), 2010, pp. 219-226.

[12] E. Serral, P. Valderas, and V. Pelechano, “Towards Model Driven
Development of Context-Aware Pervasive Systems”, J. Pervasive and
Mobile Computing, 6(2), 2010, pp. 254-280.

[13] J. Ralyté, S. Brinkkemper, B. Henderson-Sellers, “Situational Method
Engineering: Fundamentals and Experiences”, IFIP-Series 244,
Springer, 2007.

[14] J. Ralyté, R. Deneckère, and C. Rolland, “Towards a Generic Method
for Situational Method Engineering”, Proc. 15th International
Conference on Advanced Information Systems Engineering
(CAiSE’03), LNCS 2681, 2003, pp. 95-110.

[15] R. Deneckere, “Approche d’extension de méthodes fondée sur
l’utilisation de composants génériques”, PhD Thesis, University of
Paris 1-Sorbonne, 2001.

[16] I. Mirbel and J. Ralyté, “Situational Method Engineering: Combining
Assembly-Based and Roadmap-Driven Approaches”, J. Requirements
Engineering, 11(1) , 2006, pp. 58–78.

[17] T. Punter and K. Lemmen, “The MEMA-Model: Towards a New
Approach for Method Engineering”, J. Information and Software
Technology, 38(4), 1996, pp. 295-305.

[18] D. Gupta and N. Prakash, “Engineering Methods from Method
Requirements Specifications”, J. Requirements Engineering, 6(3),
2001, pp. 135-160.

[19] M. Asadi and R. Ramsin, “MDA-Based Methodologies: An
Analytical Survey”, Proc. 4th European Conference on MDA
Foundations and Applications (ECMDA-FA’08), LNCS 5095, 2008,
pp. 419-431.

[20] J. B´ezivin and O. Gerb´e, “Towards a Precise Definition of the
OMG/MDA Framework”, Proc. 16th International Conference on
Automated Software Engineering (ASE’01), 2001, pp. 273–280.

[21] L. Bastida, and et al., “Model-Driven Methodology and Architecture
Specification”, SHAPE Project, 2006, Available online at:
http://www.shape-project.eu/work-packages [Accessed: April 2010].

[22] C. Cares, X. Franch, and E. Mayol, “Perspectives about Paradigms in
Software Engineering”, Proc. 2nd Workshop on Philosophical
Foundations of Information Systems Engineering (PHISE'06), 2006,
pp. 737-744.

[23] E. Göktürk and N. Akkok, “Paradigm and Software Engineering”,
Proc. Workshop on Impact of Software Process on Quality
(IMPROQ’04), 2004, pp. 10-17.

[24] S.H. Kaisler “Software Paradigms”, John Wiley, 2005.
[25] T.S. Kuhn, “The Structure of Scientific Revolutions”, 3rd ed.,

University of Chicago Press, 1996.
[26] Object Management Group (OMG), “The Unified Process Model

(UPM)”, 2000.
[27] K. Czarnecki and S. Helsen, “Classification of Model

Transformation Approaches”, Proc. OOPSLA’03: Workshop on
Generative Techniques in the Context of MDA, 2003.

[28] T. Mens, K. Czarnecki, and P. van Gorp., “A Taxonomy of Model
Transformations”, Proc. Dagstuhl Seminar: Language Engineering
for Model-Driven Software Development, 2005.

[29] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model
Transformation Approaches”, J. IBM Systems, 45(3), 2006, pp.
621–645.

[30] N. Prakash and S.B. Goyal, “Method Architecture for Situational
Method Engineering”, Proc. 2nd IEEE International Conference on
Research Challenges in Information Science (RCIS’08), 2008, pp.
325-336.

[31] M. Asadi and R. Ramsin, "Patterns of Situational Method
Engineering", Proc. SERA’09, SCI 253, 2009, pp. 277-291.

129129

