
Model-Driven Methodology for Developing Chatbots Based on
Microservice Architecture

Adel Vahdati a and Raman Ramsin b
Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran

Keywords: Chatbot, Model-Driven Methodology, Natural Language Processing, Microservice Architecture.

Abstract: With recent advancements in natural language processing algorithms and the emergence of natural language
understanding services, chatbots have become a popular conversational user interface integrated into social
networks and messaging services, providing businesses with new ways to engage with customers. Various
tools and frameworks have been developed to create chatbots and integrate them with artificial intelligence
services and different communication channels. However, developing chatbots is complex and requires
expertise in various fields. Studies have shown that model-driven engineering can help overcome certain
challenges of chatbot development. We propose a model-driven methodology that systematically manages
the creation of an intelligent conversational agent. The methodology uses metamodels at different abstraction
levels that enable the description of the problem domain and solution space. By providing a high-level
structure based on microservice architecture, it improves maintainability, flexibility, scalability, and
interoperability. A criteria-based analysis method has been used to evaluate the proposed methodology.

1 INTRODUCTION

Software systems are now utilizing a novel type of
interface beyond the traditional GUI. Conversational
agents, intelligent assistants, and conversational user
interfaces (CUI) are gaining in popularity (Planas et
al., 2021). Moreover, conversational agents are
already supporting software development activities
such as automation of deployment tasks, assigning
errors and issues to team members, and task
scheduling (Perez-Soler et al., 2020). Their
integration into social networks as communication
channels has facilitated stakeholder participation in
task automation and collaborative modeling (Perez-
Soler et al., 2019; Perez-Soler et al., 2020).

In conversational agents, user interaction is
carried out by sending text, voice messages, or by
using interactive images (as in Gesture Bots). In all
cases, the agent has a mechanism for dialogue, and
the only difference is in the interface/medium through
which this dialogue takes place (Planas et al., 2021).

A chatbot simulates human conversation through
two-way communication using natural language. A

a https://orcid.org/0009-0006-4571-8130
b https://orcid.org/0000-0003-1996-9906

chatbot platform must offer these features to provide
a useful conversation (Matic et al., 2021):
 Natural language processing (NLP) and natural

language understanding (NLU): understanding
user input and extracting relevant information.

 Conversation flow management
 Performing necessary actions: such as

searching a database or calling other services.
Various tools and frameworks have been

provided by leading companies such as Google
(Dialogflow), Microsoft (Microsoft Bot Framework),
Amazon (Amazon Lex), and IBM (Watson) to create
conversational agents (Perez-Soler et al., 2021).
These tools provide a framework, cloud environment,
and GUI to define the conversation flow. Existing
frameworks use machine learning (ML) algorithms to
identify the user's intention based on the message sent
by the user; for example, Amazon provides services
such as Lex, Comprehend and Polly that can help
create intelligent assistants (Mahmood et al., 2020).

In model-driven development (MDD), a system is
modeled at different levels of abstraction. Model
transformations are used for refining high-level
abstract models into lower-level models, or code

Vahdati, A. and Ramsin, R.
Model-Driven Methodology for Developing Chatbots Based on Microservice Architecture.
DOI: 10.5220/0012433700003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 247-254
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

247

(Rodrigues da Silva, 2015; Alam et al., 2018). In
chatbot development, MDD can help reduce
accidental complexity (Alam et al., 2018), leading to
higher productivity, performance and reusability
(Martínez-Gárate et al., 2023).

We propose a model-driven methodology that
guides the process of creating a chatbot. This
methodology encompasses four phases: analysis,
design, implementation, and test; sets of activities and
products have been specified for each phase, and
metamodels have been defined at different levels of
abstraction to describe the problem/solution domains.

In the analysis phase, we provide a metamodel
called CRAC (short for Concept, Responsibilities,
Asynchronous Collaboration) for problem domain
analysis and requirements elicitation. We also
provide a metamodel called Intent to describe the user
goals and how they are expressed in natural language.

In the design phase, we propose a microservice
architecture that helps improve maintainability,
scalability and interoperability. By using various
design patterns, we address the issue of dependency
on NLU services or communication platforms. For
recognizing user intent, we provide a metamodel
called Prompt, which helps describe the prompts used
for interaction with AI services such as ChatGPT;
training phrases are automatically extracted and their
key parameters are tagged by calling ChatGPT
services based on Prompt models. In addition, we
facilitate the description of conversation flow by
providing a metamodel called Dialog.

In the implementation phase, models are
generated based on platform-specific communication
channels and NLU services. Since our proposed
methodology is not dependent on any specific
platform or service provider, these models and model
transformations are introduced in a generic way, and
their details are not provided at this stage; in future,
we plan to define specific metamodels for common
communication platforms and NLU services.

In the test phase, we have defined specific quality
attributes along with a set of evaluation criteria and
metrics. A criteria-based method is used to evaluate
our proposed methodology based on generic software
development criteria, as well as specific criteria
related to MDD and chatbot development.

This paper is structured as follows: Section 2
provides a review of the research background; the
challenges of chatbot development are discussed in
Section 3; in Section 4, the proposed methodology
and architecture are introduced; the proposed
methodology is evaluated in Section 5; and in Section
6, the conclusions and the directions for future work
are presented.

2 RELATED WORKS

Various frameworks have been proposed that
facilitate the creation and deployment of chatbots.
Xatkit (Daniel et al., 2020) is a chatbot development
framework that uses MDD and domain-specific
languages (DSL) to specify the chatbot's behavior
independently of the platform. The designer defines
the user's intentions and behavior by binding them to
actions and responses, and the runtime engine
deploys the chatbot, registers intents, establishes
connections, and launches external services.

CONGA (Perez-Soler et al., 2021) is a web-based
development environment that uses a DSL to model
conversational agents. The specifications are
analyzed and compiled into tools like Rasa or
Dialogflow, and a recommendation component
suggests the best tool for creating a chatbot.

Mahmood et al. (Mahmood et al., 2020) create a
dynamic user interface by utilizing the features of
microservice architecture and flexibility of natural
languages. User intentions are identified based on
requirements; utterances are then mapped to these
intents. Open API specifications are used to create
service models and orchestrate microservices based
on their capabilities and availability.

Matic et al. (Matic et al., 2021) propose an
architecture that allows the use of different NLU
services without dependency on any specific
provider. They provide a general metamodel for NLU
services and two specific metamodels for Dialogflow
and Rasa NLU services, along with mapping rules to
automatically create the required objects/information.

Perez-Soler et al. (Perez-Soler et al., 2019)
present a solution that automates the creation of a
conversational agent that can model by using natural
language. Users can express their ideas in an
incomplete and inaccurate way, and the framework
will store and refine the model.

Ed-douibi et al. (Ed-douibi et al., 2021) propose
an approach that uses a chatbot as an interface for
querying Open Data resources. Users can ask
questions in natural language and the chatbot converts
them into API requests. The API model is generated
and annotated to provide domain-specific
information for configuring the chatbot and querying
Web APIs. Xatkit is used for generating the chatbot.

Perez-Soler et al. (Perez-Soler et al., 2020)
present the use of a chatbot as an interface for
querying domain-specific models using natural
language, suitable for non-technical users. The
chatbot model is automatically generated based on the
domain metamodel, and is implemented using Xatkit.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

248

3 CHALLENGES OF CHATBOT
DEVELOPMENT

An important challenge in chatbot development is
that some of the vital components and services
needed during design/runtime are proprietary, which
creates dependency on service providers (Perez-Soler
et al., 2021). Ensuring compatibility between
platforms and different tool providers is also a critical
challenge (Martínez-Gárate et al., 2023).

It seems that MDD can facilitate the process of
describing various types of UIs as well as developing
a rich UI (Planas et al., 2021). In this approach,
different metamodels are defined for new platforms.
However, metamodeling and language engineering
are complex processes. In addition, we need
techniques for analyzing model quality, as well as
tools that reflect changes in requirements to the
models (Martínez-Gárate et al., 2023).

Current MDD methodologies lack sufficient
focus on requirements engineering (Martínez-Gárate
et al., 2023). In addition, we need to employ design
patterns and quality metrics for the proposed
solutions to create chatbots based on the MDD
approach (Martínez-Gárate et al., 2023). Chatbots
needs to be maintained and synchronized with
changing requirements; hence, methods are needed
for enhancing maintainability, adaptability, and
scalability (Martínez-Gárate et al., 2023). Table 1
shows some of the questions that need to be answered
when developing chatbots (Perez-Soler et al., 2021;
Matic et al., 2021; Martínez-Gárate et al., 2023).

Table 1: Questions to consider in chatbot development.

Question

1 How to find the most suitable tool for creating a
chatbot based on its requirements?

2 How to design a chatbot independent of the
development tool and platform?

3 How to analyse and evaluate a chatbot before
implementation?

4 How to keep up with the rapid growth of the
ecosystem and tools for developing chatbots?

5 How to support the migration process of chatbots to
a new tool or platform?

6 How to integrate a chatbot with new NLU services
provided by different vendors?

7 How to integrate chatbots with new communication
channels provided by different vendors?

8 How to solve the coupling between a chatbot and a
specific intent recognition service?

9 How to obtain training phrases for ML algorithms
to recognize user intents?

4 PROPOSED CHATBOT
DEVELOPMENT
METHODOLOGY

In this section, we introduce our proposed model-
driven methodology for developing chatbots. In this
methodology, models are described at different
abstraction levels. Model-to-model transformations
are used for producing lower-level models from
higher-level ones. Model-to-text transformations are
ultimately used for generating the solution code based
on the desired architecture and design patterns. The
methodology consists of four phases: analysis,
design, implementation and test. Figure 1 provides an
overview of the methodology and the modeling
performed at different levels of abstraction.

Figure 1: Proposed MDD methodology.

4.1 Analysis Phase

The aim of the analysis phase is to explore the
problem domain and understand user goals by natural
language conversation. Models are described at the
highest level of abstraction, i.e., computation-
independent model (CIM). The problem domain and

Model-Driven Methodology for Developing Chatbots Based on Microservice Architecture

249

requirements are first analyzed, and a requirements
model is produced. Then, based on this model and by
using model transformations, user goals are extracted,
and the intent model is generated.

We have proposed the CRAC method (Concept,
Responsibilities, Asynchronous Collaboration) for
analyzing the problem domain and extracting the
requirements. In this method, domain concepts are
first modeled as instances of the DomainConcept
class. High-level system functions that change the
system state from one valid state to another are
modeled as Commands. The execution of these
commands results in a change to the system state,
which is expressed as an Event. Moreover, high-level
functions that involve reading and querying data are
modeled as Queries. Figure 2 shows the metamodel
proposed for describing the problem domain using the
CRAC method. We have also presented a metamodel
(shown in Figure 3) for describing user intents that
are expressed through natural language conversation
with a chatbot. In the proposed method, intent models
are automatically generated from the requirements
model using model-to-model transformations. Table
2 shows how the elements of the CRAC metamodel
correspond to the elements of the Intent metamodel.

Figure 2: CRAC metamodel.

Figure 3: Intent metamodel.

Table 2: Mapping between CRAC and Intent elements.

CRAC metamodel Intent metamodel
DomainConcept Entity

Command Intent
Query Intent

DomainConcept 
Property : hasProperty

Entity  Property :
hasProperty

Command  Property :
hasProperty

Intent  IntentParameter :
hasParameter

Query  Property :
hasProperty

Intent  IntentParameter :
hasParameter

DomainConcept 
Command :

isResponsibleFor

Intent  Entity :
hasContext

Query  DomainConcept
: return

Intent  Entity :
hasContext

4.2 Design Phase

The goal of this phase is to design the architecture of
the chatbot and its interaction with the services
required. The platform-independent models (PIM)
produced in this phase are independent of the
platform and service providers. The activities of this
phase are: preparing an intelligent service for eliciting
user intents, designing the conversation flow between
the chatbot and the user, and providing an architecture
to satisfy functional/non-functional requirements.

The first activity in this phase is detecting the
users' intents and extracting the information
necessary to fulfil the users' requests. The common
approach is to use an AI model and an ML algorithm
and train it by defining a set of phrases for each user
intent, identifying the key parameters of that phrase,
and mapping it to generic or custom entities. In
general, the necessary tasks include: 1) finding
phrases that are commonly used by users to convey
each intent identified in the previous stage, 2)
parameterizing these phrases and identifying entities
and their properties (parameters) and mapping them
to the parameters that are necessary to fulfil the user's
request, 3) refining the user's intent model based on
information obtained in the previous two steps, and 4)
training the AI service to recognize user intent.

The knowledge required to perform tasks 1 and 2
is tacit in nature. Our proposed solution is to first
model this tacit knowledge and then convert it to
explicit knowledge using ChatGPT. For example, a
sample of this prompt template can be raised: “Give
me 5 training phrases about this intent: {intent}”.
This template can be refined as follows: “Give me
{number} training phrases about {intent}. I need
{intent parameters} to fulfil the request”. ChatGPT
can be asked to return its response in a specific
format, which facilitates information extraction.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

250

ChatGPT can also be used to specify the parameters
desired in training phrases. Table 3 shows a prompt
template, instructing the response format of
ChatGPT. With the help of MDD techniques, these
questions can be described as a prompt model by
using a DSL, and then converted automatically to text
by using model-to-text transformations. This text can
be wrapped as an HTTP request and posted to the
relevant API. We have proposed a metamodel to
describe these questions, as shown in Figure 4. Figure
5 shows the details of this approach and how to
generate questions and interact with ChatGPT.

The second activity in the design phase is
identifying the two-way conversation flow between
the chatbot and the user. For each intent in the intent
model, we need to describe the conversation flow
between the chatbot and the user and the necessary
actions that should be taken to fulfil the user's request.
We have proposed a metamodel for describing the
dialogue flow, as shown in Figure 6 .

Table 3: An example of tagged training phrases.

Template
Give me {number} training phrases about {intent}. I
need {intent parameters} to fulfil the request in my app.
{the format of response}
Prompt
Give me 5 training phrases about "BookHotel". I need
StartDate, EndDate, HotelId to fulfil request in my app.
Tag each training phrases with a parameter I mentioned.
Put the tags inside square brackets.
Answer
1) I want to book a hotel from [StartDate] to [EndDate]
at [HotelId]. 2) Can you help me reserve a room at
[HotelId] from [StartDate] to [EndDate]? 3) I need to
book a hotel stay from [StartDate] to [EndDate]. The
hotel I want to stay at is [HotelId]. 4) Book me a room at
[HotelId] for the dates between [StartDate] and
[EndDate]. 5) I would like to reserve a room at [HotelId]
from [StartDate] to [EndDate].

The third activity in the design phase is providing
an architecture for the chatbot. Our proposed solution
for intelligent chatbot conversations is based on the
microservice architecture, as shown in Figure 7.
Various patterns have been used in this architecture.
One of these patterns is the Anti-Corruption Layer
(ACL) pattern, which acts as a layer between two
subsystems (Richardson, 2018). A chatbot requires
AI services to understand natural language and detect
user intent. It also needs integration with messaging
channels. We have used ACLs as separate technical
microservices. For each provider of NLU services or
messaging channels, we use a microservice for
isolating the external service provider.

Figure 4: Prompt metamodel.

Figure 5: Using ChatGPT to extract utterances.

Figure 6: Dialog metamodel.

For each provider of NLU services or messaging
channels, the development team can choose the
appropriate technology stack and language for
implementing the ACL microservices, which can be
managed and deployed independently. Changes to the
APIs provided by these services will not affect other
parts of the system. Thus, migration and updates can
be managed without affecting other parts. Since this
microservice serves as a layer between the chatbot
microservice and the NLU service or messaging

Model-Driven Methodology for Developing Chatbots Based on Microservice Architecture

251

channel, it is possible to switch from one service
provider to another without the chatbot microservice
being aware of it. The API Gateway pattern, along
with NLU and messaging services' ACL
microservices, can help us achieve this goal. The API
Gateway provides access to internal microservices.
One of the main functions of the API Gateway is to
direct requests to the relevant microservice, or to
compose microservices (Richardson, 2018).
Therefore, switching between NLU services and
messaging platforms using the functions provided by
the API Gateway is possible, and this change will not
propagate to the chatbot microservice. Authorization
can also be delegated to this layer. Implementing
ACL as a microservice allows for horizontal
scalability (scaling-out) based on workload, and the
API Gateway can act as a Load Balancer.

Figure 7: Proposed microservice architecture.

4.3 Implementation Phase

In this phase, platform-specific models (PSM) are
created. By combining the information of the NLU
Service Configuration Model at the PSM level and
the Refined Intent Model and Dialog Model at the
PIM level, the Platform-specific NLU Service Model
is generated by using model-to-model transformation.
Furthermore, the Dialog Model and the model of how
the chatbot interacts with business services (Business
Service Interaction Model), are combined with the
configuration model of the messaging platform
services to generate the Refined Dialog Model.

At the code level, model-to-text transformations
are used to generate the NLU Service ACL
microservice from the Platform-specific NLU Service
Model. This microservice enhances the chatbot's
ability to understand user intent through interaction
with NLU services. Also, the Messaging Service ACL
microservice is generated by using information from

the Refined Dialog Model. By combining the
Platform-specific NLU Service Model and the Refined
Dialog Model, the Chatbot microservice is generated.

4.4 Test Phase

The aim of this phase is to perform verification and
validation on the chatbot. We have identified the
following set of criteria that can serve as a basis for
verification and validation: functional effectiveness
(interpretation accuracy, text synthesis performance,
requested task execution, goal achievement, and
linguistic accuracy), efficiency (resource utilization,
cost effectiveness, and effective service allocation),
robustness (unexpected input handling, graceful
degradation, and user error protection), usability (user
satisfaction and ease of use), and security
(confidentiality, integrity, safety, privacy,
authentication, and authorization) (Radziwill &
Benton, 2017; Motger et al., 2021). There are various
evaluation methods, some automated and some based
on human evaluation. Automated methods are faster
and less expensive, but they are not as accurate as
human judgment (Deriu et al., 2021; Finch & Choi,
2020). Precision, Recall, BLEU, ROUGE, Response
Diversity, and Context Coherence are examples of
automated evaluation methods (Maroengsit et al.,
2019; Finch & Choi, 2020). Human evaluation
methods include Lab Experiments, In-field
Experiments, Crowdsourcing, Expert Appraisal, In-
app Feedback Questions, and Goal/Task
Achievement (Maroengsit et al., 2019; Deriu et al.,
2021; Motger et al., 2021). We have compiled a
checklist, shown in Table 4, for human evaluation of
chatbots (Finch & Choi, 2020; Liang & Li, 2021).

Table 4: Checklist for human evaluation.

Item
1 Response is understandable
2 Response is fluent
3 Response is natural
4 Response is grammatically correct
5 Response is relevant to the conversation
6 Response is relevant to the input
7 Response is logically appropriate
8 Response is consistent, free of semantic errors
9 Response is coherent with context
10 Response provides guidance on utterances
11 Response is informative
12 Response provides new information
13 Response is context-specific
14 Response is made from diverse words
15 Response is engaging to users
16 Response fulfils objectives of conversation
17 Response indicates understating of user intent

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

252

5 EVALUATION

We have used a criteria-based method to evaluate the
proposed methodology. In this section, we will
introduce the three categories of evaluation criteria;
Evaluation results are shown at the end of the section.

Evaluation criteria belong to three categories:
related to the generic software development lifecycle
(SDLC-related), MDD-related, and chatbot-related.
The generic SDLC criteria include: degree of coverage
of the generic lifecycle and umbrella activities; degree
of support for problem domain analysis, reusability,
and adaptability; completeness of methodology
definition; and the type of the methodology. MDD-
related criteria include: degree of support for modeling
at different levels of abstraction (CIM, PIM, PSM, and
Code), model-to-model and model-to-text
transformations, metadata management, verification
and validation, automatic testing, traceability between
models, and provision of tools (Asadi & Ramsin, 2008;
Ramsin & Paige, 2010). Chatbot-related criteria
include: chatbot input/output type (text/speech/voice);
domain (open/closed); approach (pattern
matching/rule-based/AI-based); knowledge data
structures (structured/semi-structured/unstructured);
degree of support for domain knowledge modeling,
intent modeling, conversation flow modeling, training
phrase elicitation, and training phrase annotation;
degree of dependency on specific NLU service
providers and messaging channels; and degree of
support for architectural design, quality attributes, and
conversational aspects (Singh & Beniwal, 2022;
Motger et al., 2021; Liang & Li, 2021).

The results of evaluation of the proposed
methodology based on the three categories of criteria
are presented in Tables 5, 6 and 7, respectively.

Table 5: Evaluation based on generic SDLC criteria.

Criteria Level
Coverage of
Generic Lifecycle

Requirements Engineering
Analysis
Design
Implementation
Test
Deployment
Maintenance

Coverage of
Umbrella Activities

Project Management
Quality Assurance
Risk Management

Problem Domain Analysis
Reusability
Adaptability
Legend:
Full support ; Partial support ; No Support

Table 6: Evaluation based on MDD-related criteria.

Criteria Level
CIM Creation
PIM Creation
PSM Creation
CIM to CIM Model Transformation
CIM to PIM Model Transformation
PIM to PIM Model Transformation
PIM to PSM Model Transformation
PSM to PSM Model Transformation
PSM to Code Model Transformation
Metadata Management
Verification & Validation
Automatic Test
Traceability between Models
Tool Support

Table 7: Evaluation based on chatbot-related criteria.

Criteria Level
Chatbot Input / Output Text
Domain Closed-domain
Approaches AI-based
Knowledge Data Structures (Semi)Structured
Domain Knowledge Modeling
User Intent Modeling
Conversation Flow Modeling
Training Phrase Elicitation
Training Phrase Annotation
NLU Service Providers Vendor-independent
Communication Channels Vendor-independent
Architectural Design

Quality
Attributes

Scalability
Flexibility
Maintainability
Interoperability
Modifiability
Usability
Availability
Performance
Security

Conversational
Aspects

Understanding
Answering
Navigation
Error handling
Relevance
Consistency

6 CONCLUSIONS

The proposed model-driven methodology for chatbot
development aims to address existing challenges by
improving productivity, reusability, scalability,
maintainability, and interoperability. By employing

Model-Driven Methodology for Developing Chatbots Based on Microservice Architecture

253

an MDD approach, code can be automatically
generated from models, increasing productivity. The
platform-independent definition of chatbot-related
artifacts also enhances their reusability. Additionally,
the methodology introduces a new approach to
obtaining data for training NLU services and utilizes
microservice architecture and architectural design
patterns to improve scalability, maintainability, and
interoperability. We plan to further this research by
providing tool support for the methodology and
defining metamodels for common communication
platforms and NLU services.

REFERENCES

Alam, O., Corley, J., Masson, C., & Syriani, E. (2018).
Challenges for reuse in collaborative modeling
environments. MODELS Workshops, 277–283.

Asadi, M., & Ramsin, R. (2008). MDA-Based
Methodologies: An Analytical Survey. In Model Driven
Architecture – Foundations and Applications (Vol.
5095, pp. 419–431). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-69100-6_30

Daniel, G., Cabot, J., Deruelle, L., & Derras, M. (2020).
Xatkit: A Multimodal Low-Code Chatbot Development
Framework. IEEE Access, 8, 15332–15346.
https://doi.org/10.1109/ACCESS.2020.2966919

Deriu, J., Rodrigo, A., Otegi, A., Echegoyen, G., Rosset, S.,
Agirre, E., & Cieliebak, M. (2021). Survey on
evaluation methods for dialogue systems. Artificial
Intelligence Review, 54(1), 755–810.
https://doi.org/10.1007/s10462-020-09866-x

Ed-douibi, H., Cánovas Izquierdo, J. L., Daniel, G., &
Cabot, J. (2021). A Model-Based Chatbot Generation
Approach to Converse with Open Data Sources. In Web
Engineering (Vol. 12706, pp. 440–455).
https://doi.org/10.1007/978-3-030-74296-6_33

Finch, S. E., & Choi, J. D. (2020). Towards Unified
Dialogue System Evaluation: A Comprehensive
Analysis of Current Evaluation Protocols. Proceedings
of the 21st Annual Meeting of the Special Interest
Group on Discourse and Dialogue, 236–245.

Liang, H., & Li, H. (2021). Towards Standard Criteria for
human evaluation of Chatbots: A Survey. ArXiv
Preprint. http://arxiv.org/abs/2105.11197

Mahmood, R., Joshi, A., Lele, A., & Pennington, J. (2020).
Dynamic Natural Language User Interfaces Using
Microservices. HAI-GEN+ User2agent@ IUI.
https://ceur-ws.org/Vol-2848/user2agent-paper-1.pdf

Maroengsit, W., Piyakulpinyo, T., Phonyiam, K.,
Pongnumkul, S., Chaovalit, P., & Theeramunkong, T.
(2019). A Survey on Evaluation Methods for Chatbots.
Proceedings of the 7th International Conference on
Information and Education Technology, 111–119.
https://doi.org/10.1145/3323771.3323824

Martínez-Gárate, Á. A., Aguilar-Calderón, J. A., Tripp-
Barba, C., & Zaldívar-Colado, A. (2023). Model-

Driven Approaches for Conversational Agents
Development: A Systematic Mapping Study. IEEE
Access, 11, 73088–73103. https://doi.org/10.1109/
ACCESS.2023.3293849

Matic, R., Kabiljo, M., Zivkovic, M., & Cabarkapa, M.
(2021). Extensible Chatbot Architecture Using
Metamodels of Natural Language Understanding.
Electronics, 10(18), 2300. https://doi.org/10.
3390/electronics10182300

Motger, Q., Franch, X., & Marco, J. (2021). Conversational
Agents in Software Engineering: Survey, Taxonomy
and Challenges. ArXiv Preprint. http://arxiv.
org/abs/2106.10901

Perez-Soler, S., Guerra, E., & de Lara, J. (2019). Flexible
Modelling using Conversational Agents. 2019
ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems
Companion (MODELS-C), 478–482. https://doi.
org/10.1109/MODELS-C.2019.00076

Perez-Soler, S., Daniel, G., Cabot, J., Guerra, E., & de Lara,
J. (2020). Towards Automating the Synthesis of
Chatbots for Conversational Model Query. In
Enterprise, Business-Process and Information Systems
Modeling (pp. 257–265). https://doi.org/10.1007/978-
3-030-49418-6_17

Perez-Soler, S., Guerra, E., & de Lara, J. (2021). Creating
and Migrating Chatbots with Conga. 2021 IEEE/ACM
43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-
Companion), 37–40. https://doi.org/10.1109/ICSE-
Companion52605.2021.00030

Planas, E., Daniel, G., Brambilla, M., & Cabot, J. (2021).
Towards a model-driven approach for multiexperience
AI-based user interfaces. Software and Systems
Modeling, 20(4), 997–1009. https://doi.org/10.1007/
s10270-021-00904-y

Radziwill, N. M., & Benton, M. C. (2017). Evaluating
quality of chatbots and intelligent conversational
agents. ArXiv Preprint. http://arxiv.org/abs/1704.04579

Ramsin, R., & Paige, R. F. (2010). Iterative criteria-based
approach to engineering the requirements of software
development methodologies. IET Software, 4(2), 91–
104. https://doi.org/10.1049/iet-sen.2009.0032

Richardson, C. (2018). Microservices patterns : with
examples in Java. Simon and Schuster.

Rodrigues da Silva, A. (2015). Model-driven engineering:
A survey supported by the unified conceptual model.
Computer Languages, Systems & Structures, 43, 139–
155. https://doi.org/https://doi.org/10.1016/j.cl.2015.
06.001

Singh, S., & Beniwal, H. (2022). A survey on near-human
conversational agents. Journal of King Saud University
- Computer and Information Sciences, 34(10), 8852–
8866. https://doi.org/10.1016/j.jksuci.2021.10.013.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

254

