
Modeling and Model Transformation
as a Service: Towards an Agile Approach

to Model-Driven Development

Adel Vahdati and Raman Ramsin(B)

Department of Computer Engineering, Sharif University of Technology, Azadi Avenue,
Tehran, Iran

vahdati@ce.sharif.edu, ramsin@sharif.edu

Abstract. Scalability has always been a challenge in software development, and
agile methods have faced their own ordeal in this regard. The classic solution is
to use modeling to manage the complexities of the system while facilitating intra-
team and inter-team communication; however, agile methods tend to shy away
from modeling to avoid its adverse effect on productivity. Model-driven devel-
opment (MDD) has shown great potential for automatic code generation, thereby
enhancing productivity, but the agile community seems unconvinced that this gain
in productivity justifies the extra effort required for modeling. The challenge that
the MDD community faces today is to incorporate MDD in agile development
methodologies in such a way that agility is tangibly and convincingly preserved.
In this paper, we address this challenge by using a service-oriented approach to
modeling and model transformation that pays special attention to abiding by agile
values and principles.

Keywords: Model-Driven Development · Agile methods · Service-oriented
architecture

1 Introduction

In Model-Driven Development (MDD), models play the primary role throughout the
process of software development [1]. One of the motivations for using this approach is
to automatically create the product frommodels of the system. Inmodel-driven develop-
ment, the problem domain is described in terms of models at high levels of abstraction.
By executing a chain of model-to-model transformations, the details of the solution
domain are gradually added, thus producing refined models of the system. The process
culminates in generation of code by using model-to-text transformation.
Agile methods are widely used in the software industry. Although they strive to

expedite software development and delivery as much as possible, they also pay special
attention to enhancing flexibility in order to respond to change in a timely manner [2].
Agile methodologies are lightweight and tend to shy away from modeling, as executable
code is considered the main measure of progress; however, they all incorporate a highly-
disciplined and well-defined process [1].

© Springer Nature Switzerland AG 2022
A. Przybyłek et al. (Eds.): LASD 2022, LNBIP 438, pp. 116–135, 2022.
https://doi.org/10.1007/978-3-030-94238-0_7



Modeling and Model Transformation as a Service 117

It might seem that agile development and model-driven development are poles
apart. Agile methods are lightweight, fast, responsive and adaptable, while model-driven
approaches are heavyweight and require early investment in modeling [3]. Agile meth-
ods focus more on the process and methodological aspects of software development,
while model-driven approaches rely on architectural aspects and separation of concerns
[4]. Nevertheless, it has been observed that by combining these two approaches, we
can take advantage of the strengths of both and cover some of their weaknesses [3].
The goal of both approaches is to manage complexity: model-driven methods reduce
accidental complexity by separating design concerns from implementation details [5];
agile methods manage complexity by creating product increments in short iterations and
receiving early and fast feedback [6]. Both approaches also try to accelerate develop-
ment and enhance response to change: agile methods move in this direction by early
and continuous delivery of products in short iterations [4]; MDD achieves this goal by
raising the level of automation in code generation [2].
There are several reasons for integrating agilemethods andmodel-driven approaches,

including [6]: improving agility and minimizing unnecessary tasks, increasing collab-
oration, enhancing requirements analysis, reducing risks by receiving early feedback,
accelerating response to change, increasing the level of automation, managing complex-
ity and building the models in an iterative-incremental fashion, and better understanding
of the problem domain [6]. Some very influential agile methods started as model-phobic
frameworks; however, it has since been realized that all of them can make use of mod-
eling in some way [7]. One of the potential solutions is Agile Modeling (AM), which
provides a means for adding modeling to agile methods without compromising agility
[7]. The most important issue in agile MDD is to determine which agile practices, under
what circumstances, and how, should be used in MDD [8]. In AM, models are created
just in time and just enough for the specific purpose intended [9]. Despite its merits,
AM’s applicability to MDD should be further explored.
We propose a new agile approach to MDD by using service-oriented concepts. The

purpose of this approach is to facilitate participation and collaboration in the modeling
process and to improve scalability in terms of model size and the number of modelers
involved in the modeling process. To this aim, we introduce the idea of “multilevel
modeling as a service” and “model transformation as a service”, and propose a new
model-driven architecture. For modeling at different levels of abstraction, we propose
the concept-based abstract syntax, which allows the description of the problem domain
and the solution domain from structural, functional and behavioral perspectives.
The rest of this paper is structured as follows: Sect. 2 provides an overview of the

previous works related to this research; Sect. 3 presents the problems currently afflicting
agile software development and MDD, and the potential opportunities that will arise
as a result of their integration; Sect. 4 describes different approaches for complexity
management in modeling processes based on model decomposition; Sect. 5 describes
our proposed approach for modeling and model transformation as a service; and Sect. 6
presents the conclusion and explains the next steps in this research.



118 A. Vahdati and R. Ramsin

2 Related Works

Agile development and MDD are both mature domains, and numerous efforts have been
made over the years to integrate them. The works mentioned here are meant to provide
a brief overview of the related literature.
Matinnejad [1] has evaluated a number of Agile Model-Driven Development

(AMDD) methods as to their agility and MDD support. Essebaa and Chantit [4] have
proposed a method for combining MDA and agile methods, and have examined how
agile methods can benefit from MDA. Alfraihi and Lano [6, 12] have investigated the
motivations and challenges of integrating agile development and MDD; lack of a well-
defined process and tool support, and the steep learning curves involved, are recognized
as the key challenges. Alfraihi and Lano [12] have also conducted a systematic literature
review to examine the practices used in agile MDD. To facilitate sprint management
in Scrum, Chantit and Essebaa [10] have combined Model-Driven Engineering (MDE)
andModel-Based Testing (MBT) to produce a customized V-development life cycle that
is integrated into Scrum. Bernaschina [11] has proposed an agile framework for rapid
prototyping of model transformations. Asadi and Ramsin [13] have evaluated several
MDA-based methods according to general, MDA-related, and tool-related criteria.

3 Integrating Model-Driven and Agile Development Approaches

A prerequisite for integrating agile and MDD methods into agile MDD processes is to
be familiar with the strengths and weaknesses of these two areas. Also, the nature of
the problems targeted by agile MDD is another issue that should be considered. In this
section, we separately examine the deficiencies of agile development and MDD and
investigate the challenges and opportunities facing the integration of these two areas.

3.1 Agile Development Challenges

Agile methods have come a long way as to their support for scalability, but scalability
is still a serious problem, especially in large and complex projects involving distributed
teams [14]. Over-reliance on face-to-face conversation as the sole means for conveying
and information, and avoidance ofmodeling at all costs, can be detrimental to scalability.
This poses a challenge to coordination and communication in distributed teams; lack of
trust, common ground, language and knowledge base make it difficult for distributed
teams to work together and develop a large and complex system [15].
Another problem with agile methods is their attitude towards architecture [2]. Agile

approaches are risk-driven rather than architecture-driven, and even though modern,
more mature agile methods such as Disciplined Agile Delivery (DAD) [9] pay special
attention to architecture, most methods see the main goal as mitigating the risks rather
than providing a reliable high-level structure that addresses the quality attributes. As
a result, modeling and refining the architecture is not focused upon sufficiently, which
in turn adversely affects scalability: it is difficult to assess the effects of architecturally
significant design decisions on quality attributes; software evolution is difficult and
tedious because the code is the only availablemeans for learning and knowledge sharing;
and there will be a steep learning curve for newcomers to the team.



Modeling and Model Transformation as a Service 119

3.2 MDD Challenges

MDD requires early planning, investment and design [3]. Typically, model-driven
methodologies have heavyweight processes that have a negative effect on agility. Mod-
eling large and complex systems in an iterative-incremental fashion, and collaboration
among teammates during modeling activities in large distributed teams, are other chal-
lenges of MDD. The strongest motivation for using MDD is the continuous evolution
of software technologies. In MDD, code can be (semi)automatically generated through
a series of model transformations [16], but the main problem with this approach is that
we need to prepare and take the initial steps before starting the development process [2].
This early investment can add value when the assets produced during these steps can be
reused frequently. Therefore, production of reusable artifacts and responding to changes
by demand is one of the challenges of MDD [2].
The model-driven architecture (MDA), which has become quite popular in MDD,

is a good example of a multi-layered architecture. The three modeling levels of MDA
(Computation-Independent Model or CIM, Platform-Independent Model or PIM, and
Platform-Specific Model or PSM) enhance reusability through abstraction [16]. For
instance, in PIMmodels, application specifications are platform-independent and ignore
implementation technology issues. Therefore, it is possible to reuse these models for
different implementation technologies [16].
Research in the field of MDA has focused more on the PIM and PSM levels, and

little work has been done on CIM level models. UML, as a popular modeling language,
is not suitable for displaying models at higher levels of abstraction such as CIM. Using
domain-specific languages (DSL) can improve the expressiveness of the language for
displaying models of a particular application domain [16], but in current MDE practices,
the process of building DSLs is done on an ad-hoc basis [17].

3.3 Opportunities and Challenges of Integrating Agile and MDD Approaches

Models, as a common language and basis, facilitate communication and interaction
between different teams and improve the scalability of agile methods [14]. Model-
phobia in some prominent agile methods poses challenges to maintenance, evolution
and change tracking. MDD strives to improve productivity by automatically generating
code from models, and to provide sufficient detail to assist the maintenance phase by
creatingmodels at various abstraction levels. However,MDD is not inherently agile [18].
Therefore, we need to adhere to agile values and use best practices in agile modeling,
along with the lessons learnt from hands-on experience and practical expertise in the
field, in order to achieve effective agile modeling of software systems [19].
In Agile MDD, instead of modeling the whole system at once, models evolve contin-

uously according to user demands [19]. Agile modeling is done gradually and in small
steps, and instead of creating a large and complex model, several models are created and
used in parallel. In modeling, unnecessary details are avoided and the focus is on the
required aspects. During the modeling process, users are actively involved and simple
tools are used to produce the models [6]. By storing artifacts in shared repositories and
applying collaborative modeling techniques, communication and interaction between
stakeholders is improved and existing artifacts can be reused [20].



120 A. Vahdati and R. Ramsin

One of the gaps in agile methods is the role of architecture in software solutions [14],
which is well covered by the use of MDD. Typically, the technologies that are supposed
to support a business change faster than the business itself [21].MDD facilitates software
evolution by separating the problem domain from the solution domain. By establishing
a mapping between the problem domain and the solution domain, if the problem domain
models change, these modifications are propagated to solution domain models through
the model transformations and mapping between the two levels, but if the solution
domain changes (by adopting a new technology or platform) we only need to modify
the mapping (transformations) and the changes will not be propagated to the problem
domain models [2].
Despite the opportunities available, integrating agile and model-driven approaches

poses its own issues and problems. Most of the proposed methods lack a systematic
and well-defined process, and teams usually proceed on an ad-hoc basis based on their
experiences [6, 12]. Lack of appropriate tools to take advantage of Agile MDD and
the steep learning curve that developers have to face are other problems hindering the
integration of these two areas [6]. For example, CI/CD tools are key enablers of agile
methodologies, and version control systems play an important role in this pipeline.
Current version control systems manage and track changes and resolve conflicts at the
code level. Therefore, they can only identify and resolve conflicts at the syntax level,
and semantic conflicts caused by changes in modeling artifacts cannot be detected by
these tools [20]. This is an interesting research topic, but it will not be addressed in this
paper.
The agile approach prioritizes people and their interactions over processes and tools.

However, having the right tools to facilitate the use of agile MDD plays an important
role in fast product delivery and response to change. In addition to supporting modeling
and testing, these tools should also support change and configuration management [6].

4 Complexity Management in Modeling

Software systems are complex in nature, and many are distributed as well. Different
teams can be involved in the system development process, but the members of these
teams are not necessarily co-located. The key question is how to manage the modeling
complexity of the problemdomain and improve collaboration in themodeling process. In
MDD, the metamodel is first defined by identifying the domain concepts, which are then
instantiated to yield the model elements. Accordingly, the model must conform to the
syntactic rules and constraints defined in the metamodel. We use model decomposition
for managing complexity in modeling processes, and propose three approaches based
on the meta-level to which decomposition is applied. As shown in Fig. 1, each approach
has its own benefits and liabilities when used in an agile MDD context.
In the first approach, a metamodel is defined for the entire domain and the problem

domain is described in the formof a singlemodel. The secondapproach, similar to thefirst
approach, uses a single metamodel to define the concepts and rules of domain-specific
modeling language, but manages model complexity by domain decomposition, breaking
up the problem domain model into multiple partial models. The partial models describe
different parts of the problem domain, but their modeling language is the same, and an



Modeling and Model Transformation as a Service 121

overall model of the problem domain is obtainable by integrating these partial models. In
the third approach, breaking up the problem domain takes place at both metamodel and
model levels. Therefore, in order to describe the same aspect in different parts (contexts)
of the problem, the context-specific metamodel of each part is first defined, and the
problem domain is then described from that perspective with the help of models that
conform to context-specific aspect-related metamodels.

Fig. 1. Three approaches to metamodeling and modeling

4.1 First Approach

This approach is suitable for describing simple problems, but faces serious challenges
for large and complex systems. Froma scalability point of view, we encounter a large and
complexmetamodel that contains all the domain concepts and syntactic rules. Validation
and maintenance are difficult as it is not possible to get early feedback from the user
before defining a heavyweight metamodel. Reusability of the modeling artifacts is also
low, as for each aspect, different contexts of the system are described in the form of a
single model by using a single modeling language (single metamodel).
This approach lacks agility, and makes iterative-incremental modeling impossible.

If the metamodel is modified, these changes should be reflected to a large and complex
model, which makes it difficult to keep the model and the metamodel compatible. From
the perspective of cooperation and collaborative modeling, this approach also faces
various issues. Collaborative modeling requires breaking up the modeling tasks, but this
approach lacks a clear strategy for this purpose.
It should be noted that in general, cooperation of team members in the modeling

process can be done either synchronously or asynchronously. In synchronous collabora-
tion, all members work on a single shared model, and if a part of the model is modified
by a team member, the changes are communicated synchronously to all the members
involved in the modeling process. This method usually uses locking mechanisms to
maintain consistency. Each modeler must lock the model before making any changes,
which interferes with the design process. Locking the elements of a large model and
managing and releasing locks is an important problem of this method.
In asynchronous collaboration, each team member has a copy of the remote model

and modifies the local version of the model, using version control systems to apply
changes to the remote version of the model. Merging the local changes with the remote
model is handled automatically in the absence of conflict, otherwise the conflicts must be
resolved manually. Pulling all the elements of a large model from the remote repository
and storing them locally is not efficient in terms of resource consumption.



122 A. Vahdati and R. Ramsin

4.2 Second Approach

The second approach uses a multitude of models to describe the problem domain.
By identifying different areas (subdomains) of the problem domain, it is possible to
describe each context consistently and unambiguously. In this approach, the same lan-
guage (metamodel) is used for describing a specific aspect in different contexts of the
problem domain. However, each context (subdomain) can have its ownmodel and model
repository, so in asynchronous collaborative modeling, it is not necessary to load all the
specifications of the problem domain, but each team can load, describe and modify the
specifications of the areas assigned to it as modeling tasks. Thus, subdomains can be
the basis for division of modeling activities and task assignment among different teams.
However, the operational cost of maintaining multiple repositories and the interdepen-
dencies between different subdomains, and integrating them to produce an overall view
of the system, is the price that should be paid for reducing complexity, and improving
scalability and collaboration.
Reusability at the metamodel level is similar to the first approach. However, if

the problem domain is decomposed into cohesive parts with minimal interdependen-
cies, the reusability of partial models will be improved. In this approach, we need to
define a heavyweight metamodel before starting the modeling process of different sub-
domains. Also, making a change in the metamodel can affect the models of multiple
subdomains. As a result, iterative-incremental development of models and metamodels
becomes challenging and, from this perspective, lacks the necessary agility.

4.3 Third Approach

The third approach manages complexity at both the metamodel and model levels. To
describe a specific aspect in different contexts (parts) of the problem domain, the model-
ing language (abstract syntax) appropriate for each context is created as ametamodel, and
the problem domain is then described from that perspective (aspect) by using context-
specific languages. In this approach, separation of concerns helps manage complexity.
Also, instead of defining a large and complex metamodel for each aspect that con-
siders all context-related concerns and details, several lightweight and context-specific
metamodels are developed to describe the different contexts of the problem from that
perspective by using different modeling languages (metamodels).
This improves the reusability andmaintainability of themetamodel and related mod-

els: if one metamodel changes, we only need to maintain the compatibility of its corre-
sponding models. It also allows for gradual and evolutionary modeling and contributes
to the agility of the modeling process. By assigning the tasks related to the modeling and
metamodeling of each context to a team, different teams can concurrently collaborate in
the modeling process, thus enhancing collaborative modeling.
In this approach, the overall view of the problem domain from a specific perspective

(aspect) is generated by integrating the partial models of different contexts of the prob-
lem domain, and model transformations play a key role in this regard. The complexity of
integration is the cost that should be paid to improve cooperation, scalability and mutual
independence of teams as to the modeling process. Identifying and distinguishing the
different contexts of the problem domain can be challenging: if the logical boundaries



Modeling and Model Transformation as a Service 123

between the different contexts of the problem are not well identified, integration will
become difficult. There are several strategies for decomposing the metamodel. A coarse-
grained metamodel can be decomposed by considering the following goals: increase the
cohesion of fine-grained metamodels, form autonomous teams, and improve participa-
tion and cooperation in the modeling process. The Bounded Context pattern [22] can
be used as a guideline and mechanism to decompose metamodels with respect to these
goals.
Specialized fields usually have their own language and literature, which can be the

basis for decomposing a coarse-grained metamodel into several fine-grained domain-
specificmetamodels, thus producingcohesivemetamodel andmodels. The independence
of teams in developing different parts of the software systemmaybe the basis for deciding
how to break up the metamodel. Reducing inter-team dependencies allows different
teams to work in parallel. This improves agility and cooperation in modeling activities.
In co-located teams, it is thus possible to exchange information effectively, build trust
and promote collaboration. As a rule of thumb, the Bounded Context pattern can be
used as a guideline and starting point for decomposing a coarse-grained metamodel.
Later on, two context-specific metamodels can be merged and assigned to a single team
according to other concerns and criteria, including: reducing inter-team dependencies,
saving on integration/operational costs, and reducing the collaboration costs resulting
from geographical distribution of the teams. All of these benefitsmake the third approach
a wise choice for agile MDD.

5 Modeling as a Service and Model Transformation as a Service

As seen in the previous section, the third approach to management of modeling com-
plexity improves agility and collaboration in the modeling process. However, the main
challenge in this approach is to integrate partial models and provide a high-level view.
Although partialmodels of different contexts describe the problemdomain from the same
aspect (e.g., the structural aspect), these models are heterogeneous because each partial
model conforms to a different metamodel. Therefore, in order to achieve an overall view
of the system from a specific aspect, we need to integrate these heterogeneous partial
models. To address this problem, we must first determine the types of relationships that
exist among the partial models.

5.1 Types of Relationships Between Models

Metamodel/model decomposition should be such that different contexts have the least
interdependence. However, in practice, these contexts are not isolated from each other.
For example, a model of infrastructure services can be shared and used by other contexts.
But at times, the same service is remodeled to enhance team independence and strengthen
control over service specification. Inspired by [22], we have identified four categories
for classifying the natures and types of relationships between models: separate context,
shared context, duplicate context, and conformist context.

Separate Context. The simplest situation is when two partial models have nothing to
do with each other and do not need the information of the other model to describe their



124 A. Vahdati and R. Ramsin

own domain. Under such circumstances, changes in each of these partial models are not
disseminated to the other, and their integration would not provide more information than
the pre-integration information.

Shared Context. In this case, part of the information is shared by two partial models
and has the same specifications. Describing this shared context requires collaborative
modeling (synchronous or asynchronous), and coordination between the teams respon-
sible for each of the partial models. If all of these partial models are stored in a central
repository, we will need access control mechanisms so that members of different teams
can only access the shared part. However, if each team has its own repository, storing the
shared context specifications in a separate, shared repository facilitates access control
management and collaboration among team members. However, in this case, each team
would need to manage two repositories (one private and one shared), and would also
have to integrate the model specifications stored therein. In the Shared Context category,
reusing models and avoiding redundancy is the main concern.

Duplicate Context. In this case, some of the information is shared by two partial mod-
els, but the burden of coordination and collaborative modeling between the two teams
is such that sharing and collaborating in the modeling process (for sake of reuse) costs
more than redefining and describing the shared context by each team. In this case, hav-
ing autonomous teams has a higher priority than reusing artifacts. Although teams can
still exchange information through Agile practices such as Scrum-of-Scrums, each team
produces its own specifications for the shared context. The price that is paid for this level
of flexibility is the possibility of creating semantic inconsistencies.

Conformist Context. In this case, one of the partial models (a downstream model)
depends on the information of another model (an upstream model) and these models
are defined and maintained by two different teams (supplier and consumer). The sup-
plier has complete independence of action in making design decisions, but the design
decisions made by the consumer must be aligned with and conform to the upstream
model. Therefore, tracking changes in the upstream model and disseminating it to the
downstream model is the responsibility of the consumer. For example, in MDA, CIM
models provide information for PIM models, and the relationships between them are
conformist. The driving forces behind the CIM models are the rules and constraints that
govern the business domain, and PIM models are required to comply with these rules
and restrictions, and the design models at the PIM level are in line with the business
domain models at the CIM level.

5.2 Loosely Modeled Relationships

As the type and nature of the relationships among the partial models becomes clear, an
important question that arises is how the relationships should be modeled in order to
facilitate the integration process. Adherence to the two fundamental principles of “high
cohesion” and “low coupling” seems to be a suitable strategy. Metamodel decomposi-
tion (through the third approach) should first be applied to maximize the cohesion of
the conforming model, and in contrast, the relationships between concepts in different



Modeling and Model Transformation as a Service 125

models should be loosely modeled in order to minimize coupling. Loosely modeled
relationships between two models, or between their elements, promotes inter-team and
intra-team collaboration.
Traditional modeling approaches model the relationships among the elements in

a tightly coupled manner. Suppose a team of designers intend to model the structural
aspects of a system in collaboration with each other in the form of class diagrams.
Suppose that there are two classes called Order and Customer in this model, which are
identified by two members of the team. There is an Association relationship between
Order and Customer, but the Association relationship between them cannot be defined
before defining the classes themselves. This will tie the design steps of the two team
members together because modeling the relationship between the two elements is highly
dependent on the presence of both at the moment of relationship definition.
A model can describe a situation, but to do so in the realm of modeling, we should

not have to realize all aspects of the constituent elements of that situation. Designers
usually model the system from the perspective of an outside observer, while the problem
space can be viewed from the perspective of each of its constituent elements. In the
previous example, Order describes the situation from its perspective as being related
to the Customer, but the presence or absence of the Customer element at the moment
of describing this situation does not change the reality of the problem; this is only a
technical concern to consistently define the model.
Therefore, relationships should be modeled asynchronously and loosely. The cost of

this approach is that the model may sometimes be inconsistent, but this type of inconsis-
tency can be resolved by completing the modeling process. In the long run, it seems that
improving flexibility, enhancing participation and collaboration, reducing dependency
and increasing scalability outweigh the temporary inconsistency of the domain model.
In this regard, we have introduced the idea of modeling and model transformation as a
service in which the problem domain is described in terms of different domain concepts,
each concept being embodied in the form of a service. This service makes it possible
to define a concept from different perspectives. Each concept can be described from
three perspectives: structural, functional and behavioral. It also provides essential func-
tionalities required to query the structural, functional, and behavioral specifications of a
concept.
The structural dimension expresses the characteristics and relationships of that con-

cept with other concepts. The functional dimension focuses on the functionalities that a
concept can provide. The behavioral dimension describes how this concept interacts with
other concepts to fulfill its role. The behavioral specification of a concept is described
from two perspectives: the responsibilities that the outside observer owes to that concept
and the facts about that concept that the outside observer may be interested in knowing.
This observer can be another domain concept, or the system as a whole.
In this approach, instead of modeling the problem domain only from the designer’s

point of view, we describe it from the perspective of each concept in the different con-
texts that make up the domain. The justifications behind this strategy are: information
hiding, reducing unnecessary coupling, managing complexity through domain decom-
position, and improving collaboration in the modeling process. For example, if Order
has a unidirectional relationship with Customer, from Order’s point of view, there is



126 A. Vahdati and R. Ramsin

a specific relationship with a concept called Customer, but Customer does not need to
know anything about this relationship in the customer management context. In other
words, Customer does not even know that a concept called Order is present in the
problem domain because describing the problem domain from a customer management
perspective does not require any such knowledge. In addition, Order does not need
to know about all the customer-related attributes defined in the customer management
context (e.g., date of birth). The loose connection between Order and Customer can be
realized by using an event-driven architecture. Order states that it has a specific rela-
tionship (with certain name and attributes) with Customer. From an event-driven point
of view, it can be interpreted that Order is interested in being informed when Customer
is modeled, or if it already exists in the scope of the problem domain. When Customer is
described in the problem domain, it announces the fact of being existent in the form of
a published event. Using the Publisher/Subscriber pattern, it will be possible to model
the relationships between two concepts in a loose manner.
This allows for asynchronous modeling, which improves participation and collabo-

ration of team members in the modeling process. On the other hand, problem domain
decomposition and describing it from the perspective of each domain concept allows
complexity management at fine-grained levels. It is the modeler’s responsibility to pro-
vide a macro view through the integration of these micro views. Since each domain
concept is realized in the form of a self-contained service, it will be possible to provide
a high-level view through the integration of services.
By identifying the subdomains, it is possible to model the system in the form of a

hierarchical structure from coarse-grained to fine-grained. The problem domain resides
at the highest level and consists of one or more subdomains, each of which contains
relevant domain concepts. Each subdomain can be considered as a composite service
that acts as a wrapper and includes services corresponding to domain concepts.
In other words, a subdomain provides access to these services from the outside world

indirectly and is responsible for maintaining the consistency and transactional integrity
of its internal concepts. The problem domain acts as a facade over the entire system
and ensures consistency and transactional integrity at the system level. This hierarchical
structure makes it possible to discover concepts (services) and resolve the relationships
between them, similar to what happens in a DNS. The whole process can be done
asynchronously by exchanging messages and using the publisher/subscriber pattern.

5.3 Model-Driven Development by Using Service-Oriented Paradigm

MDA is the main architecture adopted in MDD endeavors [23], and several methodolo-
gies have been proposed in its support [13]. MDA follows a layered structure (Fig. 2)
while our proposed model-driven architecture has an onion structure (Fig. 3).
In current model-driven practices, modelers have focused on design models and

usually start their work from the beginning by creating PIM-level models, completely
ignoring the CIM-level. Lack of modeling at the CIM level can lead to various problems.
Firstly, design models are affected by design decisions and solution issues, so they are
less reusable than CIM-level analysis models; secondly, design models are not under-
standable by the end user, and domain experts cannot validate them; and thirdly, there is
a semantic gap between the abstract high-level concepts used by domain experts and the



Modeling and Model Transformation as a Service 127

abstract concepts used by modelers and designers, which is a major source of accidental
complexity [20, 24]. Due to changes in requirements, bridging the gap manually is not
cost-effective in terms of time and effort [24]. Lack of analysis models at the CIM level
prevents the automatic production of PIM models based on CIM models. As a result, it
is not possible to automatically publish changes in the requirements and analysis models
to the design models.
In our proposed architecture, the problem domain is first described in terms of con-

cepts and their interrelationships, and CIM-level models are defined. In line with the
idea of “concept as a service”, domain concepts are described from structural, func-
tional and behavioral perspectives. A simplified version of the proposed abstract syntax
(metamodel) for describing each domain concept is shown in Fig. 4.
Examining a concept from a structural perspective determines what properties that

concept has and how it relates to other concepts in the problem domain. Examining
a concept from a functional perspective aims to identify the functionalities that it can
provide. Concepts in the real world usually need to interact and use the services provided
by other concepts to fulfill their roles and tasks. In the behavioral dimension of a concept,
the element of time and the sequence of interactions and communications between
concepts play a key role. The behavioral specification of a concept expresses the dynamic
aspect of that concept, while the structural and functional specifications describe its static
aspects.
During the modeling process, the problem domain metamodel is first described

by identifying the domain concepts, properties, and the relationships between them in
a textual form based on the proposed abstract syntax. This metamodel includes the
concepts, domains, and domain concepts of the problem domain. Then, by creating new
instances of the domain concepts, domain objects are created to form the domain model.

Fig. 2. OMG model-driven architecture Fig. 3. Proposed model-driven architecture

One of the problemswith conventional modeling approaches is that existing facilities
for defining metamodels cannot be used at the model level as well. So if we need a new
type, we have to define it explicitly at the metamodel level. To overcome this drawback,
the notion of multilevel modeling was proposed, which allows in-depth definition of a
language in more than two levels [25]. Two techniques have been proposed to extend the
standard modeling approach: potency-based multilevel modeling [25] and Orthogonal
Classification Architectures (OCA) [26, 27].
Potency-based multilevel modeling allows the domain to be described at multiple

levels. In this method, the elements in the model have two facets at the same time: type
and instance. For this reason, elements are called ‘Clabjects’, a combination of Class



128 A. Vahdati and R. Ramsin

Fig. 4. Describing a concept from three perspectives

and Object that exhibits the characteristics of both. In OCA [26], two orthogonal typing
systems are proposed, one based on ontology and the other based on linguistics [27].
In our “multilevel modeling as a service” idea, we extend OCA by adding a third

dimension: relational. From an ontological perspective, the elements of the model are
logically described as defined in the ontology hierarchy. From a linguistic point of view,
the physical dimension of the elements is discussed, which refers to the concepts and
structures that are necessary to construct and represent that element in models. The
relational dimension focuses on the relationship between two elements of two different
models. This dimension is embodied in our proposed solution in the form of an onion
architecture: PIM-to-CIM relation, PSM-to-PIM relation, and Code-to-PSM relation.
In Fig. 5, an example of multilevel modeling from ontological (O0, O1, and O2) and

linguistic (L0, L1 and L2) dimensions is shown. By analyzing the problem domain and
exploring the subdomains (“Domain”s) and concepts, domain concepts are first con-
structed (“DomainConcept”s). Then, by creating new instances of the domain concepts,
domain objects (“DomainObject”s) are created that actually form the domain model. A
DomainObject has two facets: it is an instance of its ontological upper level Domain-
Concept (e.g., in Fig. 5: Film is an instance of Product), and it can be considered as
a template for instantiation of its ontological lower level, and thus play the role of a
DomainConcept for the level below (e.g., in Fig. 5: Film is a type for StarWars).
Figure 6(b) shows the relational dimension of the proposed multilevel modeling

approach. PIM-to-CIM, PSM-to-PIM and Code-to-PSM relations are loosely modeled.
In line with the ideas of “modeling as a service” and “concept as a service”, each layer
provides access to its model elements and their descriptions to its higher layer, through
services corresponding to these elements. Therefore, the loosely modeled relationship
between the elements of each layer with its lower layer elements can be resolved using
service discovery, service call, and the publisher/subscriber pattern.
In our approach (Fig. 6(b)), CIM-level models are created with three objectives:

1. Improve reusability by creating analysis models.
2. Improve understandability: Models at the CIM level are more understandable to the
end user and domain experts, and in linewith agile values, increase their collaboration
and participation in the modeling and validation process.



Modeling and Model Transformation as a Service 129

3. Enable (semi)automated generation of PIM-level models by integrating CIM-level
models with the design decisions and concerns described at the PIM level, without
pollutingCIM-level models with solution domain issues and implementation details.

To promote the participation and cooperation of domain experts and the development
team in themodeling process, a common language is required. To this aim,we have intro-
duced a method called CRAC (standing for “Concept-Responsibilities-Asynchronous
Collaboration”), which aims to explore the problem space and reach a common lan-
guage (Ubiquitous Language [22]) between domain experts and the development team.
We will further explain this method in the next section. The CRAC analysis model thus
produced is transformed into a concept-based model and a set of corresponding struc-
tural, functional and behavioral aspects, which constitute the CIM-level models and are
represented in the form of self-contained and self-descriptive services at the CIM level.
PIM-level services can obtain the specifications of a concept from different perspectives
by calling specific concept-related services at the CIM level.

Fig. 5. An example of multilevel modeling from linguistic and ontological perspectives

Next, we enter the realm of the solution domain. To do this, we need to describe
design details and solution concerns. However, these specifications do not directly apply
to CIM-level models, but are rather expressed using the specific language of the PIM
layer (Design-level DomainConcepts). If the partial models described at the PIM level
require the specifications of CIM-level concepts, they refer to the concepts and models
described at the CIM level (via the relational dimension of the proposed multilevel
modeling approach) without the need to redefine this information at the PIM level.
Integrating design details at the PIM level with the specifications of CIM-level concepts
is done automatically using the built-in or user-defined model transformation services.
The idea of “model transformation as a service” is based on an event-driven architec-

ture that allows reactive model transformations. In other words, model transformations



130 A. Vahdati and R. Ramsin

Fig. 6. Traditional MDA vs. proposed MDA approach



Modeling and Model Transformation as a Service 131

can be performed not only at the user’s request, but also in response to the creation or
modification of domain objects. One of the main components of a model transformation
is the source model. When a model transformation service is defined, it declares that
it is interested in receiving events related to the domain objects that correspond to its
source model (Fig. 7 – A.3: Subscribe to the event based on source model). By creating
or modifying a domain object, a relevant event is published (Fig. 7 – B.3: Publish an
event) and delivered to the model transformation services that subscribe to the event
(Fig. 7 – C.1: Handle the event). Upon receiving this event, the model transformation
service initiates the process of de-serializing the event and extracting the domain object
identifier, retrieving domain object specifications from corresponding services (Fig. 7
– C.2), performing transformation steps (Fig. 7 – C.3), and creating one or more target
domain objects conforming to the destination model (Fig. 7 – C.4).

Fig. 7. High-level architecture of reactive model transformation.

In current model-driven practices (Fig. 6(a)), CIM-level model elements are tagged
to provide design details that are not present in the CIM-level models, and model trans-
formations use these annotations to conduct transformation steps and produce PIM-
level models. This approach contaminates the analysis model with design concerns and
reduces its readability and expressiveness. If design decisions change, we will need to
re-annotate the analysis model. While in our proposed approach, CIM models remain
intact and are not corrupted by solution domain issues. Rather, these details are described
separately using PIM-level domain concepts, and are automatically combined with CIM



132 A. Vahdati and R. Ramsin

models to generate PIM models. The same scenario exists between the Code, PSM, and
PIM layer models, as shown in Fig. 6(b).

5.4 CRAC Method

In this method, we first identify the concepts of the problem domain. Each concept plays
a role in the problem space, and other concepts in this context have expectations of it
that can be interpreted and expressed in terms of its responsibilities. A concept’s respon-
sibilities can be “accomplished” or “failed”, and it is possible to deduce a set of facts
or events that explain this situation. For example, when a responsibility is successfully
performed, it can be inferred that the pre-conditions and post-conditions associated with
that responsibility have been met.
Concepts can also be interested in a set of facts and events in order to fulfill their

responsibilities. They can also react to an event when being informed about a fact.
This information is described in the form of a model consisting of these elements:
Concepts, Commands that are executed by a concept, Events that are published as a
result of command executions, Events that a concept is interested to know about it, and
Commands that are executed in reaction to the events of interest. For each concept, these
four pieces of information can be inserted on both sides of a card called a CRAC card
(Commands, Publish Event, Interested in Event, and Call for Action columns).
In order to improve collaboration between domain experts and the development team,

a Google Spreadsheet can be used to describe and access this information simultane-
ously. Figure 8 and Fig. 9 show the partial analysis model of an online food ordering
system produced by the CRAC method. The system must be able to receive orders
(‘CreateOrder’). If an order is submitted successfully, the ‘OrderCreated’ event will be
published. ‘Restaurant’ is interested in ‘OrderCreated’ events. When this event occurs,
it asks the kitchen to issue a ticket (‘CreateTicket’) for the order; the kitchen can accept
this order and issue a receipt (‘TicketCreated’), or not issue it due to running out of
food (‘TicketCreationFailed’). The identity of the owner of the order should be verified
when the order is created; customer identity may be approved (‘CustomerVerified’) or
rejected (‘CustomerVerificationFailed’). When the customer is verified and the order
receipt is issued by the restaurant, the customer’s credit card should be checked; at
this stage, the card may be approved (‘CreditCardAuthorized’) or rejected (‘CreditCar-
dAuthorizationFailed’). ‘Order’ is interested in these events to confirm or reject the
order: if the ‘CreditCardAuthorized’ event occurs, ‘Order’ invokes the ‘ApproveOrder’
command and the ‘OrderApproved’ event is published as a result; otherwise, it invokes
‘RejectOrder’ and the ‘OrderRejected’ event is published.
Similarly, ‘Restaurant’ needs to know if the order is approved or not: if the order

is approved, ‘Restaurant’ approves the issued receipt by invoking the ‘ApproveTicket’
command, which will result in the publication of the ‘TicketApproved’ event; but if the
order is rejected, ‘Restaurant’ rejects the ticket by invoking the ‘RejectTicket’ command,
and ‘TicketRejected’will be published as a result. Other requirements of the online food
delivery system can be analyzed andmodeled in the same fashion, but this is not our goal
in this paper. As shown in this example, the CRACmethod can help better understand the
problem domain and express business rules and processes through a chain of commands
and events. This modeling approach is understandable to domain experts and end users,



Modeling and Model Transformation as a Service 133

Fig. 8. CRAC analysis model of an online food ordering system

and the terms used fornaming the concepts, commands, and events are parts of a language
that is common among the development team(s), domain experts and end users.

Fig. 9. Analysis model: CRAC cards

6 Conclusion and Future Work

Our preliminary analysis of the proposed approach shows that the idea of modeling and
model transformation as a service is in line with the values, principles and best practices
of agilemodeling.Describing the problemdomain in terms of concepts andmodeling the
relationships among these concepts in a loose manner facilitates collaboration through-
out the modeling process and improves scalability in terms of the number of modelers



134 A. Vahdati and R. Ramsin

involved. Model decomposition enhances complexity management and addresses scala-
bility challenges in terms of artifact size. It also allows for iterative-incremental model-
ing and can enhance agility due to loosely-modeled relationships, the onion architecture,
multilevel modeling as a service, and reactive model transformation.
The proposed CRAC method fosters mutual and shared understanding between

domain experts and development team members, and facilitates collaboration and user
involvement in the modeling process at the CIM level. The tool used for modeling at
this level is simple and understandable to non-technical users.
In our proposed approach, production of high-level models from lower-level mod-

els enhances the reusability of modeling artifacts. Therefore, at each level of model-
ing, one can focus only on the specific concerns of that level. Realizing the idea of
“model transformation as a service” in the form of an event-driven architecture makes
it possible to automatically propagate the changes occurring in lower-level models to
higher-level ones. Moreover, by integrating and composing fine-grained model transfor-
mation services, it is possible to execute reactive model transformations concurrently or
as chains.
Applying a service-oriented approach in modeling and model transformation allows

for the use of different patterns and architecture styles such as the microservice archi-
tecture. Examining the two areas of service-orientation and modeling, and establishing
a semantic correspondence between the issues and challenges of these two fields will be
one of our future research activities. This will help us apply the patterns and techniques
used in the service-oriented paradigm to solve the problems and challenges of model-
driven development. Providing a model-driven development platform (MDDPlatform)
by using the service-oriented approach has also been planned as a future activity. The
goal of MDDPlatformwould be to support all the functionalities required to fully realize
the ideas of modeling and model transformation as a service.

References

1. Matinnejad, R.: Agilemodel driven development: an intelligent compromise. In: International
SERA Conference, pp. 197–202 (2011)

2. Wegener, H.: Agility in model-driven software development? Implications for organization,
process, and architecture. In: OOPSLA Workshop on Generative Techniques in the Context
of Model Driven Architecture, vol. 23 (2002)

3. Whittle, J.: Agile versus MDE - friend or foe? In: Workshop on ExtremeModeling, vol. 1089
(2013)

4. Essebaa, I., Chantit, S.: Model driven architecture and agile methodologies: reflexion and dis-
cussion of their combination. In: FederatedConference onComputer Science and Information
Systems, pp. 939–948 (2018)

5. Mahé, V., Combemale, B., Cadavid, J.: Crossing model driven engineering and agility. In:
Workshop on Model-Driven Tool and Process Integration (2010)

6. Alfraihi, H., Lano, K.: Practical aspects of the integration of agile development and model-
driven development: an exploratory study. In: Flexible MDEWorkshop, pp. 399–404 (2017)

7. Ambler, S.W.: Agile modeling: a brief overview. In:Workshop of the pUMLGroup, pp. 7–11
(2001). https://dl.gi.de/20.500.12116/30849

8. Zhang, Y., Patel, S.: Agile model-driven development in practice. IEEE Softw. 28(2), 84–91
(2011)



Modeling and Model Transformation as a Service 135

9. Ambler, S.W., Lines, M.: Choose your WoW: a disciplined agile delivery handbook for
optimizing your way of working. Project Management Institute (2020)

10. Chantit, S., Essebaa, I.: Towards an automatic model-based Scrum methodology. Procedia
Comput. Sci. 184, 797–802 (2021)

11. Bernaschina, C.: ALMOsT.js: an agile model to model and model to text transformation
framework. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360,
pp. 79–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-1_5

12. Alfraihi, H., Lano, K.C.: The integration of agile development andmodel driven development:
a systematic literature review. In: International Conference onModel-Driven Engineering and
Software Development, pp. 451–458 (2017)

13. Asadi, M., Ramsin, R.: MDA-based methodologies: an analytical survey. In: Schieferdecker,
I., Hartman, A. (eds.) ECMDA-FA2008. LNCS, vol. 5095, pp. 419–431. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69100-6_30

14. Mognon, F., C. Stadzisz, P.: Modeling in agile software development: a systematic literature
review. In: Silva da Silva, T., Estácio, B., Kroll, J., Mantovani Fontana, R. (eds.) WBMA
2016. CCIS, vol. 680, pp. 50–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55907-0_5

15. Jolak, R., Wortmann, A., Chaudron, M., Rumpe, B.: Does distance still matter? Revisiting
collaborative distributed software design. IEEE Softw. 35(6), 40–47 (2018)

16. Sebastián, G., Gallud, J.A., Tesoriero, R.: Code generation using model driven architecture:
a systematic mapping study. J. Comput. Lang. 56, 100935 (2020)

17. Kolovos, D., et al.: MONDO: scalable modelling and model management on the cloud. In:
CEURWorkshop, pp. 44–53 (2015)

18. da Silva, E., Maciel, R., Magalhães, A.: Integrating model-driven development practices
into agile process: analyzing and evaluating software evolution aspects. In: International
Conference on Enterprise Information Systems, pp. 101–110 (2020)

19. Schonbock, J., Etzlstorfer, J., Kapsammer, E., Kusel, A., Retschitzegger, W., Schwinger, W.:
Model-driven co-evolution for agile development. In: Hawaii International Conference on
System Sciences, pp. 5094–5103 (2015)

20. Alam, O., Corley, J., Masson, C., Syriani, E.: Challenges for reuse in collaborative modeling
environments. In: MODELS Workshops, pp. 277–283 (2018)

21. Uhl, A.: MDA is ready for prime time. IEEE Softw. 20(5), 70–72 (2003)
22. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-

Wesley Longman, Boston (2003)
23. daSilva,A.R.:Model-driven engineering: a survey supported by the unified conceptualmodel.

Comput. Lang. Syst. Struct. 43, 139–155 (2015)
24. Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J.-M., Gray, J.: Globalizing

modeling languages. Computer 47, 68–71 (2014)
25. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M., Kobryn,

C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45441-1_3

26. Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 266–275. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_16

27. De Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling. ACM
Trans. Softw. Eng. Methodol. 24(2), 1–46 (2014)


