
Process Patterns for Agile Methodologies

Samira Tasharofi 1 and Raman Ramsin 2
1 University of Tehran, Department of Electrical and Computer Engineering

North Karegar, Tehran, Iran, stasharofi@ut.ac.ir
2 SharifUniversity of Technology, Department of Computer Engineering

Azadi Avenue, Tehran, Iran, ramsin@sharif.edu

Abstract. The need for constructing software development methods that have
been tailored to fit specific situations and requirements has given rise to the
generation of general method fragments, or process patterns. Process patterns
can be seen in some third-generation integrated methodologies (such as
OPEN) and in Method Engineering approaches where they are used as process
components. They have also been presented as components in generic software
development lifecycles where they represent classes of common practices in a
specific domain or paradigm; object-oriented process patterns are well-known
examples. Agile methodologies, however, are yet to be thoroughly explored in
this regard. We provide a set of high-level process patterns for agile
development which have been derived from a study of seven agile
methodologies based on a proposed generic Agile Software Process (ASP).
These process patterns can promote method engineering by providing classes
of common process components which can be used for developing, tailoring,
and analyzing agile methodologies.

1 Introduction

A pattern is a "general solution to a common problem or issue, one from which a
specific solution may be derived" [1, 2]. Process Patterns are results of applying
abstraction to recurring software development processes and process components;
they are an effective mechanism for highlighting and establishing methods and
approaches that have proven to be successful in practice [2].

Process patterns were first introduced by Coplien in 1994 [1], and were defined
as "the patterns of activity within an organization (and hence within its project)".
Coplien's patterns were relatively fine-grained techniques for exercising better
organizational and management practices. Therefore, they did not constitute a
comprehensive and coherent whole for defining a software development process.

Process patterns were later focused upon in the object-oriented paradigm. In his
two books on object-oriented process patterns, Ambler defined an object-oriented
process pattern as "a collection of general techniques, actions, and/or tasks

Please use the fotlowing fo,wtat when citing this chapter:

Tasharofi, S., Ramsin, R., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational
Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S, Henderson-Sellers B., (Boston
Springer), pp. 222-237.

Process Patterns for Agile Methodologies 223

(activities) for developing object-oriented software" [2, 3]. The proposed object-
oriented patterns were categorized as belonging to three different types, commonly
ordered by ascending level of abstraction and granularity as tasks, stages, and
phases. A task process pattern depicts the detailed steps to execute a specific fine-
grained task of a process. A stage process pattern defines the steps that need to be
executed in order to perform a stage of the process and is usually made up of several
task process patterns. Finally, a phase process pattern represents the interaction of
two or more stage process patterns in order to execute the phase to which they
belong. The process patterns introduced by Ambler constitute a proposed generic
Object-Oriented Software Process (OOSP), which helps make sense of the relative
position of the patterns in a general lifecycle, and their interrelationships. The
approach relates to the one later put forward, in a more detailed and formal fashion,
by Prakash [4]. Although these patterns have been intended to abstract common
practices over a vast range of object-oriented methodologies, and are consequently
rather general, their object-oriented-software-development nature makes them more
tangible to software practitioners than Coplien's patterns.

Process patterns create means for developing methodologies through
composition of appropriate pattern instances [5], a practice also commonly seen in
assembly-based Situational Method Engineering [6, 7, 8]. One of the core elements
in situational method engineering is a repository of reusable building blocks (also
called method fragments or method chunks) from which method elements can be
instantiated [9, 10]. Process patterns can provide a rich repository for the purpose of
process assembly and/or tailoring. One of the main concerns with this repository is
the provision of a good classification of building blocks so that it leads the method
engineer to better selections. Classification of process patterns according to different
domains of application (methodology types) can aid the method engineer in
addressing this problem.

Process patterns have already been used to great effect in methodologies such as
OPEN [11, 12] and are rapidly gaining popularity as process building blocks in
method composition/configuration approaches such as the Rational Method
Composer (RMC) [13]. Agile development, however, has enjoyed little attention in
this regard: efforts have mostly been confined to Software Process Improvement
(SPI) [14] and dual-methodology integration/customization [15]. A generic view on
agile methodologies can only be seen in Ambler's proposed Agile System
Development Life Cycle (ASDLC) [16], which is not only rather cursory in its
treatment of the constituent process patterns, but also lacks ample coverage, as the
abstraction and generalization it provides is mainly based on just two methodologies:
XP [17, 18] and AUP [19].

In this work, we identify process patterns commonly encountered in agile
methodologies. Because of common defining characteristics and basic underlying
principles - as presented in [20] and set out in the Agile Manifesto [21] - Agile
methodologies share many common constituents, which if extracted in terms of
process patterns, can be used in constructing and/or tailoring other agile
methodologies. In order to achieve this goal, we start from a generic model for agile
software processes, which has resulted from inspecting seven prominent, widely-
used agile methodologies. We then extract the recurring process patterns in a top-
down fashion according to the three abstraction levels suggested by Ambler [2]. The

224 Samira Tasharofi and Raman Ramsin

approach is similar to that applied in [2], yet the main contribution of our work is
that the process patterns thus defined are agile-specific.

The organization of this paper is as follows: In Section 2, the proposed generic
Agile Software Process (ASP) will be described. Section 3 introduces the process
patterns derived from the ASP. Section 4 shows how different agile methodologies
can be realized using the proposed patterns. Section 5 discusses the benefits obtained
from the proposed agile process pattems, and finally, Section 6 contains the
conclusions and suggestions for future work.

2 Agile Software Process (ASP)

The Agile Software Process (ASP), depicted in Fig. 1, is the proposed generic
process model of agile methodologies. This model is obtained as a result of
investigating seven agile methodologies: DSDM [22], Scrum [23], XP [17, 18], ASD
[24], dX [25], Crystal Clear [26], and FDD [27].

ASP is composed of three serial phases which are in turn composed of internal
iterative stages. According to these phases, an agile process begins with initiating the
project; in the activities that follow, the software will be developed and deployed
into the user environment through multiple iterations. In most agile methodologies,
maintenance does not appear as a separate phase, but is rather performed through
further iterations of the main development phases. Therefore, in ASP, maintenance is
supported by a transition from the Release phase to the initiation or the Development
Iterations Phase. The other intention behind the transition from Release phase to
Development Iterations phase is to accommodate frequent releases of software,
which is followed as a principle in most agile methodologies.

The arrow at the bottom of the diagram indicates umbrella activities (expressed
as task process patterns) which are critical to the success of a project and are applied
to all stages of development. The phase and stage process patterns in ASP, as well as
the tasks specified in the arrow, can in turn be detailed by delving into their
constituent task process patterns.

ASP can be compared with Ambler's Object Oriented Software Process (OOSP)
[2]. They are similar in several aspects: Some common stages can be found in their
constituent phases, e.g., Justify and Define Infrastructure, and they are especially
quite similar in the umbrella activities that they propose. But that is where the
similarity ends. Since OOSP is proposed for all object-oriented methodologies
regardless of their types, it is more general and consequently more abstract. This
means that the patterns extracted from OOSP belong, more or less, to all object-
oriented methodologies, whereas in ASP we have limited the extracted patterns to
those found in agile methodologies. Therefore, ASP and OOSP are different in their
structure and pattern content. The differences arise from the principles that define
agility: For example, continuous verification and validation requires the existence of
a review stage in the Development Iterations phase, the need for early and frequent
releases of software necessitates the possibility of deploying working software
increments into the user environment before deploying the complete system, and the
change-based nature of agile methodologies has resulted in the absence of
maintenance as a separate phase (as mentioned earlier). In the following sections,

Process Patterns for Agile Methodologies 225

the agile process patterns obtained from ASP are described in more detail. These
patterns are classified, according to [2], as phase-, stage-, and task process patterns,
and have been extracted from the generic ASP in a top-down fashion.

+ I
(,nitiatior y Development Iterations y Re,ease

Outline . DesigrJ
/ I Plar II IIt-;;-l M°del arge - .] Deploy

I, x I Post-- 'm~er~ I Define High-levell | Define I Iteratior : I Develo-men| --" •
L I Requirements, I / Infrastructure IjL I~ Review ~ P I/L ' L ______Nevlew j

Manage th e projecl Form teams and manage the people Manage risk~ Assure quality Document 1/

Legend

Optiona Stage

Fig. 1. The proposed Agile Software Process (ASP)

3 Agi le Process Pat terns

In this section, the agile process patterns extracted from the ASP will be described.
For sake of simplicity and brevity, we use a more abstract notation than that used for
describing object-oriented process patterns in [2]. For the same reason, we have
avoided delving into the details of task process patterns and umbrella activities.

3.1 Phase Process Patterns

ASP consists of three phase process patterns: Initiation, Development Iterations, and
Release. These are described below.

Initiation Phase
The goal in this phase is to initiate the project through preliminary analysis of the
system. This phase consists of four iterative stages for providing an outline plan,
justifying the project, and defining high level requirements and the infrastructure of
the project.

Development Iterations Phase
In this phase, the working software is generated in multiple iterations. Each iteration
is made up of planning, design, coding, testing and (optionally) review activities.
These activities are covered by Plan, Model~Design, Development, and Iteration
Review stage process patterns. As noted earlier, the transition from this phase to the
Release phase and vice versa provides the possibility of deploying the newly
generated software into the user environment after one or multiple iterations; the
choice of the multiplicity depends on many factors, including the project type, and
lies with the developer/manager.

226 Samira Tasharofi and Raman Ramsin

Release Phase
Deployment activities of software engineering are performed in this phase. System-
level testing (Test in the large) is done to verify and validate the system, and
deliverable increments are deployed into the operational environment (Deploy). If it
is revealed that the generated system satisfies its specification completely, or that the
evolution of the system is impossible or unnecessary, the project will be terminated
and may be reviewed by Post-mortem Review, in which the experiences obtained
from the project are documented in order to be used in later projects. Otherwise, a
return to Initiation or Development Iterationsphases is required. As some agile
methodologies (e.g., DSDM and Scrum) exclude post-mortem review, it has been
specified as an optional stage.

3.2 Stage Process Patterns

Each phase in ASP is stated in terms of its constituent interrelated stages. Most of
these stages can be performed iteratively. In this section, the stage process patterns of
ASP are described in terms of their interrelated constituents - consisting of tasks and
other nested stages - and the work products produced in and/or transferred among
phases and stages.

Justify
In this stage (Fig. 2), the intention is to justify the project via a feasibility study and
gain initial support and funding for the project.

I I Humar.Factorl I Res°urceanc I I Analysis ~ Garnerin~c IniEiat Support

I Process Filiers
l Financia: i_.. _1 and Constraints
I Analys! " I- -I Analysis

I Domain Technica !
Analysis Analysis

Fig. 2. Components of the Justify stage process pattern

As can be seen from Fig. 2, the input work products to this stage are Project
Description, Customers' Viewpoint about the project, and the documented Previous
Projects Experiences. The result of this stage is the project Business Case which
represents the business value of the project. In this stage, feasibility study is
performed through risk analysis which involves Resource and Plan Analysis,
Human-Factor Analysis, Financial Analysis, and Technical Analysis. These tasks are
coupled with the application of project constraints and process suitability filters in
Process Filters and Constraints Analysis, Defining Objectives, and a domain
walkthrough in the Domain Analysis tasks. At the end of this stage, customer
approval and initial support for the start of the project will be obtained in the
Garnering Initial Support task.

Process Patterns for Agile Methodologies 227

Define High-level Requirements
The requirements form the basis for other steps of the project. At the start of the
project, initial high-level requirements are defined which will later be detailed and
refined (Fig. 3). The required work products for this stage are Project Description,
Customers' Viewpoints about the project, the Business Case defined in the Justify
stage, and other related Projects Experiences; these documented experiences are
often provided by the post-mortem reviews at the end of projects.

The requirements are identified and defined in Problem Domain and Solution
Domain Analysis, and require active customer collaboration (Get Customer
Approval). Examination of the problem and solution domains can be performed more
precisely with the aid of modeling which is specified as the Design~Model stage in
Fig. 3. A description of this stage will be given in the next section. Because of the
model-phobic nature of many agile methodologies, this stage has been specified as
optional. The products of this stage are a document of discriminated requirements
(Requirements Document) and the generated models (Models).

Legend
L-_-_---3 I----73
Optiona Task Stage

Project D e s c r i ~
Customers"
Viewpoints ~
Business Case /
Previous Project., /
Experiences /

rD' Pro'blem Solution Domain
°ma'n analysis] I I Analysis

t
. J

• - e Approva~

Fig. 3. Components of the Define High-level Requirements stage process pattern

Design/Model
Design and modeling may be used for defining and/or refining the requirements, the
architecture, the design of the system, and the plans. Prototyping can also be
considered as a task belonging to this stage. The iterative tasks of this stage, as
depicted in Fig. 4, are defining the goal of design/modeling, designing and defining
the alternatives, (optionally) using tools and prototyping to propose different
alternatives, and reaching an agreement on the produced designs/models. The
generated designs, models, and prototypes are packaged in the Models document.

Legen¢ C_Z-;,-_-=
Optionat Task

Models

infrastructure/

I Define L - ~ Design and Define 1

. . . . '

Agree o r
Designs/Models i

Fig. 4. Components of the Design~Model stage process pattern

228 Samira Tasharofi and Raman Ramsin

Define Infrastructure
In this stage, project constraints, standards, and the system architecture are defined.
As shown in Fig. 5, it uses the Requirements Document, Business Case, Project
Description and Previous Projects Experiences to provide the Project Infrastructure.

This stage is performed through iterative tasks for defining rules and constraints,
designing the architecture, specifying the development and operational platforms,
defining goals and objectives, and (optionally) defining methodology conventions.
The task Define Methodology Conventions is not found in all agile methodologies,
yet it is considered an essential activity in some agile methodologies, such as CrystaI.
It has therefore been specified as optional. To define the system architecture,
modeling, designing or prototyping may be needed. Therefore, the possibility of
moving from Define Architecture to the Design~Model stage and vice versa has been
accommodated. As a consequence of applying this stage, the requirements document
may be changed or refined.

if--S3
Legend~ " ~ t

Stage Optiona Task

s ~ I Define Rules] ~ Specify and Constraints ,, DevelopmentJ
I Operational PFatforrn

Requirement
BusinessD°cumentcaseM°de" \\ I ~ L I _1 (Define Define Objective.~

1 Architecture r -I and Goal s Project Description / t I
Previous Pro je~ , t "D~ine Experience, I 2 . L , I -- ' - 7

0 DesignJMode 0 ~ Methodology I
& I I t Conventions I

Infrastructure \

W
Fig. 5. Components of the Define Infrastructure stage process pattern

Outline Plan
In this stage the preliminary plan and schedule of the project are defined. As results
of this stage, the initial project management document (Management Document) and
the project plan and schedule (Plan) are produced. As deduced from Fig. 6, the
required tasks include estimating the time, resources, and the effort needed for
project completion, and preparing the management document according to these
estimates. The management document contains all the information needed for project
management (e.g., project schedule, plan, people communication paths, etc.). It may
be needed to perform these tasks in multiple iterations. The requirements, project
infrastructure, models, and previous projects experiences help refine the estimates.

I Time I I I ~Resource and
Estim at~r% i = ~i E ~ Estimatior

Define Initia P lr

Fig. 6. Components of the Outline Plan stage process pattern

Process Patterns for Agile Methodologies 229

Requirements Analysis
The detailed analysis of requirements is carried out in this stage (Fig. 7). Existing
requirements are refined and some new ones may also be added. Additionally, the
requirements are prioritized according to different criteria depending on the project
at hand, e.g., interdependencies, business value, or risks associated with the
requirements. Designing and modeling can be used to gain a better understanding of
the requirements. The requirements document is refined and completed in this stage.

Requirementsr~
Document Plan \
B rU~ienc/SS C a s e /

Infrastructure ~

Legenc t
'£---S-3 [~I
Optiona Task Stage

i I Evaluate - ~L. _[" Evaluate 1 , Dependencies i- -I Requirements t I
I Risks I

i Evaluate "~ _.~ Use RulesJ I
Business Value I.._ Constraints

I J

Defin,,Refin~ ~_._~ Prioritize [
Requirements | Requirements

Design~Mode

Models ~

Fig. 7. Components of the Requirements Analysis stage process pattern

Plan
Because of frequent reviews in the development iterations of agile methodologies,
the plan is likely to be refined or otherwise modified during the iterations. Therefore,
at the start of each iteration in the Development Iterations phase, the project plan and
schedule are reviewed and revised. This stage is shown in Fig. 8. The Requirements
Analysis stage refines or otherwise changes the requirements document. Time boxes
and artifacts of the next iteration(s) are then specified. The documented lessons
learnt from previous iterations (Iteration Review Document), if existing, form an
important artifact, based on which planning and scheduling decisions are made in
this stage. The stage also involves the definition of tasks and their assignment to
project team members. Some agile methodologies, e.g. DSDM, exclude defining and
assigning tasks in each iteration; the two tasks are therefore specified as optional.

Legene

Optional Task Stage

en•ts l Requirements ~ i Assign
Plan Requirem Analysis Tasks
Document Iteration \
Review Document) Define Time Define
Models Managemeny 13oxes ant r | -i Tasks
D o cu me n t . / Artifacts I_~

Y I Consider Review
I Lessons I i._

Models l / / / / '

Fig. 8. Components of the Plan stage process pattern

Test in the Small
During the stages in which the system is evolved, the generated increments must be
tested. These tests are not system-level, and specifically consist of unit testing, black-
box testing, regression testing, and integration testing. Testing may be performed

230 Samira Tasharofi and Raman Ramsin

with the aid of tools, as seen in XP. The constituent tasks and artifacts of this stage
are demonstrated in Fig. 9. The requirements document is the basic artifact for this
stage. If any test collections and documented results exist, they too will be used for
regression testing or in repeating the failed tests. At the start of this stage, the goal of
testing and the targets must be defined through planning the test. Test cases are then
generated or may be selected from test collections according to the test plan. The
results of running test cases are documented in the Test Document artifact. Because
of active user involvement in agile methodologies, users may also test the product
and give feedback to producers. While validation is a must in all projects, in some
agile methodologies (e.g. Crystal Clear) this is done after multiple iterations, and not
during each iteration. This is why the User Test task is specified as optional in this
stage.

enl•n• Plan Test I m.en~l
Test Docum
Test Collection \ II Use Tools ~ l~r~ I GenerateJSelect I
Requirements / Jl_l i Test Cases I Test Docu L Test Collection \
Document t / ;" User Tesf I RunTesl I I Requirements /

Leg e n--d-~ 1~ I .,'1~1 Cases 1 ! [::)°cument /
.r------: ~ I Anaiyze Document I
Optiona Task ! Results Results J

Fig. 9. Components of the Test in the Small stage process pattern

Test in the Large
This stage (Fig. 10) is where system-level testing is performed. The defects found in
testing may be resolved by the Fix Bugs task in this stage, or deferred to the
Development Iterations phase. The constituent tasks in this stage are similar to the
Test in the Small stage with some differences: l) the Uger Test task is not optional, 2)
the defects found may be resolved in this stage, 3) Planning and generating test cases
is based on system-level tests strategies, and 4) because of the need for bug fixing,
the constituent tasks may be performed iteratively.

Test Document Tesl[e~
Collectior
Requirements / ~
Documenl /
 ecu, o,e /

Optiona Task

~ _ _ I Generatejselecl
I rr'._.~'~ '21'_ 111111~ Test Cases

;i;Bu;s]

!

Fig. 10. Components of the Test in the Large stage process pattern

Process Patterns for Agile Methodologies 231

Review
Reviews play an important role in agile methodologies. Different types of reviews
extracted from agile methodologies are: Product Review, Process~Plan Review, and
Project Review (Post-mortem Review).

Product Review
The product is reviewed via analyzing the test results, validating the product through
delivery to customers, comparing the results with defined goals, and documenting
the conclusions in the Product Review Document (Fig. 11). As a consequence, the
requirements and project infrastructure may be changed.

Co,,eo, or i v..,,ateTes, rOe'ive '"e 0r°0° I Test Document Results F I h to Reviewers

Project Infrastructure /) I Requirements / I Consider L J Document
7 Re~,,lt., I Oe, r, ed oa,, r ~ ~ / D ° c u m e n t } /

U_-_-_':3 I Update Requirement~J "]
Optiona Task t Infrastructure I L

Requirements~
Document
Product Review /~
Document Project//
Infrastructure/

Fig. 11. Components of the Product Review stage process pattern

Process~Plan Review
Process/Plan Review, as shown in Fig. 12, aims at adapting the applied process/plan
with the current state of the project. The plan of the project, management document,
project infrastructure, and product review document help assess the process/plan.
Therefore, the project plan and schedule must be compared with the current state of
the project and the project velocity, the encountered problems must be analyzed, and
the tuning points of the process/plan must be specified. The results are recorded in
the Process~Plan Review Document.

Post-mortem Review (Project Review)
At the end of the project, the project will be investigated and the lessons learned are
documented in the Post-mortem Review Document. This stage, as illustrated in Fig.
13, uses the product- and process/plan review documents, management document,
project plan and infrastructure to make a tour of the system, compare the initial
estimates with the current state of the project, using users' opinion on the system,
and analyze the problems and solutions. This stage provides a good protection
against the Reinvent the Wheel process antipattern [28].

232 Samira Tasharofi and Raman Ramsin

[~ Compare J
Current State I V . . Analyze

with Pla~J ~ Problems
Management schedule] t [
Document Plar \
Project x ~ Specify L I .~FDocumeni']
I n f r a s t r u c t u r e / / Project I - I - ! Results |

I ve,oc, -
Document Specify Tuning I

t Task Points I

pD°roCUcemsen;l ar ;

Review D o c u m / ~

Fig. 12. Components of the Process~Plan Review stage process pattern

L I Compare I J Analyze i em~
I Estimated Plar L . J Problem~

• Solutions with Real Plan Management Documenl ~ I ~ ~ F T "]
Plat Project Infrastructure\ 7 I ' ~ rl Post.mort
Product Review Document X J Document I . I . I MaKe ~no Review)
Process~Plan Review / J Results ~ Tour of Documenl /

I / I Consider Users I
I / I Opinion on the I
V I System I

Fig. 13. Components of the Post-mortem Review stage process pattern

Implement
Implementing the requirements and resolving the defects are performed in this stage
(Fig. 14).

F I write source Codes }
I DeUsinanesrlMandCels I ~ [~ (can incfude the code |

u r , , ' ,, 'or'e,t /
Reqoireme,,t.o ,~ I~%~"~'. '^L ''' P - I - ' t
Documenl Test/ I oZZL'2'~LL'̂ . I I I with DesignsJ Documenl I /

-- ~e'-gen-~--- / ~ ; [Models
::::::: ~ v ,6pT,,,3ze,~" - - ---efa~'tYrr]
Optional Taslc I Codes I

Fig. 14. Components of the Implement stage process pattern

The test document is used for fixing the bugs diagnosed during test activities.
The generated code (which may include the test code, as commonly seen in Test-
Driven Development) must conform to the requirements/defects and models/designs.
Code inspection with the aim of refactoring and code optimization is a practice used
in most agile methodologies after generating the source code (e.g., XP and ASD).
The outcome of this stage is a new version of the product.

Integrate
Integration of newly generated increment(s) with the current system is handled in
this stage (Fig. 15). Inputs to this stage are the new increment, the current integrated
system, and the project infrastructure which contains the standards and constrains
governing integration. The environment must first be prepared for the new
increment; the new application is then integrated with the current system (this may

Process Patterns for Agile Methodologies 233

be done iteratively) and the new system is prepared for testing (e.g., integration test,
regression test, etc.). The strategy governing the time and frequency of integration is
dependent on the nature of the process, the plan, and the project itself.

or_• I I~tegrate the New I N
New App]icati] Application with the I • J ~
Current Application "% I Current one ,I I Integ ratec \
Project / T 1 Application
I nfrastructure' I / ~ "

Legenc I / [Prepare I I Prep areth
[~ f J / I - - Enviroment I I Application |
Task i I for Test I

Fig. 15. Components of the Integrate stage process pattern

Deploy
This stage, as seen in Fig. 16, is made up of all the tasks related to the deployment of
the system into the user environment. It consists of setting up the user environment,
deploying the system, preparing user documents, and training the users. Tasks must
be performed with attention to the constraints delineated in the project infrastructure.

I Legenc
[~C3
Task

Ne•w ! 8etupUse, L J 6ep,o~
Integrated Enviromenl r ~-I Systerr
Application ' ~
Projecl / I Prepare User
Infrastructuri/. DocumentSTrain User~anc

Deptoyect r~
gYoStuem~ e nUtss[~

Fig. 16. Components of the Deploy stage process pattern

Iteration Review
This type of review is carried out after performing the iteration(s) in the
Development Iterations phase. The aim is to adapt the plan and the process with the
project and the development team in order to enhance product quality. Therefore, as
shown in Fig. 17, it consists of Process/Plan Review and Product Review stages
performed in an iterative manner.

Development
This stage (Fig. 18) is preformed via iterative application of the Implement, Test in
the Small, and Integrate stages. The input and output work products are the union of
the inputs and outputs of the constituent stages. The goal is to produce, integrate and
test different parts of the system.

234 Samira Tasharofi and Raman Ramsin

Management Docum~~tt
Plan Project Infrastructure\
Test Documenl Test) I ProcessJPlan Product Cotlectior Requirement., / Document., 1 / Review H Review

Management DocumeN~
Plan Requirement.,
Document Iteration Review \
Document (ProcessJPlan)
and Product Review
Document.~] P ro jec t / /
I nfrastructur~ /

Fig. 17. Components of the Iteration Review stage process pattern

Stage t

T. C0iieOo Z si I
Document Requirements \
/DfOra%tr:cntlu rM od el s Pro?

Test nthe m emenl ,testCoeconTes
Smaf I I D°cumenl Requirements

I Document New Integratec / I ! lSo" a Sou oeCo0e /

Fig. 18. Components of the Development stage process pattern

4 Realization of the Proposed Process Patterns in Agile Methods

Table ! shows how different phases of the agile methodologies studied in our work
can be realized by our suggested process patterns. We abstract away from umbrella
activities, e.g., people and project management, which span all phases of the project
and correspond to task process patterns. Therefore, they do not appear in this table.
The realization table has been used to verify that the extracted process patterns
indeed cover the methodologies used as the bases.

5 Applications of the Proposed Agile Process Patterns

The Agile process patterns proposed herein can facilitate situational method
engineering (SME) when aimed at constructing agile methodologies to match given
organizational settings or specific development projects [8, 29]. The process patterns
can be used in the assembly-based approach of SME [29, 9] as classes of agile
method chunks which can be used for composing agile methodologies. Furthermore,
ASP and agile process patterns can be used in enacting the paradigm-based
approach of SME [29] for instantiation and adaptation of process and product
models.

The process patterns can also provide the basis for a rich component library for
instantiating process components according to a predefined framework, typically
depicted as a method engineering meta-model; much in the fashion of OPEN/OPF
[11, 12].

Process Patterns for Agile Methodologies 235

Table 1. Realization of the proposed agile process patterns in agile methodologies

Methodology

DSDM

Serum

Xt }

ASD

dX

('r;'stal ('lear

Phases

Feasibility Study

Business Study

Corresponding Stage Process Patterns

Justify. Outline Phm

l)cfine High-level Requirements. Plan, Define Infrastructurc
.

Functional Model I'lan. P, equircmcnts Analysis. Design/Model
. , .

Design and Build Plan, Dev'elopmcnt, Design,Model

Itnplementation rest in thc large, I)cploy, Product Rc;'icw
.

Post-Projcct

Pre-game: planning

Prc-ganlc: ATcllilccturc."

High-level Design

I)cvctopmcr~t

I Post-ga mc

Exploration

l'lanning

Iterations to [:irst Release

I'roductionizing

Maintenance

l)cath

Pro.icct Initiation
.... .

Ft, rthcr iteration of previous five main phases

Define High-level Requiremcnts, Rcquircments Analysis, Outline

P l a n

Dcfinc In fiastructurc

f'lan, I'roccss."l'lan Review, l)esign'Modcl ,Implement, Test in tile

Small. [tcration Review

Integrate, rcst in thc large, Deploy

Define High-lcvcl Requirements, Define Infrastrt,cturc

Outlinc t'lan, l'lan

Plan, I)csign"Modcl, Development, ['roccss:Plan Review

Deploy, rest in the I.arge

Repetition of'three pre;'ious phases

Post-mortcm Rcvicw

Justify. Dcfirtc High-level Requirements. Define Infrastructure

Itcrative Development t'hascs Plan, l)cvcloplnent, Iteration Rcvicxv

Final Q...'A and Release "l'cst in tile large, Dcploy, Post-mortcm Revicv,
i l i l i i l I I I i l i I I

Inception Define High-level Requirements, Define Infrastructure, Outline Plan

Elaboration Plan, Dcsign.Modcl, Development, Iteration Re,,'ie,,;
. .

Construction f'tan. I)esignModcl. Development
.

Transition

.Chartering

Deploy. Test in the large
mull N I I N I I I I I i I I I

.lttstil'.,,., ()utimc Plan, I)cfinc High-level Rcquircmcnts, Dcfine

In frastructurc, Phm

Dclive D' ('yclc Plan, Design Model. Development, Iteration Review

Wrap-up

I)cvclop an Overall Modcl
, . ,

"rest in the large, I)eploy, Post-mortem Rcvicv,-

Dcsign.Modct
. , _

Build a Featt, rcs I . i s t Rcquircmcnts Analysis

FI)D Plan by Feature Plan

Design by Fcaturc Design Modcl

Build by,' Feature Implcnmnt. Test in the Small

Finally, because of their abstract nature, the proposed process patterns lend
themselves better to adaptation and tailoring, thereby enhancing configurability and
dynamic flexibility; a feature which can be indispensable in agile methodologies,
where the process itself needs to be adaptable based on the circumstances
surrounding different project situations.

236 Samira Tasharofi and Raman Ramsin

6 Conclusion

We have proposed a set of agile-specific process patterns that can be used for method
engineering purposes. Pattern extraction was based on detailed inspection of seven
prominent agile methodologies, and a generic Agile Software Process (ASP) was
identified and used as the starting point for the extraction process. We have also
demonstrated how each studied agile methodology can be realized using the
proposed process patterns. Our suggested process patterns thus provide classes of
reusable agile process building blocks that can be instantiated and used for
composing and tailoring agile processes.

This work can be further extended to investigate the full details of the task process
patterns, and especially address the umbrella activities covered in the generic ASP.
Future work can then be directed towards developing a Computer Aided Method
Engineering (CAME) environment [7, 30] that facilitates assembly-based
engineering of agile methodologies using the agile process patterns introduced herein
as reusable method fragments stored in a method base. ASP's role will be that of a
generic method model providing a general template for agile methodologies, thus
adding the support for paradigm-based SME. Another strand can focus on defining
extension points for agile process patterns, further layering the patternsarchitecture
into core process patterns and available extensions, thereby enhancing complexity
management and promoting the production of lighter methodologies.

Acknowledgment. We wish to thank the Research Vice-Presidency of Sharif
University of Technology for sponsoring this research.

References

1. J. O. Coplien, A Generative Development Process Pattern Language, in: Pattern Languages
of Program Design (ACM Press/Addison-Wesley, 1995), pp. 187-196.

2. S. W. Ambler, Process Patterns: Building Large-Scale Systems Using Object Technology
(Cambridge University Press, 1998).

3. S. W. Ambler, More Process Patterns: Delivering Large-Scale Systems Using Object
Technology (Cambridge University Press, 1999).

4. N. Prakash, On generic method models, Requirements Engineering 11(4), 221-237
(September 2006).

5. K. Bergner, A. Rausch, M. Sihling, and A. Vilbig, A Componentware Development
Methodology based on Process Patterns, in: Proceedings of PLOP-98 (1998).

6. K. Kumar and R. J. Welke, Method engineering: a proposal for situation-specific
methodology construction, in: Systems Analysis and Design: A Research Agenda, (Wiley,
1992), pp. 257-268.

7. A. F. Harmsen, Situational Method Engineering (Moret Ernst & Young, 1997).
8. I. Mirbel and J. Ralytr, Situational method engineering: combining assembly-based and

roadmap-driven approaches. Requirements Engineering 11 (1), 58-78 (March 2006).
9. S. Brinkkemper, M. Saeki and F. Harmsen, Assembly techniques for method engineering.

in: Proceedings of CAiSE'98 (1998), pp. 381-400.
10. S. Brinkkemper, Method engineering: Engineering of information systems development

methods and tools. Information and Software Technology 38(4), 275-280 (Apr.1996).
11. D. Firesmith and B. Henderson-Sellers, The OPEN Process Framework: An Introduction

(Addison-Wesley, 2001).
12. B. Henderson-Sellers, Method Engineering for OO Systems Development,

Communications of the ACM 46(10), 73-78 (October 2003).

Process Patterns for Agile Methodologies 237

13. P. Kroll, Introducing IBM Rational Method Composer, published on the web at:
http ://www- 128.ibm. com/developerworks/rational/library/nov05/krolI (2005).

14. B. Henderson-Sellers and M. K. Serour, Creating a dual-agility method: The value of
Method Engineering, Journal of Database Management 16(4), 1-23 (Oct./Dec. 2005).

15. B. Fitzgerald, G. Hartnett and K. Conboy, Customizing agile methods to software
practices at Intel Shannon, European Journal of Information Systems, 15(2), 200-213
(April 2006).

16. S. W. Ambler, The agile system de~celopment lifecycle, published on the web at:
http://www.ambysoft.com/essays/agileLifecycle.html (2006).

17. D. Wells, Extreme programming: A gentle introduction, published on the web at:
http://www.extremeprogramming.org (2006).

18. K. Beck and C. Andres, Extreme Programming Explained: Embrace Change, 2nd Ed
(Addison-Wesley, 2004).

19. S. W. Ambler, The agile unified process, published on the web at:
http ://www. ambys o ft. corn/unifiedproc es s/agil eUP.html (2005).

20. D. Turk, R. France and B. Rumpe, Limitations of agile software processes, in: Proceedings
of XP (2002), Alghero, Italy.

21. K. Beck, et al, Manifesto for agile software development, published on the Web at:
http://agilemanifesto.org (2001).

22. DSDM Consortium, J. Stapleton, DSDM: Business Focused Development, 2nd Ed.
(Addison-Wesley, 2003).

23. K. Schwaber and M. Beedle, Agile Software Development with Scrum (Prentice-Hall,
2001).

24. J. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems (Dorset House, 2000).

25. G. Booch, R.C. Martin and J. Newkirk, Object Oriented Analysis and Design with
Applications, 2nd ed. (1998), (Unpublished).

26. A. Cockburn, Crystal Clear: A Human-Powered Methodology for Small Teams (Addison-
Wesley, 2004).

27. S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development
(Prentice-Hall, 2002).

28. W. J. Brown, R. C. Malveau, H. McCormick, T. Mowbray, Antipatterns: Refactoring
Software, Architectures, and Projects in Crisis (Wiley, 1998).

29. J. Ralyt6, R. Deneck6re and C. Rolland, Towards a generic model for situational method
engineering, in: Proceedings of CAiSE2003 (2003), pp. 95-110.

30. S. KeIly, K. Lyytinen, M. Rossi, MetaEdit+: A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment, in: Proceedings of CAiSE'96 (1996), pp. 1-2 I.

