

CEFAM: Comprehensive Evaluation Framework for Agile Methodologies

Masoumeh Taromirad, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
taromi@ce.sharif.edu, ramsin@sharif.edu

Abstract

Agile Software Development is regarded as an
effective and efficient approach, mainly due to its
ability to accommodate rapidly changing
requirements, and to cope with modern software
development challenges. There is therefore a strong
tendency to use agile software development
methodologies where applicable; however, the sheer
number of existing agile methodologies and their
variants hinders the selection of an appropriate
agile methodology or method chunk. Methodology
evaluation tools address this problem through
providing detailed evaluations, yet no
comprehensive evaluation framework is available
for agile methodologies. We introduce the
Comprehensive Evaluation Framework for Agile
Methodologies (CEFAM) as an evaluation tool for
project managers and method engineers. The
hierarchical (and mostly quantitative) evaluation
criterion set introduced in this evaluation framework
enhances the usability of the framework and
provides results that are precise enough to be useful
for the selection, adaptation and construction of
agile methodologies.

1. Introduction

Agile software development methodologies
claim to speed up the delivery of software solutions
to a client’s rapidly changing requirements. Project
managers are therefore expected to prefer agile
software development methodologies over their
plan-driven counterparts. However, in reality, agile
software development methodologies are not used as
commonly as expected, and are often applied to the
wrong context [2, 3]. One of the reasons behind this
may be the lack of appropriate technical and
management tools.

Project managers need to select the most
appropriate agile methodology for their projects.
Method engineers, on the other hand, need to
construct a tailored-to-fit agile methodology. In both

situations, appropriate tools are indispensable. Such
tools should consider existing challenges and project-
specific parameters in order to help project managers
select a suitable agile methodology, and assist method
engineers in choosing method-fragments to ultimately
assemble a bespoke agile methodology. In order to
achieve this, a tool has to identify the weaknesses,
capabilities, similarities, and differences of agile
software development methodologies; evaluation
frameworks and methods are integral parts of such
tools.

Previous studies have shown that existing
evaluation frameworks do not satisfy existing
requirements and challenges [1]. Hence, the aim of this
paper is to introduce a comprehensive evaluation
framework for agile methodologies that addresses the
requirements of such frameworks. The Comprehensive
Evaluation Framework for Agile Methodologies
(CEFAM) proposed herein strives to provide full
coverage of the aspects and characteristics regarded as
important in an agile software development
methodology.

The rest of this paper is structured as follows:
Section 2 presents a short overview of the background
and related work; in Section 3, existing problems are
explained in detail, and CEFAM and the definition
method are introduced; Section 4 contains the
proposed evaluation criterion set, and Section 5 shows
the results of evaluating the eXtreme Programming
(XP) methodology using CEFAM; the final section
summarizes the key achievements of this study and
suggests ways for furthering this research.

2. Background and related work

Several evaluation frameworks/methods exist for
agile methodologies, each of which has focused on
specific characteristics or limited aspects (views) of
these methodologies. We provide a brief overview of
these frameworks in this section. The interested reader
is referred to [1] for an in-depth analysis.

Abrahamsson et al. have introduced a structure in
which the process, roles and responsibilities, practices,
status of adoption, experiences, scope of use, and
current research regarding each method are identified

32nd Annual IEEE Software Engineering Workshop

1550-6215/09 $25.00 © 2009 IEEE

DOI 10.1109/SEW.2008.19

195

[4]. In another paper, Abrahamsson et al. have
proposed an analytical framework for the analysis of
existing agile methods [5], using software
development notions – such as lifecycle coverage
(including the process), project management,
abstract principles vs. concrete guidance, universally
predefined vs. situation appropriate, and empirical
evidence – as “analytical lenses”.

With a focus on the critical role of Software
Configuration Management (SCM) in software
development, especially in agile methods, Koskela
has introduced a number of specialized “analytical
lenses” – including SCM approach, SCM planning,
configuration identification, change management,
and SCM tools – to analyze the state of software
configuration management in agile methodologies
[6].

Williams et al. have provided a benchmark for
assessing XP practices adopted in organizations [7].
This evaluation framework (called XP-EF) is
composed of three parts: XP Context Factors (XP-
cf) to record essential context information about a
project, XP Adherence Metrics (XP-am) to
concretely and comparatively express the practices a
team utilizes, and XP Outcome Measures (XP-om)
to assess and report a team’s outcome when using a
full or partial set of XP practices.

Germain et al. have provided an empirical
comparison between an engineering-based process
(Unified Process for Education – UPEDU) and an
agile process built around XP principles, mainly
through comparing and analyzing the work and time
spent in each of their “cognitive” activities [8].

One of the latest works in this context is 4-DAT,
a framework-based assessment tool for the analysis
and comparison of agile methods [9]. 4-DAT
provides evaluation criteria for the detailed
assessment of agile software development methods
through defining four dimensions: 1) Method scope
characterization; 2) Agility characterization; 3)
Agile Values characterization; and 4) Software
Process characterization.

In addition to these evaluation frameworks, there
exist certain characteristics that are inherently
associated with agile methodologies, and which can
be used as evaluation criteria [2, 3, 10, 11]: the Agile
Manifesto [12] and Agile Principles [13] delineate
the fundamental characteristics of agile methods;
Conboy et al. have introduced flexibility and
leanness as the essential properties of any agile
software development method [14]; and Boehm and
Turner have introduced project size, project
criticality, dynamism, personnel, and culture as
crucial variables in agile methods [15, 16].

Unlike agile methodologies, there are many
relatively comprehensive and mature evaluation
frameworks aimed at other types of software
development methodologies; examples include object-
oriented- [17, 18, 19] and agent-oriented
methodologies [20, 21, 22]. As agile methodologies
gain widespread popularity, it is becoming
increasingly important that an adequate evaluation
framework be developed for agile methodologies.

We have previously introduced a set of meta-
criteria that describe the features and characteristics
which an appropriate evaluation criterion set should
satisfy in order to provide valuable results when
applied to agile software development methodologies.
The meta-criteria were applied to several existing
evaluation frameworks, showing that they are lacking
in several aspects, especially as to comprehensiveness
[1]. One important deficiency unearthed was that most
of the frameworks evaluated do not adequately address
agility issues in their criteria. Furthermore, despite the
importance of the usage context – as it addresses the
main concerns of project managers – it has been
neglected or only partially addressed in most
evaluation frameworks.

Adequate coverage of quantitative metrics is yet
another important feature neglected in existing
evaluation frameworks. Most of the quantitative
metrics introduced in the context of agile
methodologies provide very limited coverage of the
crucial aspects. Most metrics deal with running or
finished processes (methodology instances), evaluating
the performance of a specific process or technique, and
assessing the complexity and stability of the models
produced [5, 23, 24, 25, 26, 27]. There are few metrics
available for evaluating a methodology independent of
its instances, and these mainly focus on modeling
some part of the methodology with a specific
language, and then measuring the presence of certain
characteristics (such as complexity) in the resulting
model [7, 28, 29, 30, 31].

3. Proposed evaluation framework:

CEFAM

In this section, we introduce our proposed
Comprehensive Evaluation Framework for Agile
Methodologies (CEFAM). CEFAM addresses the
shortcomings commonly encountered in existing
frameworks and strives to comply with the meta-
criteria defined in [1]. The following are the primary
objectives of CEFAM:

1. Supporting evaluation in such a way as to
accentuate the similarities, differences,

196

features, and applications of agile software
development methodologies.

2. Supporting the evaluation of agile
methodologies so as to facilitate the
construction of custom methodologies.

Accordingly, a multi-step method was chosen to
define the main part of the framework, i.e., the
evaluation criterion set. Criteria were first defined
targeting each of the main aspects of agile software
development methodologies, as defined by the meta-
criteria of [1], to ensure the comprehensiveness of
the evaluation framework produced. As these criteria
were defined independently, the resulting set was
not a proper evaluation criterion set and had to be
refined. Improvements were made through removing
inconsistencies, conflicts, overlappings, and
redundancies, adding extra cross-aspect criteria
(criteria that cover more than one aspect), and
restructuring the resulting set. The criterion set
produced was comprehensive according to the meta-
criteria, but to make sure of its completeness and
precision, it was further refined through iterative
application to a prominent agile methodology:
eXtreme Programming (XP).

4. CEFAM evaluation criteria

Evaluation criteria play an essential role in any

evaluation and comprise the most important part of
evaluation frameworks. The proposed set of
evaluation criteria is introduced in this section.

The evaluation criteria have been divided into
five groups. Four of the divisions group the criteria
according to the context that they target: Process,

Modeling Language, Agility, and Usage; the fifth
group includes Cross-Context criteria: criteria which
cover the overlappings among the other four groups,
typically transcending context-related issues.
Moreover, each group has been further divided into
subgroups, each of which contains evaluation criteria
corresponding to a specific view of the relevant
context. For example, there are certain criteria in the
Process group which evaluate the process part of the
methodology with respect to its definition; these have
therefore been grouped together as a subgroup of the
Process group. Figure 1, shows the hierarchical
structure of the evaluation framework. This hierarchy
can help the evaluators in selecting criteria that better
suit their evaluation goals.

In order to provide valuable and comparable
evaluation results, every effort has been made to define
evaluation criteria as quantitative metrics where
possible. For those criteria which are not of a
quantitative nature, discrete values have been defined
for the evaluation results so that measurability is
maintained. In addition, to enhance the
understandability of the results of applying
quantitative criteria, descriptive levels (typically:
Unacceptable, Low, Medium, and High) have also
been used to categorize the results. In most of the
quantitative criteria proposed, the evaluation result is a
real number greater than zero and less that 1.0; in such
cases, descriptive levels have been defined as follows:
Unacceptable ≤ 0.25; 0.25 < Low ≤ 0.5; 0.5 < Medium
≤ 0.75; 0.75 < High ≤ 1.0. Note that to calculate
compound evaluation results over quantitative results,
quantitative values will be used instead of their
descriptive equivalents.

Figure 1. CEFAM hierarchy.

Evaluation criteria

Cross-Context Process
Modeling Language

Agility
Usage

Phases

Artifacts

Documentation
General Features

Requirements

Documents
Umbrella Activities

Method Tailoring

Definition

Application Scope

197

4.1. Process
Process evaluation criteria focus on the process

part of the methodology. This group is divided into
six subcategories: Definition, Phases, Artifacts,
Requirements, Documentation, and General
Features. The evaluation criteria have been
introduced in Table 1, with definitions and domain
values provided in separate columns. The table also
contains the results of applying the criteria to the XP
methodology.

Process evaluation criteria are divided into six
subgroups: Definition criteria focus on the definition
characteristics of the development process; Phases and
Artifacts criteria consider development lifecycle and
activities and products respectively; Requirements
criteria analyze requirements engineering issues in the
development process; Documentation criteria focus on
the documents existing on the development process;
and criteria in the General Features category focus on
the development process in its entirety.

Table 1. Process evaluation criteria.

Criteria Description Domain Values XP Evaluation
Definition
Explicitness and Unambiguity Is the development process defined explicitly and

unambiguously? Yes, No No (the introduced process is
just a typical example)

Rationale Has the process been rationalized through providing
extensive and precise explanations? [5] Yes, No (why)

No (XP has neglected
detailing the process in order
to remain abstract, thereby
damaging rationalization)

Completeness
A complete process definition includes definitions for:
development lifecycle, roles, activities, modeling
language, artifacts, practices/techniques, rules, and
umbrella activities.

Ratio of the number of existing
definitions to the total.

(1+1+1+0+1+1+1+0)/8

6/8 (High)

Phases

Generic development lifecycle
coverage

Which phases of the generic development lifecycle are
covered by the development process? Generic phases
include: Inception, Analysis, Design, Implementation,
Test, Deployment, Maintenance, Support, and
Postmortem.

Ratio of the number of covered
phases to the total number of
generic phases.

(0+1+0+1+1+1+1+0+1)/9

6/9 (Medium)

Smooth transition
Is the transition between phases smooth? What
techniques are prescribed for providing smoothness of
transition?

Yes (techniques), No
(counterexamples) Yes (through short iterations)

Seamless transition Are there any gaps between phases? What techniques
are prescribed for enhancing seamlessness?

Yes (techniques), No
(counterexamples)

No (there is a gap between
analysis and development)

Development style What is the development style? Iterative, Incremental, Rapid, etc. Iterative, Rapid
Artifacts

Adequate products

Does the development process produce the products
typically associated with the generic development
activities (Feasibility analysis, Requirement
specification, Design, Modeling, Documentation, Test,
Training, and Deployment)?

Ratio of product types supported to
the ideal number of product types.

(0+1+0+1+1+1+0+0)/8

4/8 (Low)

Modeling coverage Do the products include models (analysis and design)? Yes (models), No No

Consistency Do the products complement each other?
High, Medium (overlappings exist
that can result in inconsistencies),
Low

Medium

Tangibility/Visibility/Testability Are the products tangible, understandable, and testable
to end users? High, Medium, Low Medium

Supported views Which generic views do the products support? Structural, Behavioral, Functional Functional (through user
stories)

Abstraction levels Which abstraction levels are provided by the products?

System/Subsystem/Package/ Intra-
object/Inter-object,
Logical/Physical, Task/Process,
Problem/Solution/ Implementation

Problem/Solution/
Implementation

Standards Are there any specific standards for the products? Yes (standards), No Yes (coding standard)
Requirements

Requirements elicitation How are the requirements collected? Related activities, roles, artifacts

Through user stories, written
by customers in the first phase
and revised at the start of each
iteration.

Requirements specification format How are the requirements specified? User story, Feature, Use-case,
Usage scenario User story

Process based on functional/non-
functional requirements Is the development process based on the requirements? Yes (techniques), No

Yes (development process
centered around the
requirements specification)

Non-functional requirements
verification How are the non-functional requirements addressed? Techniques Non-functional requirements

are captured in user stories
Traceability Can the products be traced to the requirements? Yes (techniques), No Yes (through user stories)

Requirements change Does the development process let changes in
requirements? Yes (techniques), No

Yes (user stories are updated
at the beginning of any
iteration)

Requirements prioritization On what basis are the requirements prioritized?
Architectural value, Functional
value, Business value,
Development risk

Business value

198

Table 1. Process evaluation criteria (contd.).

Criteria Description Domain Values XP Evaluation
Documents

Available and published documents Is the development process published and available to
users?

Published and available, published
but not available, not published and
not available.

Published and available

Process enactment documentation Is the running process documented? Yes, No Yes
General Features

Size/Complexity Size/Complexity is defined as a function of building
blocks of the development process.

The function is defined by the
evaluators according to their
preferences. We have defined it as
the total number of practices, roles,
products, and phases/stages.

Phases/stages: 6
Roles: 7
Products: 5
Practices: 12
Total: 30

Completeness
Completeness is defined as a function of process
definition completeness, coverage of generic lifecycle,
and adequate products.

The function is defined by the
evaluators according to their
preferences. We have defined it as
the weighted sum of the relevant
criteria (equal weights have been
assigned in our evaluation of XP).

1/4 (6/8 + 6/9 + 3/8)

0.45 (Low)

Practicality

Is the process practical? (Based on issues affecting
practicality, such as support for umbrella activities,
independence from specific tools, pragmatic techniques,
concrete rules, and non-overlapping activities)

High, Medium, Low

Medium (E.g. collective code
ownership, standup meetings)

Practicability
Is the process development practicable? (Through
providing effective activities or techniques such as
suitability filters and instantiation/adaptation methods.)

High, Medium, Low
 Low

4.2. Modeling language

Generally, agile software development
methodologies pay little attention to modeling and
modeling languages, in some cases leaving it out
altogether. Nevertheless, the modeling language
should be considered in any usable (practical)
methodology, even if partially or indirectly.

Therefore, we have defined criteria for evaluating the
modeling language part of agile methodologies. There
are no subgroups in this group. As shown in Table 2,
modeling language evaluation criteria have been
defined qualitatively and at a high level. The table also
contains the results of applying the criteria to the XP
methodology, which prescribes nothing as to modeling
and modeling language.

Table 2. Modeling language evaluation criteria.
Criteria Description Domain Values XP Evaluation

Simple to learn and use Is the modeling language simple to learn and use? Yes, No -
Power of language Is the modeling language powerful? E.g., Support of semantics,

multiple views, and model execution. Yes (examples), No -
Handling model inconsistencies Does the language provide techniques for handling inconsistencies? Yes (techniques), No -
Managing model complexities Does the language provide methods for managing complexities? Yes (methods), No -

4.3. Agility

This category of evaluation criteria evaluates the
characteristics attributed to and contributing to a

methodology’s agility. These criteria have been defined
based on the Agile Manifesto, Agile Principles, and
papers presenting common agile traits. The criteria can
be used to evaluate the degree of agility in any software

Table 3. Agility evaluation criteria.
Criteria Description Domain Values XP Evaluation

Speed How quickly does the methodology produce results? 1/(iteration length (in days) +
deployment interval (in days))

1/(14 + 0) = 1/14 (iteration
between 1 to 3 weeks)

Sustainability Are speed and quality maintained until the end? Are they controlled or
monitored? Yes (techniques), No

Yes (controlling project
velocity, TDD - test-driven
development, refactoring)

Flexibility Are expected/unexpected changes captured and handled in the project? Ratio of the number of supporting
activities and practices to the total 15/18 (High)

Learning Does the process “learn” from past projects and previous iterations? Ratio of the number of supporting
activities and practices to the total 16/18 (High)

Responsiveness Does the method provide feedback? Ratio of the number of supporting
activities and practices to the total 15/18 (High)

Leanness Does the method value shorter time spans, using economical and
simple quality-assured means for production?

Ratio of the number of supporting
activities and practices to the total 6/18 (Low)

Lightness and simplicity How light and simple is the development process? 1 / process complexity 1/30 = 0.03

Technical quality How is technical quality monitored and controlled during the
development? Techniques and metrics Yes (Coding standard, TDD,

Pair programming)
Active user collaboration How involved are the customers in the development process? Related role(s) and responsibilities On-site customer

199

development methodology, even non-agile ones.
The evaluation criteria are shown in Table 3. The

table also contains the results of applying the criteria
to the XP methodology.

4.4. Usage

The usage view of a methodology addresses the

practical aspects of a methodology. This view is
complementary to the definition of a methodology
(both process and modeling language). A
methodology which does not consider practical issues
is at best difficult to use in practice. Support for
umbrella activities, adequate application scope,
scalability, and flexibility are examples of important
usage issues which a project manager encounters in
the real world.

Usage evaluation criteria are divided into four
subgroups: Application Scope criteria address project-
specific parameters mostly useful to project managers
when selecting a methodology for a specific project;
Umbrella Activities criteria focus on the activities
required for enacting a methodology in the real world;
Method Tailoring criteria address method customization
issues in a methodology; and Documents criteria
analyze the methodology as to the existence of usage
guides, empirical evidence, and experience reports.

Table 4 introduces and describes these criteria. As
inferred from the table, evaluation can be done through
careful study of a methodology’s definition. The table
also contains the results of applying the criteria to the
XP methodology.

Table 4. Usage evaluation criteria.
Criteria Sub-criteria/Description Domain Values XP Evaluation

Application Scope

Project

Software type Customizable, Specific, Universal -
Size Small, Medium, Large Small, Medium
Length Month -

Domain
System, Real-time, Business, Engineering and
scientific, Embedded, Personal computer, Web-based,
Artificial intelligence [32]

-

Culture Percentage of thriving on chaos versus order [15] -
Dynamism Percentage of requirements change/month [15] -

Complexity (computational complexity) High (scientific and complex), Medium (Business-
oriented and IS), Low (simple and personal usage) Medium

Criticality (loss due to impact of defects) Comfort, Discretionary funds, Essential funds, Life -

Priority (main goal of the project) [33] Productivity, Visibility, Repeatability, Correctness,
Liability Productivity

Constraints Specific constraints on the project. -

Development team

Size Number of personnel per team <10
Education level -1, 1B, 1A, 2, 3 [16] >1A

Experience (In software development generally) High, Medium, Low (Based on years; typically, it can
be divided into three levels: 2-4, 5-7, 8-X) High

Skill in domain High, Medium, Low (Based on years; typically, it can
be divided into three levels: 2-4, 5-7, 8-X) High

Skill in development language High, Medium, Low (Based on years; typically, it can
be divided into three levels: 2-4, 5-7, 8-X) High

Ergonomic Physical layout Distributed, Collocated Collocated

Geographical Number and location of development teams and
customers

Distributed, Remote, Local, Multinational, different
time zone; Single, Multiple

Distributed and co-
located single or
multiple teams

Technical

Programming language OO programming
languages

Programming style Simple, Complex Simple
Abstraction techniques Object-oriented, Agent-oriented, etc. Object-oriented

Obligatory development tools Collective code
ownership

Test and debug methods Automated black-box
acceptance tests

Managerial

Management team size Small, Medium, Large Medium

Management experience High, Medium, Low High

Team management approach Centralized, Distributed Centralized

Resource allocation method Planning Game

Project culture -

Business culture Collaborative, Cooperative, Non-collaborative Collaborative,
Cooperative

Team values (preferable interaction method) Informal (daily
standup meetings)

Customer collaboration method On-site customer

Quantitative metrics -

200

Table 4. Usage evaluation criteria (contd.).
Criteria Sub-criteria/Description Domain Values XP Evaluation

Umbrella Activities

Project management
Support for development process management;
including planning, scheduling, controlling and
monitoring, and process review.

Ratio of the number of covered activities to the total.
(1+1+1+0)/4

3/4 (Medium)

Software configuration
management

Support for configuration management
approaches and tools.

SCM approach, SCM planning, Configuration
identification, Change management, SCM tools [6]

Partially considered
(Collective code
ownership,
small releases, and
continuous
integration)

Team management Does the methodology provide any process for
team and people management? Yes (techniques), No

Yes (Pair
programming, cyclic
team assignment)

Quality assurance

Support for quality assurance techniques such as
technical review, continuous verification and
validation, and strategies/techniques enhancing
requirements traceability.

Yes (techniques), No

Yes (Pair
programming,
Continuous
integration,
Refactoring, Test-
driven development,
Coding standards,
On-site customer)

Risk management

Support for risk management techniques such as
feasibility analysis, risk-based planning, active
user involvement, continuous verification and
validation, iterative process/product/plan
reviews, and continuous integration.

Yes (techniques), No

Yes (Planning game,
Small and short
release, Metaphor,
Testing, Continues
integration, On-site
customer)

Method Tailoring

Adaptation and
customization

Does the methodology provide methods for
customizing it based on the parameters of the
project at hand?

Yes (method), No No

Flexibility
Does the methodology allow the process and
modeling language to be changed during its
execution?

Yes (how), No No

Scalability Is the methodology suitable for projects with
different sizes, criticalities, and complexities? Yes, No No (lack of evidence)

Extensibility Does the methodology provide any extension
points? Yes (what), No No

Integration with other
methodologies

If the methodology does not completely cover
the generic development lifecycle, it should
provide some method to integrate it with other
methodologies.

Not needed, Needed but not provided, Needed and
provided Not needed

Documents
Tutorials and training
documents Are tutorials and training documents available? Yes, No Yes

Empirical evidence Does empirical evidence exist? Yes, No Yes

4.5. Cross-Context

The evaluation criteria belonging to this group

address issues that are associated with more than one
context (process, modeling language, agility and

usage) at the same time, or focus on the methodology as
a whole. For instance, the Status criterion addresses the
methodology as a whole. These criteria have been
shown in Table 5. The table also contains the results of
applying the criteria to the XP methodology.

Table 5. Cross-Conrext evaluation criteria.
Criteria Description Domain Values XP Evaluation

Performance
Defined as a function of speed, number of products,
number of roles involved, and team size in each
iteration.

The function is defined by the evaluators
according to their preferences. We have
defined it as the weighted sum of speed,
number of products, number of roles
involved, and team size.

1/4 (1/14 + 4 + 7 + 10)

5.31

Usability
Defined (based on [34, 35]) as a function of the
number of guidelines and roles, and the degree of
leanness and domain compliance.

The function can be defined as the sum of
the relevant parts.

*This criterion is evaluated
regarding the project at hand.

Completeness
Defined as a function of process completeness,
coverage of umbrella activities, and specification of
modeling language(s).

We have defined it as the weighted sum of
the relevant criteria (equal weights have
been assigned in our evaluation of XP).

1/3 (6/8 + 4/5 + 0)

0.52 (Medium)

Status Current status of the methodology Nascent, Building up, Active, Fading
(Dead) [4] Active

Development process Does the methodology explain the development
process? Explicit, Implicit, No Implicit

Modeling language Does the methodology prescribe the use of
modeling languages? Yes, No No

Constraints General constraints Any general constraints in the methodology
that influences practicality. Collective code ownership

201

As inferred from the table, the result of applying

cross-context criteria can be calculated based on the
evaluation results of the context-specific criteria. The
evaluation is therefore simple and straight forward.

5. Evaluating XP using CEFAM

The last columns in Tables 1 to 5 show the results
of evaluating the XP methodology using CEFAM.
This evaluation is an example of the application of
CEFAM in evaluating an agile methodology.
Evaluators who use CEFAM can select an appropriate
subset of the evaluation criteria and, if required, adapt
the domain values according to their needs.

The following basic information about XP helps
better understand some of the results:

• Phases: Exploration, Planning, Iterations to
Release, Productionizing, Maintenance, and
Death.

• Roles: Programmer, Customer, Tester, Tracker,
Coach, Consultant, and Manager.

• Products: User stories, Metaphor, Code, Test
cases, and System documentation.

• Practices: Planning game, Small/short releases,
Metaphor, Simple design, Testing, Refactoring,
Programming, Collective code ownership,
Continues integration, 40-hour week, On-site
customer, and Coding standards.

Evaluating XP according to CEFAM process
criteria highlights several important issues. The
development process widely recognized as the XP
process is just a typical example of applying XP
principles and practices. In striving to remain
abstract, XP has remained a set of principles and
practices brought together; the development process
is therefore not explicitly and unambiguously defined
and rationalized. Evaluation according to CEFAM
modeling language criteria seems to stress XP’s lack
of attention to modeling and modeling-language
issues.

Regarding agility, XP seems to be at an
acceptable level, as most of the results are high. As
for usage, XP seems to be strong as to application
scope and support for umbrella activities. Moreover,
XP enjoys a rich repertoire of papers, books, and
experience reports. However, method tailoring is a
weakness of XP, mainly because of the process’s
implicit and ambiguous nature, resulting in a lack of
attention to process instantiation and tailoring.

Finally, cross-context evaluation seems to point
out that although XP is rich in many aspects, as a
methodology it suffers from inadequate attention to

modeling and process definition. Even though this
inattention has been deliberate, and has indeed
succeeded to enhance the agility of the process, it has
also had repercussions, manifest as lack of scalability
(to name just one).

6. Conclusions and Future Work

In spite of the widespread use of agile
methodologies and their ever-increasing popularity,
answers to questions concerning their suitability for
particular projects/domains are still difficult to find. So
is the case with agile methodology engineering issues,
as extensive and precise scrutiny of existing
methodologies is a prerequisite not yet achieved. In
order to address these challenges and requirements,
developers, managers and method engineers need an
appropriate evaluation framework that provides detailed
evaluations of agile methodologies. Our proposed
Comprehensive Evaluation Framework for Agile
Methodologies – CEFAM – aims at addressing this
need.

CEFAM is a comprehensive evaluation framework,
aiming at covering all the different aspects of agile
methodologies, especially focusing on issues that are
essential in agile process enactment and method
engineering. The hierarchical and mostly quantitative
nature of the proposed evaluation framework enhances
its usability and provides results that are precise enough
to be used by project managers and method engineers
for methodology selection and construction. Since
CEFAM has been designed to satisfy the evaluation
framework meta-criteria of [1], every effort has been
made to ensure that all the qualities that are considered
desirable in a methodology evaluation framework are
duly achieved.

An important feature of CEFAM is the quantitative
nature of many of the criteria. However, there were
cases where providing a quantitative version for a
criterion was not achievable, mainly because it required
research that was beyond the scope of this paper. In
such cases, relevant parameters have been introduced
for the criterion, thus facilitating evaluation while
leaving detailed appraisal to the evaluator.

Future research in this regard will be mostly focused
on refining the framework through applying it to other
agile methodologies (preferably based on empirical
feedback acquired from real project situations), and
defining more detailed quantitative criteria. The
research can be expanded to method engineering,
mainly through fusing CEFAM into a Situational
Method Engineering (SME) process [19]; such
processes are aimed at the adaptation/construction of

202

bespoke methodologies according to the particulars of
the project situation at hand.

7. Acknowledgment

We wish to thank Mr. Hamed Yaghoubi Shahir
for presenting this paper at SEW’08. We also extend
our gratitude to the ITRC research center for partial
sponsorship of this research.

8. References

[1] M. Taromirad, R. Ramsin, ”An Appraisal of Existing
Evaluation Frameworks for Agile Methodologies”, In
Proceedings of the 15th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS’08), Northern Ireland, 2008, pp. 418-427.

[2] P. Lappo, H. C.T. Andrew, “Assessing Agility”,
Lecture Notes on Computer Science, Springer-Verlag,
Germany, 2004, pp. 331-338.

[3] D. Turk, R. France, B. Rumpe, “Assumptions
Underlying Agile Software Development Processes”,
Journal of Database Management, Idea Group Inc.,
October-December 2005, pp. 62-87.

[4] P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta,
Agile Software Development Methods: Review and
Analysis, VTT Publication, Finland, 2002.

[5] P. Abrahamsson, J. Warsta, M. Siponen, J. Ronkainen,
“New Directions on Agile Methods: A Comparative
Analysis”, In Proc. of the 25th International Conference on
Software Engineering (ICSE’03), Oregon, 2003, pp. 244-
254.

[6] J. Koskela, Software Configuration Management in
Agile Methods, VTT Publication, Finland, 2003.

[7] L. Williams, W. Kerbs, L. Layman, A. Anton,
“Toward a Framework for Evaluating Extreme
Programming”, In Proc. of the 8th International Conference
on Empirical Assessment in Software Engineering (EASE
04), Edinburgh, 2004, pp. 11-20.

[8] E. Germain, P. Robillard, “Engineering-based
Processes and Agile Methodologies for Software
Development: a Comparative Case Study”, The Journal of
Systems and Software, Elsevier, February 2005, pp. 17-27.

[9] A. Qumer, B. Hendersson-Sellers, “Comparative
Evaluation of XP and Scrum Using the 4D Analytical Tool
(4-DAT)”, In Proceedings of the European and
Mediterranean Conference on Information Systems
(EMCIS), Spain, 2006.

[10] M. Pikkarainen, U. Passoja, “An Approach for
Assessing Suitability of Agile Solutions: A Case Study”, In
Proceedings of the 6th International Conference on Extreme
Programming and Agile Processes in Software Engineering
(XP 2005), UK, June 2005, pp. 171-179.

[11] D. Turk, R. France, B. Rumpe, “Limitations of Agile
Software Processes”, In Proceedings of the 3rd International
Conference on Extreme Programming and Flexible Processes
in Software Engineering (XP 2002), Italy, May 2002, pp. 43-
46.

[12] K. Beck et al., “Manifesto for Agile Software
Development”, Available at http://www.agilemanifesto.org.

[13] Agile Alliance, “Agile Principles”, Available at
http://agilealliance.org.

[14] K. Conboy, B. Fitzgerald, “Toward a Conceptual
Framework of Agile Methods: A Study of Agility in Different
Disciplines”, In Proceedings of the 2004 ACM workshop on
Interdisciplinary software engineering research, CA, USA,
2004, pp. 37-44.

[15] B. Boehm, R. Turner, “Using Risk to Balance Agile and
Plan-Driven Methods”, Computer, IEEE, June 2003, pp. 57-
66.

[16] B. Boehm, R. Turner, Balancing Agility and Discipline:
A Guide for the Perplexed, Addison Wesley, 2003.

[17] U. Frank, “A Comparison of two outstanding
Methodologies for Object-Oriented Design”, FIT.CSCW,
1992.

[18] R. Ramsin, “Evaluation of Object-Oriented Software
Development Methodologies”, In Proceedings of the 1st
Computer Society of Iran Computer Conference (CSICC’95),
Iran, 1995, pp. 40-50.

[19] R. Ramsin, “The Engineering of an Object-Oriented
Software Development Methodology”, Ph.D. Thesis,
University of York, UK, 2006.

[20] A. Sturm, O. Shehory, “A Framework for Evaluating
Agent-Oriented Methodologies”, In Proc. of the 5th
International Bi-Conference Workshop on Agent-Oriented
Information Systems, 2003, pp. 94-109.

[21] P. Cuesta, A. Gomez, J. Gonzalez, F. Rodrıguez, “A
Framework for Evaluation of Agent Oriented Methodologies”,
In Proc. of The Conference of the Spanish Association for
Artificial Intelligence (CAEPIA), Spain, 2003.

[22] K. H. Dam, “Evaluating and Comparing Agent-Oriented
Software Engineering Methodologies”, MS Thesis, RMIT
University, Australia, 2003.

[23] B. George, “Analysis and Quantification of Test Driven
Development Approach”, MS Thesis, North Carolina State
University, USA, 2002.

[24] M. Alshayeb, W. Li, “An empirical study of system
design instability metric and design evolution in an agile
software process”, The Journal of Systems and Software,
Elsevier, March 2004, pp. 269-274.

[25] B. Rumpe, A. Schroder, “Quantitative Survey on
Extreme Programming Projects“, In Proceedings of the 3rd
International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP 2002), Italy,
May 2002, pp. 95-100.

203

[26] D. Sato, D. Bassi, M. Bravo, A. Goldman, F. Kon,
“Experiences Tracking Agile Projects: an Empirical Study”,
Journal of the Brazilian Computer Society, 2007.

[27] D. Sato, A. Goldman, F. Kon, “Tracking the Evolution
of Object-Oriented Quality Metrics on Agile Projects”,
2007.

[28] M. Rossi, S. Brinkkemper, “Complexity Metrics for
Systems Development Methods and Techniques”,
Information Systems, Elsevier, April 1996, pp. 209-227.

[29] F. Garcı´a, M. Piattini, F. Ruiz, G. Canfora, C. A.
Visaggio, “FMESP: Framework for the modeling and
evaluation of software processes”, Journal of Systems
Architecture, Elsevier, August 2006, pp. 627-639.

[30] G. Canfora, F. Garcı´a, M. Piattini, F. Ruiz, C. A.
Visaggio, “A family of experiments to validate metrics for

software process models”, The Journal of Systems and
Software, Elsevier, December 2004, pp. 113-129.

[31] S. Tasharofi, F. Ghasemi, “Evaluation Criteria for Agile
Methodologies”, Research Report, Sharif University of
Technology, Iran, 2007.

[32] R. S. Pressman, Software Engineering: A Practitioner’s
Approach 5th ed., McGraw-Hill, 2001.

[33] A. Cockburn, “Selecting a Project’s Methodology”, IEEE
Software, IEEE, July/August 2000, pp. 64-71.

[34] B. Boehm, et al. Software cost estimation with
COCOMO II (with CD-ROM). Englewood Cliffs,
NJ:Prentice-Hall, 2000.

[35] A Guide to the Project Management Body of Knowledge
(PMBOK Guide), Fourth Edition, Project Management
Institute, 2008.

204

