
IET Software

Review Article

MBT in agile/lightweight processes: a
process-centred review

ISSN 1751-8806
Received on 8th May 2018
Revised 22nd February 2019
Accepted on 2nd April 2019
doi: 10.1049/iet-sen.2018.5164
www.ietdl.org

Masoumeh Taromirad1, Raman Ramsin1 
1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

 E-mail: ramsin@sharif.edu

Abstract: This study presents a process-driven view on the use of model-based testing (MBT) in agile/lightweight processes. It
argues that process-related aspects of MBT and agile processes should be explicitly considered in any practical MBT approach
intended for use in agile development (AD). It demonstrates that an effective MBT approach for lightweight processes has to
specify how MBT activities are integrated into a development process, how and when MBT artefacts are generated in relation to
other development artefacts, and who would carry out MBT activities. Accordingly, a set of integration criteria is introduced for
complete incorporation of MBT into agile/lightweight processes. The integration criteria demonstrate the specific characteristics
of an appropriate MBT process for AD processes, and help identify the benefits and shortcomings of existing methods on the
use of MBT in such processes. Evaluation of existing works based on the proposed integration criteria shows that they have all
focused on minimal modelling, and only one method has considered the ‘evolution’ of test models and the ‘reuse’ of test cases,
whereas ‘evolution’ and ‘reuse’ are essential characteristics of agile processes, which have to be addressed in any MBT
approach intended for such processes.

1 Introduction
In modern software development, testing plays an invaluable role
as a quality assurance measure. In particular, agile/lightweight
methodologies recommend automated testing as the main method
for quality assurance [1]. By bringing testing into the main
development cycle and focusing on automated testing, these
methods aim to achieve low defect rates while remaining faithful to
the principles of agility. However, they are plagued with several
deficiencies in this regard including complex and difficult-to-
maintain test scripts [2].

A promising solution to these issues lies in model-based testing
(MBT) processes, which provide a structured approach to testing
based on high-level behavioural models [3]. The benefit of MBT
lies primarily in automated test case generation and automated
analysis of the test results; it has, therefore, received significant
attention in the testing of complex software systems. MBT also
supports requirements validation early in the development process;
defects in requirements such as ambiguity and incompleteness can
be detected during the development of the test models, which are
usually produced during the earlier phases of the development
process. However, many MBT methods are not directly suitable for
application to agile/lightweight methodologies, as the practises
prescribed by MBT are not particularly compatible with those
prescribed by agile methods: typically, agile/lightweight
methodologies tend to simplify and speed up the development
process by discouraging the production, and subsequent updating,
of models [2, 4].

As mentioned at the Dagstuhl Seminar in 2004, for MBT to be
successful, it must be integrated into the development process, and
hence, it has to support process-specific characteristics that are
specifically related to testing. In our view, an effective MBT
approach for agile/lightweight processes needs to explicitly
consider and address the characteristics of such processes. Many
studies have argued that a major obstacle in the effective
application of MBT to agile processes is that the models required
for MBT are typically different from those usually developed
during general software analysis and design or need additional
details that are not typically included in ordinary models (e.g.
temporal-logic descriptions for properties [5]). Accordingly, the
use of MBT in agile/lightweight processes has mainly been studied

by focusing on the models that could be used for MBT in agile/
lightweight processes (e.g. [2, 4, 6–8]).

We aim to demonstrate that agile/lightweight processes involve
certain other characteristics and features that should be considered
in an effective MBT approach for agile methods, as addressed by a
small number of studies (e.g. [7, 8]). For example, an inherent
characteristic of agile processes is the evolution of development
artefacts including models. Therefore, the test models need to be
kept up-to-date, and hence, an MBT approach has to explicitly
provide mechanisms to effectively support model evolution.
Moreover, the (test) models become larger and more complex over
time; hence, the number of test cases grows continuously and
rapidly, which if not properly managed, will increase the testing
effort required. This makes it impossible to get frequent and quick
feedback on the whole system, which is a mandatory requirement
in agile/lightweight processes. These characteristics are addressed
when process-related issues and challenges are considered in the
application of MBT in agile/lightweight processes. Whereas if the
focus is limited to the issues related to artefacts, all that is observed
is the misalignment or difference in abstraction level between the
models required by MBT techniques and those used in agile
methods.

This paper presents a process-driven view on the use of MBT in
agile/lightweight processes, highlighting the process-related issues.
It introduces a set of criteria to be considered in a complete
incorporation of MBT into agile/lightweight processes, to yield an
appropriate MBT approach for agile/lightweight processes. In the
process-driven approach to the application of MBT in a
development process, we mainly focus on (i) how MBT activities
are integrated into a development process, (ii) how MBT artefacts
(e.g. test models and test cases) are generated, in relation to other
development artefacts, and (iii) who would carry out MBT
activities. Note that we are not interested in classifying MBT
techniques based on, for example, their underlying (formal)
semantics and test generation algorithms (i.e. based on MBT
taxonomies such as that proposed in [9]). In fact, such
classifications and studies are helpful if a concrete MBT technique
needs to be selected (e.g. [10, 11]). We look at such properties,
only when required, in relation to other development artefacts.

Accordingly, we introduce a set of integration criteria for
complete and practical incorporation of MBT into agile/lightweight
processes. The criteria are defined based on (i) the general MBT

IET Softw.
© The Institution of Engineering and Technology 2019

1



process and its requirements and (ii) the specific challenges of the
target development process (which is an agile/lightweight
methodology). In this paper, we focus on those characteristics/
requirements that are related to MBT; i.e. characteristics/
requirements that affect or are affected by the integration.

The integration criteria define the specific characteristics of an
appropriate MBT process for agile processes, thus allowing us to
engineer an appropriate MBT process for a target development
process. Additionally, they enable us to assess the extent to which a
testing approach complies with or fulfils the requirements of a
target development process. Moreover, the set of criteria helps
identify the benefits and shortcomings of the methods already used
for MBT in agile/lightweight processes.

The main contributions of this paper are as follows:

• A comprehensive set of criteria for incorporation of MBT
(activities and artefacts) into agile/lightweight processes.

• An evaluation of existing studies on the use of MBT in agile/
lightweight processes, identifying the shortcomings of existing
approaches.

The rest of this paper is structured as follows: Section 2 briefly
introduces MBT processes including their activities and artefacts.
In Sections 3 and 4, considering an ideal and complete
incorporation of MBT into agile/lightweight processes, a
comprehensive set of integration criteria is proposed. Section 5
introduces the existing works that consider process-related issues
in the application of MBT in agile processes. Then, in Sections 6
and 7, these works are evaluated and discussed with respect to the
proposed integration criteria. Finally, Section 8 concludes this
paper and outlines the future work.

2 MBT: fundamentals
MBT is a variant of testing that relies on explicit behavioural
models that encode the intended behaviour of a system under test
(SUT) and/or the behaviour of its environment [12]. Test cases are
generated from one of these models or a combination thereof and
are then executed on the SUT. The use of explicit models is
motivated by the observation that, traditionally, test derivation
tends to be unstructured, irreproducible, undocumented, and
dependent on the ingenuity of the individual performing it. The
idea is that the artefacts that explicitly encode the intended SUT,

and possibly the environment's behaviour, can help mitigate these
problems. However, some aspects remain unclear such as the
models that can be used by MBT techniques, and the abstraction
level of these models [13].

2.1 MBT process and activities

MBT encompasses various processes and techniques for the
automatic derivation of abstract test cases from abstract models,
the generation of concrete tests from abstract tests, and the manual
or automated execution of the resulting concrete test cases.

Utting et al. [12] define a generic process for MBT, as depicted
in Fig. 1, which involves the following major activities:

1. building the (abstract) test model,
2. defining test selection criteria,
3. transforming test selection criteria into operational test case

specifications,
4. generating tests, and
5. (a) developing and setting up the adaptor component and (b)

executing the tests on the SUT.

2.2 MBT artefacts

The general MBT process involves a specific set of artefacts
required for automatic test generation and execution. We will have
a brief look at the main artefacts.

Test model: A model of the SUT is built from informal
requirements or existing specification documents, which is often
called a test model. There might be a set of models of the SUT.
Test models are used as the basis for test generation, and thus they
must be sufficiently precise to serve as a basis for the generation of
‘meaningful’ test cases. The tests generated from the models
should be complete enough in terms of actions, input parameters
and expected results, to provide real added value. If not, a part of
the test design job has to be performed manually.

It is usually either to develop a test-specific model directly from
the informal requirements or to reuse just a few aspects of the
development models as the basis for the test model, which is then
validated against the informal requirements. Nevertheless, it is
important to have a certain degree of independence between the
models used for test generation and the development model, so that
errors in the development model are not propagated to the
generated tests [14].

Test case specifications: Test case specifications formalise the
notion of test selection criteria and render them operational so that
an automatic test case generator can generate/derive a test suite
from the test models, satisfying the test case selection criteria. Test
selection criteria guide the automatic test generation to produce a
‘good’ test suite – one that fulfils the test policy defined for the
SUT or a testing experiment. Test selection criteria can address
different aspects of a system. For example, they may relate to a
given functionality of the system (requirements based test selection
criteria), to the structure of the test models (state coverage and
transition coverage), to data coverage heuristics (pairwise,
boundary value), to properties of the environment, or to a well-
defined set of faults. Test selection criteria are transformed into test
case specifications.

Test suite and test case: A test suite is a finite set of test cases.
A test case is a finite structure of the input and expected output; it
can be a pair of input and output in the case of deterministic
systems, a sequence of input and output in the case of deterministic
reactive systems, and a tree or a graph in the case of non-
deterministic reactive systems.

Adaptor: As the test model and SUT reside at different levels of
abstractions, these different levels must be bridged. Execution of a
test case starts by concretising the test inputs and sending that
concrete data to the SUT. The resulting concrete output of the SUT
must be captured and abstracted to obtain the high-level expected
result, which is then compared against the expected (abstract)
result. The component that performs the concretisation of test
inputs and abstraction of test outputs is called the adaptor, as it

Fig. 1  Generic process of MBT, proposed by Utting et al. [12]
 

2 IET Softw.
© The Institution of Engineering and Technology 2019



adapts the abstract test data to the concrete SUT interface. The
adaptor is a concept and not necessarily a separate software
component – it may be integrated within the test scripts.

3 MBT in agile development (AD) processes
The most essential feature for considering a testing process as an
MBT process is to support the generation and execution of test
cases based on some (preferably formal) abstract test model. In this
context, the very first requirement for applying an MBT approach
is to have test models that are appropriate for the desired level(s) of
testing and to then generate the required test cases using these test
models. This MBT approach is called artefact-driven.

The artefact-driven approach has been commonly considered in
the context of using MBT in development processes. Most
previous studies have focused on the different types of test models
that can be used for MBT in a development process or in a specific
context or domain such as software product lines or cyber-physical
systems. Similarly, in the context of agile/lightweight processes,
previous studies have largely focused on test models, and have
hence argued that the main challenge in the use of MBT in such
processes is the misalignment or difference in abstraction level
between the artefacts required by MBT and those used in agile
methods.

Apart from the overall approach, a practical incorporation of
MBT into a development process has to specify how MBT
activities are integrated and carried out, and how test artefacts (e.g.
test models and test cases) relate to other development artefacts;
however, very few studies have addressed this (e.g. [8]).

We propose an alternative, process-driven approach to the use
of MBT in AD processes, by highlighting the process-related
issues and characteristics. In this approach, an MBT technique is
studied in the context of a complete development process,
considering all the testing and related development activities and
artefacts, as well as the related process-specific characteristics and
requirements of agile/lightweight methods. We are mainly
interested in the following aspects, considering general MBT
activities and artefacts:

• how MBT activities/tasks are integrated into an AD process;
• how MBT artefacts, e.g. test models and test cases, are

generated and used in relation to other development artefacts;
• who would carry out each MBT activity; and
• how each (related) specific requirement of agile methods is

fulfilled.

Accordingly, a set of criteria for complete incorporation of an MBT
approach into agile/lightweight processes is identified and
introduced. Basically, an integration is considered from two main
perspectives: (i) the MBT process and (ii) the type or context of the
target development process. Each perspective focuses on specific
aspects and the needs corresponding to that perspective.

Additionally, the application of MBT in a development process
is affected by the type or level of testing for which MBT is
intended. An MBT technique for unit testing (UT) requires
different types of artefacts from an MBT technique for system
testing (ST). We have also come to realise that an MBT process
proposed in the context of agile/lightweight processes can aim for
different levels of detail, from abstract to very detailed; for

example, one may intentionally provide a high-level, and hence
more flexible, MBT process. Accordingly, the intended level of
detail has been defined as an integration criterion that can be high/
abstract, medium, or low/detailed.

4 Integration criteria
In this section, we first define the process-related characteristics of
MBT that should be considered in complete and fully detailed
integration. Then, considering agile processes, the agility
characteristics that have to be fulfilled in a practical MBT approach
are introduced and described.

4.1 MBT process characteristics

As explained in Section 2.1, an MBT process consists of a number
of major activities along with their associated artefacts. In a
practical application of MBT in a development process, it is also
important to specify who does what; i.e. the roles involved. Note
that there are classifications and taxonomies for MBT such as [12,
15, 16] that consider the characteristics of a standalone MBT
technique, regardless of the development process in which it is
used. Such taxonomies would help practitioners or researchers in
identifying specific MBT techniques, and would hence improve the
adoption of MBT technologies. However, they do not consider the
process-related issues and requirements, which are the focus of our
study. In the context of our study, such taxonomies can provide
guidelines for identifying the different aspects in the process-driven
view on the application of MBT in agile processes; we have also
used them, in a few cases, to identify the detailed evaluation values
(e.g. for determining the test execution mode).

Through a number of iterations and refinements, a number of
criteria have been defined along with their possible values. These
criteria, which assess an integration with respect to the
characteristics of MBT processes, are described throughout the rest
of this section.

4.1.1 Criteria related to MBT activities: Each MBT activity
should be covered, particularly with respect to other development
activities. However, some of the activities are more important, and
are, therefore, considered explicitly and in more detail; others,
which are less essential for integration, are typically implied by the
proposed technique or the testing tool. In this section, we will
discuss each MBT activity in the context of detailed integration
into an agile/lightweight process, and introduce its relevant
criterion.

Building the model: This is the most important activity in an
integration, as pointed out in the literature. It is typically signified
by its main associated (output) artefact: test models. Depending on
the intended levels (types) of testing, a complete integration should
specify and discuss when and by whom the test models are built. A
practical integration has to specify the input for this activity as
well. Test models may be (i) an already available model such as
design models (this would be an instance of complete reuse), (ii)
automatically or manually generated based on other models (partial
reuse), and (iii) completely constructed from scratch (no reuse). In
some cases, this activity is implied by assuming that the test
models are already available, which is sometimes a valid
assumption (e.g. when the test models are provided by a third
party); otherwise, it would result in an incomplete integration. For
the evaluation, we first look into whether this activity is explicitly
considered and mentioned in an integration or not. Then, in case it
is considered, we examine to what extent it is discussed by asking
the following questions: (i) Is it stated when it is performed?; (ii) Is
it stated by whom it is performed?; and (iii) Does it require any
specific input? In cases where this activity is implied, we may find
out and mention ‘how it is implied’. Table 1 shows the evaluation
values. 

Defining test selection criteria and test case specifications:
These two activities are usually not mentioned explicitly, and it is
typically assumed that there is always a set of test selection criteria
(and consequently, test case specifications) for generating the test
cases. It is usually implied by the specific MBT technique or the

Table 1 Evaluation values for ‘building the model’
Case Description and values
explicit activity is considered explicitly

specify when the activity is carried out (if possible)
specify by whom the activity is carried out (if possible)

specify the required inputs (if existent)
implicit activity is implied

specify how it is implied (if applicable)
no activity is neither explicitly considered nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

IET Softw.
© The Institution of Engineering and Technology 2019

3



MBT tool that is used or implemented. In very few cases, test
coverage criteria may also be worth mentioning. On the basis of
Utting et al.’s taxonomy [12], test selection criteria can be of these
types: Structural model coverage, data coverage, requirements
coverage, random and stochastic, fault-based, or custom test
specifications. An integration may also specify who would
determine the coverage criteria (i.e. the roles involved). Table 2
shows the evaluation values related to this activity. 

Generating tests: This activity is also an important activity in
MBT, and hence should be addressed in any practical integration of

MBT into development processes. However, the details (e.g. the
test generation algorithm) are often not explained or are explained
in an abstract manner. This activity is usually implied by the MBT
tool or the technique used or implemented. The levels (types) of
testing are also very important in determining when test cases are
generated and what the output is (e.g. the format or type of the
generated tests), and it is, therefore, recommended to mention the
intended level of testing in a complete integration. Considering
Utting et al.’s taxonomy, test generation technologies include
random, search-based, model checking, symbolic execution,
theorem proving, and constraint solving algorithms. Although tests
are usually generated automatically (i.e. by a tool), in a complete
integration it should also be specified who would perform this
activity. Table 3 shows the evaluation values. 

Developing and setting up the adaptor component: This activity
depends on the technical properties of the testing environment and
the SUT; thus, the adaptor is developed and set up in a case-by-
case manner. This activity is not required to be discussed in the
integration at the process level. Nevertheless, a very specific and
low-level integration could specify and discuss the adaptor
regarding the particular MBT tool used or suggested, though it
might not provide useful information in terms of process-related
issues. We focus on whether this activity is explicitly discussed,
and if so when and by whom. Table 4 shows the evaluation values. 

Executing the tests on the SUT: This is the main testing activity,
and should, therefore, be specified by any integration, at least by
indicating the level of testing at which MBT is applied. Depending
on the level (type) of testing, test execution will be carried out in
different phases of the development process and by different roles.
Additionally, an integration may provide more details such as the
testing mode (i.e. online or offline) or the particular tools used.
Table 5 shows the evaluation values. 

4.1.2 Criteria related to MBT artefacts: A practical integration
should specify how each MBT artefact is generated or derived with
respect to other artefacts (e.g. constructed from scratch, generated
based on other artefacts, or reusing existing development artefacts).
For example, Pretschner and Philipps [14] have recognised four
high-level scenarios for using MBT, regarding the relationships
between the models used for test case generation and the models
used for development; these scenarios include: common model,
automatic model extraction, manual modelling, and separate
models.

Nevertheless, an integration may not specify the exact type/
model of the test artefacts, thus allowing for flexibility. This
flexibility should be mentioned explicitly in the integration, along
with the relationships between the test models and other
development artefacts. The main MBT artefacts have already been
discussed in the context of MBT activities (i.e. which artefact
pertains to which activity). In this section, each artefact is
considered regardless of its associated activities to determine if an
integration explicitly mentions the required testing artefacts, and if
so, if it indicates (i) any specific type/format for the artefacts and
(ii) how a testing artefact relates to other development artefacts. In
some cases, the artefacts are implied by using a particular tool or
framework. For test models, in particular, the degree of reuse is
also mentioned including: complete reuse, partial reuse, and no
reuse. The evaluation values related to the main four MBT
artefacts, namely test models, test case specification, test suite and
test cases, and adaptor, are respectively, shown in Tables 6–9. 

The above criteria focus on the process-related issues and
characteristics and do not cover those aspects of MBT processes
that are typically used for selecting an MBT technique; for
example, those provided in MBT taxonomies. Nevertheless, these
criteria can be extended and refined based on such taxonomies, if
required in a particular evaluation scenario.

4.2 Agile process characteristics

AD is iterative, so that requirements and solutions can evolve, and
high-quality software increments can be delivered rapidly. Two of
the most prominent agile methods are Extreme Programming (XP)
[1] and Scrum [17].

Table 2 Evaluation values for ‘defining test selection criteria
and test case specifications’
Case Description and values
explicit activity is considered explicitly

specify the test selection criteria (if available)
specify by whom the activity is carried out (if possible)

implicit activity is implied
specify how it is implied (if applicable)

no activity is neither considered explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

Table 3 Evaluation values for ‘generating tests’
Case Description and values
explicit the activity is considered explicitly

specify when the activity is carried out (if possible)
specify by whom the activity is carried out (if possible)

specify the test generation algorithm (if mentioned)
specify the specific testing tool (if mentioned)

implicit the activity is implied
specify how it is implied (if applicable); e.g. by using a

particular tool
no activity is neither considered explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

Table 4 Evaluation values for ‘developing and setting up
the adaptor’
Case Description and values
explicit activity is considered explicitly

specify when the activity is carried out (if possible)
specify by whom the activity is carried out (if possible)

implicit activity is implied
specify how it is implied (if applicable), e.g. by using a

particular tool or framework
no activity is neither considered explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

Table 5 Evaluation values for ‘executing the tests’
Case Description and values
explicit the activity is considered explicitly

specify when the activity is carried out (if possible)
specify by whom the activity is carried out (if possible)

specify the test execution mode (online or offline), in case it
is mentioned

specify the specific testing tool, if it is mentioned.
implicit The activity is implied

specify how it is implied (if applicable), e.g. by using a
particular tool

no the activity is neither considered explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

4 IET Softw.
© The Institution of Engineering and Technology 2019



In this research, we are interested in those characteristics of
agile processes that can affect the application of MBT techniques
in such processes or make the integration a challenge. Faragó [2]
identifies two key requirements for MBT in AD, namely flexibility
and rapid delivery, and argues that they can be achieved by
underspecifying the models that MBT uses; the test models should
be underspecifiable and iteratively refined so that they can be used
in AD. ‘Minimal modelling’ and ‘iterative/incremental
development’ were found as the most related and effective agile
characteristics in practical application of MBT in agile processes;
we will discuss each one separately.

Minimal modelling: This requirement is widely considered in
existing studies on the application of MBT in agile methodologies
under the well known challenge of misalignment of artefacts
developed in agile software development projects and those
required by MBT, in general. MBT's need for precise and elaborate
models, often avoided by agile methods, is the most important
reason cited in the literature for MBT's lack of suitability for agile
processes [2, 4]. Recent proposals on the use of (lightweight)
models/modelling in agile processes (e.g. [1]) and the use of
practical models in MBT (e.g. Unified Modeling Language (UML)

models [18]) has presented an opportunity for benefiting from
MBT in agile processes.

It is important to note that MBT artefacts, particularly the test
models, have to be in line and compatible with the characteristics
of agile processes. This also addresses an important maxim of AD:
valuing ‘working software over comprehensive documentation’;
thus reducing/limiting extra non-software artefacts, which are
typically required by MBT.

In the context of ‘minimal modelling’, we define the following
integration criterion: Is it specified which agile artefact is used as
the test models or as input for building the test models? In the latter
case, is it indicated whether the test models are generated
automatically or constructed manually? The evaluation values with
respect to minimal modelling are shown in Table 10. 

Iterative/incremental development: Agile software development
methodologies use iterative and incremental development in order
to handle evolving systems and changing requirements. In each
iteration, a subset of the system requirements is analysed, designed,
implemented, and tested incrementally. Accordingly, iterative
testing is essential to quality assurance in agile/lightweight
methodologies. As for MBT, test models have to be iteratively
created to provide adequate information for the current iteration;
test cases are then generated automatically.

In this context, test models evolve to specify new behaviour,
and consequently, new versions of the test models are created. The
most common approach in dealing with system evolution is to
generate a new set of test cases from the new version of the test
models. However, a more effective approach, which reduces the
effort required, is to reuse previously generated test cases and
identify those test cases that will support the development of new
features in the current iteration (possibly with limited updates). In
this case, new test cases may be generated for testing the new
features that cannot be covered by existing test cases.

Additionally, test models become larger and more complex over
time, and hence, the number of test cases grows continuously and
rapidly; if not managed properly, this can increase the required
testing effort to unmanageable levels, and will make it impossible
to get frequent and quick feedback on the whole system, which is a
mandatory requirement in agile/lightweight processes. Effective
management of change (mainly via reuse of test cases) would be a
promising approach for addressing this challenge.

We assess evolution in test models and test case reuse as an
integration criterion that determines if an integration specifies
whether (and how) it deals with ‘evolution’, and whether it

Table 6 Evaluation values for ‘test models’
Case Description and values
explicit the artefact is considered explicitly

specify the type/format of the test models, possibly different
types of models for different types of testing (if possible)
specify how the artefact relates to other development

artefacts (if possible). The relationship is then specified in
terms of the degree to which existing artefacts are reused:

complete reuse, partial reuse, or no reuse
implicit the artefact is implied

specify how it is implied, e.g. by using a particular tool or
framework

no the artefact is neither mentioned explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

Table 7 Evaluation values for ‘test case specification’
Case Description and values
explicit artefact is considered explicitly

specify the type/format of test case specifications, possibly
different types of specifications for different types of testing

(if possible)
specify how the artefact relates to other development

artefacts (if possible)
implicit artefact is implied

specify how it is implied, e.g. by using a particular tool or
framework

no artefact is neither mentioned explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

Table 8 Evaluation values for ‘test suite and test cases’
Case Description and values
explicit artefact is considered explicitly

specify the type/format of the test suite and test cases,
possibly different types of suites/cases for different types of

testing (if possible)
specify how the artefact relates to other development

artefacts (if possible)
implicit artefact is implied

specify how it is implied, e.g. by using a particular tool or
framework

no artefact is neither mentioned explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

Table 9 Evaluation values for ‘adaptor’
Case Description and values
explicit artefact is considered explicitly

specify any required detail about the adaptor (if possible)
specify how the artefact relates to other development

artefacts (if possible)
implicit artefact is implied

specify how it is implied, e.g. by using a particular tool or
framework

no artefact is neither mentioned explicitly nor implied
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

Table 10 Evaluation values for ‘minimal modelling’
Case Description and values
reuse existing agile artefacts are directly used as test models
generated test models are generated using existing artefacts

test models are generated automatically
test models are generated manually
generation mode is not mentioned

no test models are constructed from scratch
Italic words show the general meaning of the corresponding case for the criterion.
Bold words define the aspects that are considered for a criterion.

 

IET Softw.
© The Institution of Engineering and Technology 2019

5



supports test case ‘reuse’. The evaluation values for evolution and
reuse are shown in Tables 11 and 12, respectively.

4.3 Intended level of detail

Incorporation of the MBT process into a development process can
be discussed at different levels with respect to the detail provided.
An approach could provide abstract information, and thus allow for
more freedom in the integration of testing activities or in the
generation of testing artefacts. The following are the typical levels
of integration; this is a non-exhaustive list, and there could be
integrations that fall in between:

• High/abstract: A very abstract/high-level integration that does
not consider the details including how, when, and by whom each
MBT activity/task is carried out. In this case, MBT is typically
discussed in the context of a generic definition of development
processes.

• Medium: The use of MBT in a specific type/style of
development process such as AD or model-driven development.
In this case, the generic process of a given type or a particular
process model (e.g. XP or Scrum for agile) is considered, and
the integration of MBT is discussed in that context.

• Low/detailed: The application of MBT in a concrete/project-
specific development process. In this case, a detailed description
of MBT activities and artefacts in a concrete development
process is provided (a complete process that has been used in a
project).

The level of detail is somehow related to and affected by the target
process: whether it is generic, is of a specific type or model, or is
described by metamodels. The level provides an overview of the
integration and guides us throughout the evaluation to identify how
much detail should be provided in an integration. For now, the
levels are defined as high (H), medium (M), and low (L).

4.4 Intended type of testing

As mentioned above, the types (levels) of testing in which MBT is
going to be used affect the integration of MBT into a development
process; e.g. to what extent MBT activities and development

activities are required to be integrated or in which development
phases (steps) MBT activities are carried out. MBT can be used for
different levels of testing, namely UT, integration testing (IT), ST,
acceptance testing (AT), and regression testing (RT).

5 MBT and agile processes: overview
This section presents an overview of the works that demonstrate
the application of MBT in an agile process or provide an MBT
approach for such processes. MBT can be applied in agile/
lightweight processes using testing techniques based on UML
models, metamodels, requirements, and architectural models [19];
hence, there are several studies on such testing techniques [20–22].
Herein, we are interested in those studies that in particular consider
MBT throughout a complete agile/lightweight development
process and illustrate its application.

MBT and AD are the two major approaches to increase the
quality of software, and hence, MBT has been extensively studied
in relation to AD. However, existing MBT techniques are not
directly applicable in agile processes due to the well known
problem of misalignment of artefacts developed in agile software
development projects and those required by MBT, in general.
MBT's need for precise and elaborate models is considered
detrimental to agility; however, the use of (lightweight) models/
modelling in agile processes (e.g. [1]) and practical models in
MBT (e.g. [18]) seem to offer viable solutions.

There are several studies addressing this problem such as [4, 7],
which, however, do not address the integration of tasks, the level of
testing where MBT is used, and the interleavings of testing
activities with other development activities.

Jalalinasab and Ramsin [19] take a general viewpoint on the use
of MBT in agile processes and express the possible solutions as
patterns, based on previous studies on using MBT including testing
based on UML models, metamodels, requirements, and
architectural models. Although the integration of MBT activities
and artefacts is not explicitly discussed in their work, the patterns
provide the details required for their application in a process, as
they have illustrated in the context of the feature-driven
development methodology.

Katara and Kervinen [4] introduce a domain-specific, use case-
driven testing approach in which use cases are converted into
sequences of so-called ‘action words’, which represent the events
listed in the use cases. Action words are automatically translated
into labelled transition systems (LTSs) for test generation. The
approach relies on domain experts to design the test models.

Utting and Legeard [23] study the suitability of MBT-for-agile
processes with respect to the three practises of agile methods that
are related to MBT, namely test-driven development (TDD),
customer acceptance tests, and agile modelling. They argue that
MBT can offer an opportunity for generating a suite of unit tests
from a small model (for TDD), which may reduce the cost of
developing unit tests and allow a more rapid response to evolving
requirements. They also contend that MBT can be applied for AT,
for example, for ST in XP (Fig. 2), since test engineers help the
customer in preparing the test models. Finally, they argue that agile
methods encourage the customer to write acceptance tests in
his/her own business language, which is quite close to MBT, as the
business language is actually playing the role of a domain-specific
language. They suggest that MBT tasks should preferably be
carried out separately from the mainstream development activities,
as illustrated in Fig. 3a. Nevertheless, they do not provide any
detail on how MBT activities should actually be carried out. 

Puolitaival [6] considers the adoption of MBT in an agile
context. He first studies this adoption from a theoretical
perspective and then presents a case where MBT is used in an agile
project. He suggests including MBT test engineers in the agile
team (Fig. 3b), thus avoiding the information gap between
development teams and testing teams. He also states that two
factors are important in the adoption of MBT in an agile context:
(i) reasonable testing effort and (ii) managing MBT activities in the
same way as development activities, e.g. by performing MBT
through pair programming and TDD. Mobile-DTM [24] has been
used as the development process in the case study, which is an

Table 11 Evaluation values for ‘evolution’ in test models
Case Description and values
explicit evolution is considered explicitly
implicit evolution is implicitly considered
no evolution is not mentioned (neither explicitly nor implicitly)

 

Table 12 Evaluation values for ‘reuse’ in test generation
Case Description and values
yes reuse of previously generated test cases is supported
no reuse of previously generated test cases is not supported

 

Fig. 2  XP enhanced with MBT [23]
 

6 IET Softw.
© The Institution of Engineering and Technology 2019



agile method integrating XP's development practises, Scrum's
management practises, and rational unified process's phases.
Conformiq Qtronic has been chosen as the test case generator,
which exports the test suite as a text file. The test suite is then
imported to the JwebUnit tool, which is used as the test execution
platform. Test models are iteratively developed by Conformiq
Qtronic Modeller.

In [2], Faragó investigates how MBT can improve AD and vice
versa. He discusses the main benefits of applying MBT in AD and
identifies two key requirements for using MBT in agile methods,
namely flexibility and rapid delivery, which are achieved by
underspecifying the models used for MBT. Accordingly, in [25], he
presents a theoretical basis and introduces a new method for MBT,
called lazy on-the-fly MBT, which addresses the aforementioned
issues efficiently. He considers a combination of the most
prominent agile methods, namely XP and Scrum, assuming that
other agile methods lead to the same implications on verification.
The test-first development cycle is thus changed into a rather
specification-first development cycle, as illustrated in Fig. 4.
Faragó uses the input–output conformance (ioco) theory [3], and
introduces symbolic transition systems (STSs) and their
underspecification and refinement possibilities, to address the
requirements for MBT in AD. The models are underspecifiable and
iteratively refined so that they are efficiently handled in test
generation. Hence, the proposed approach can be used in AD for
selecting more revealing tests and achieving higher coverage and
reproducibility. 

Löffler et al. [26] introduce a model-based AT method for
Scrum that addresses two major challenges: (i) poor requirements
specifications and communication with customers and (ii)
automatic test script generation from abstract (test) models. Their
approach follows the ideas of Utting and Legeard [23], in that (i)
MBT must be embedded into agile processes and existing tool
chains; (ii) there is a need for dedicated domain-specific modelling
languages for making behavioural modelling easier and more user-
friendly; and (iii) MBT must be linked to requirements analysis.

They extend Scrum by (i) adding two new models, namely
interaction overview diagrams (IOD) and sequence diagrams (SD),
for specifying the user stories and (ii) using FitNesse [27] as a
well-established AT framework. They then refine the sprint-level
activities via using the new (test) model artefacts throughout the
sprint. Their extension of the Scrum process is shown in Fig. 5;
Fig. 6 shows how MBT activities are embedded into Scrum sprints. 

Vuori [28] reports very primitive incorporation of MBT into a
simplified version of Scrum. He considers MBT in the overall flow
of testing, assuming that the required test models are created in
some way and are then used throughout the development process.
The integration proposed is very abstract, and the report does not
explain the testing activities and how they should be carried out.

Having considered iterative and incremental processes for
system evolution, Ussami et al. [8] address the challenges of how
to reuse test artefacts and how to select the relevant tests for
implementing a new version of the system. They propose a process
called D-MBTDD in which AD of a system is guided by model-
based tests, focusing on reusing test artefacts and identifying the
tests relevant to the development. They adapt the idea of delta-
oriented model-based Software Product Line (SPL) RT [29]. In
their work, finite state machines (FSMs) are used as test models to
represent the system's behaviour and the deltas, which contain the
differences between two versions. Although they explain the
process for the first iteration and subsequent iterations, they do not
provide the details on how testing artefacts are related to other
development artefacts. They also assume that test models have
already been created and validated by specialists.

Spichkova and Zamansky [30] propose a formal framework for
MBT, called AHR: agile, human-centred and refinement-oriented.
AHR is based on iterative construction of models and test plans
and supports refinement at different levels of abstraction. It
addresses the inevitable inconsistency, incompleteness, and
inaccuracy of models and test plans in MBT, which necessitates
constant revision and refinement of models and test plans.

Fig. 3  MBT team in agile processes
(a) MBT outside an agile team [23], (b) MBT inside an agile team [6]

 

Fig. 4  MBT with STSs in Scrum [2]
 

Fig. 5  Scrum process extended with test models [26]
 

Fig. 6  MBT activities embedded into the Scrum sprint [26]
 

IET Softw.
© The Institution of Engineering and Technology 2019

7



Elallaoui et al. [31] present a model-driven testing approach
within Scrum via applying an MDA approach for model
transformation, as illustrated in Fig. 7. It generates TestNG [32]
test cases based on their earlier works, which introduce techniques
for (i) generating UML SDs from a set of user stories [33] and (ii)
generating TestNG tests cases from UML SDs [34]. To generate

the test model, a user story is chosen from a list of requirements,
and the platform-independent model (PIM) is generated. This
design model (PIM) is then transformed into a platform-
independent test, which represents the test model. These two
transformations, implemented in the AndroMDA framework [35],
constitute the core of the approach. The first transformation takes
the design model represented by UML SDs and generates
specialised SDs conforming to the UML 2.0 Testing Profile
(U2TP) [36]; these SDs constitute the test models. The second
transformation takes the test models as input and produces TestNG
test cases. 

6 Evaluation of existing works
Tables 13 and 14 present the results of evaluating existing works
on the incorporation of MBT into AD processes with respect to our
proposed criteria. These studies demonstrate the use of MBT in an
agile/lightweight development process. 

The evaluation results in Table 13 show that all of the existing
works explicitly consider the ‘building test models’ activity. In all
of them, the intended type of testing (e.g. AT) implies when this
activity is carried out; it is assumed that the required test models
are generated whenever the corresponding tests are created in the
original process, without applying MBT. Excluding the works by
Faragó [2, 25], all of the studies mention who would carry out this

Fig. 7  Transformation process within a Scrum sprint [31]
 

Table 13 Evaluation of exiting works on the use of MBT, considering MBT activities, in the context of agile processes; empty
cells represent ‘no’ values, which are not shown in this table for sake of clarity
Study Level Type MBT activities

Building test models Defining test case
specification and
selection criteria

Test generation Setting up adaptor Test execution

Katara and
Kervinen [4]

M AT explicit (when: generating
acceptance tests, roles:

domain expert and tester,
input: use cases)

explicit (criteria:
custom coverage

language, roles: —)

explicit (when: online
test generation, roles:
—, algorithm: search-

based, tool: —)

— explicit (when: for
AT, roles: tester,

mode: online, tool:
—)

Utting and
Legeard [23]

M UT, AT explicit (when: generating
acceptance tests and

(possibly) unit tests, roles:
customer and tester, input:

user stories)

requirements
coverage (implied by

AT based on user
stories)

— — explicit (when: for
AT, roles: —, mode:

—, tool: —)

Puolitaival [6] L AT explicit (when: generating
acceptance tests, roles:

tester, input: —)

criteria are implied
by the testing
framework:
JWebUnit

implied by using the
Conformiq Qtronic

testing tool

implied by using the
Conformiq Qtronic

and JWebUnit testing
tools

explicit (when: for
AT, roles: —, mode:
—, tool: Conformiq

Qtronic and
JWebUnit)

Faragó [2, 25] M UT,
RT

explicit (when: generating
acceptance tests, roles:

—, input: product
specification)

explicit (structural
model coverage)

explicit (when: —,
roles: —, algorithm:

model checking, tool:
—)

— explicit (when: for
AT, roles: —, mode:
online/offline (lazy
off-the-fly MBT),

tool: —)
Löffler et al.
[26]

M AT explicit (when: specifying
requirements and

generating AT, roles:
product owner creates
user stories with UML
IODs, and developers

refine the IODs by adding
UML SDs, input:
requirements)

explicit (criteria: data
coverage, roles:

tester)

explicit (when: before
coding, roles: tester,
algorithm: —, tool:

selenium)

implied by using the
selenium testing tool

and the selected
fixture

explicit (when: AT
and IT, roles:

testers, mode: —,
tool: selenium)

Ussami et al.
[8]

H UT explicit (when: before
development, roles:

specialist, input:
requirements)

explicit (criteria:
custom, roles:
customer and
developer and

tester)

implied by the testing
tool that is used for

FSM-based test
generation

— —

Elallaoui et al.
[31, 33, 34]

M UT explicit (when: —, roles:
—, input: scenarios

modelled as UML SDs)

— explicit (when: before
development, roles:

—, algorithm: —, tool:
U2TP and TestNG)

explicit (in the
context of MDA, via

model
transformations and

the testing tool
applied)

implied by the
testing tool and

MDA

 

8 IET Softw.
© The Institution of Engineering and Technology 2019



activity and how the test models are built. All of the proposed
approaches specify the information used to generate the test
models, excluding the study by Puolitaival [6] which does not
explicitly mention the exact input for this activity. Puolitaival does,
however, indicate the type of testing (AT), which can indicate that
the test models are related to customer requirements.

Most of the works specify the test specification and test
selection criteria via considering the type of the test models or the
particular testing tool used for MBT.

Other MBT activities including test generation, setting up the
adaptor, and test execution are typically considered in the context
of the testing platform or the test tool. In a few cases (e.g. [8, 25,
31]), more details (e.g. test execution mode and the adaptor) have
been provided, depending on the scope and target of the research
conducted.

According to Table 14, ‘test models’ are the main MBT artefact
considered in the studies, which is somehow predictable as they are
the main artefact in an MBT process. In all of the studies, test
models are generated based on either use cases or user stories,
which represent the requirements or system behaviour. The type/
format of the test models is also specified and described in all of
the studies, which is highly dependent on the testing platform or
the tool. Other artefacts are mostly implied by the testing tool or
the proposed platform.

In terms of agile characteristics, all of the studies intend to
introduce minimum additional models or modelling effort. In all of
the techniques suggested, existing user stories, use cases, or usage
scenarios, already produced in the development process, are

formalised and translated into test models; in many cases, this is
performed automatically or otherwise in a straightforward manner,
so that agility is not jeopardised. Consequently, all of the existing
works on the application of MBT in agile/lightweight processes
consider ‘minimal modelling’ as an essential criterion or
requirement for effective use of MBT. ‘Evolution of test models’, if
explicitly mentioned, is addressed by generating new test models
when new/updated requirements are identified. Only one paper [8]
addresses evolution properly by introducing delta-oriented MBT
for TDD; in this work, new test models are generated/updated
based on previous test models. This paper is also the only one
which discusses the ‘reuse of test cases’. The other studies assume
that test cases are always regenerated in case the models are
changed.

7 Discussion
Our evaluation shows that few studies consider MBT in the context
of a complete agile/lightweight development process. Although
any MBT technique based on UML models, metamodels,
requirements, and architectural models is of potential use in agile/
lightweight processes (as mentioned in Section 4), a practical
solution needs to consider the details and implications throughout
the whole development life cycle, addressing the process-related
aspects as well.

Moreover, our evaluation shows that most of the existing works
on the application of MBT in agile/lightweight processes consider
AT as the main target for using MBT. Also, they largely focus on

Table 14 Evaluation of exiting works on the use of MBT, considering MBT artefacts and agility, in the context of agile
processes; empty cells represent ‘no’ in the evaluations which are not shown in this table for clarity
Study MBT artefacts Agility

Test models Test case
specifications

Test cases
and test suite

Adaptor Minimal
modelling

Test models
evolution

Test case
reuse

Katara and
Kervinen [4]

mentioned (use cases,
by domain experts, are
translated into action

words and LTSs, LTSs)

mentioned (Test
Case (TC)

specifications are
described in the

introduced
coverage language)

mentioned
(sequence of
action words:
high level and
then keywords:

low level)

— use cases are
incrementally
defined and

translated into
action words

implied by
incremental use

case definition and
refinement and new

test models

Utting and
Legeard [23]

mentioned (—, user
stories are formalised as

test models by the
customer)

— — — manually generated
based on user

stories (as AT by
customer)

implied by creating/
evolving model for
new user stories

—

Puolitaival [6] mentioned (usage
scenarios are modelled

using the Qtronic
modelling language
(state machine) and
then translated into

JWebUnit, —)

mentioned
(Conformiq Qtronic)

mentioned
(Conformiq

Qtronic)

mentioned
(Conformiq
Qtronic and
JWebUnit)

manually generated
based on scenarios

continuous
modelling

—

Faragó [2,
25]

mentioned (user stories
are identified based on
product specifications
and modelled as LTS)

implied by the
testing technique:

ioco

implied by the
testing

technique: ioco

— manually generated
based on user

stories and product
specifications

— —

Löffler et al.
[26]

mentioned (UML IOD
and SD and fixture

based on requirements)

implied by the
testing framework

implied by the
testing

framework

implied by the
testing

framework

complete reuse:
customer

requirements are
modelled by UML
IODs which are

then refined

— —

Ussami et al.
[8]

mentioned (system
behaviour is represented

with FSMs)

implied by the tool implied by the
tool

— — explicit (delta-
oriented model-

based TDD)

yes
(reusable

test
cases)

Elallaoui et
al. [31, 33,
34]

mentioned (test models
are represented as

U2TP SDs,
automatically generated
based on user scenarios
modelled as UML SDs)

mentioned (TestNG
test cases,

automatically
generated from

U2TP SDs)

implied by the
tool

mentioned
(via MDA and

the testing
framework)

complete reuse:
scenarios are

modelled as UML
SDs

implied by MDA and
automatic model
transformations

 

IET Softw.
© The Institution of Engineering and Technology 2019

9



the ‘building the model’ activity; other activities are typically
considered or implied in the context of the testing tool or platform
that is applied.

‘Test models’ are the main MBT artefact considered in these
studies. Without exception, test models are created based on the
requirements or the system behaviour (represented as user stories,
use cases, usage scenarios etc.); this means that requirements are
formalised as test models. This is largely because MBT is used for
AT in these studies. Other MBT artefacts are implied or specified
considering the testing platform or the tool used for testing. This
observation follows the fact that most of the existing studies have
argued that a major obstacle in the application of MBT in
lightweight processes is that the models that are typically required
for MBT are not the same as those produced in agile/lightweight
processes or require details that are not considered essential in such
processes. Therefore, using MBT in agile/lightweight processes has
been mainly concerned with identifying models that can be adapted
for use as test models in lightweight processes, focusing on how
they should be constructed or generated so that agility is preserved.

The main outcome of the evaluation conducted herein is that in
terms of agile characteristics, all the studies focus on minimal
modelling, and only one study considers the ‘evolution’ of test
models and the ‘reuse’ of test cases. Other works either address
evolution implicitly by re-generating test cases from new/updated
models or are completely oblivious in this regard. A substantial
challenge in using MBT techniques in lightweight processes is to
effectively deal with change. Evolution of the development
artefacts including models is an inherent characteristic of
lightweight processes. Therefore, keeping the test models updated
is a substantial problem, which is not restricted to the use of MBT
in lightweight processes; any development approach that is based
on models has to tackle this problem in an effective manner.

In the context of MBT, incremental FSM-based testing, which
is extensively researched in the past few years [37–42], can provide
promising ideas for addressing the requirements that have not been
addressed in existing MBT-for-agile techniques. This approach
aims at modularising test case generation and execution based on
evolving test models. Such a modularisation should eventually lead
to saving time and effort in re-generating or re-executing the tests
by focusing only on those parts that are influenced by the change.
MBT of software product lines (e.g. [43–45]) can also provide
viable solutions for dealing with incremental change and evolution
in test models. Nevertheless, dealing with evolution and reuse
depends on the specific MBT technique used for testing, and
should be considered separately for each such technique.

8 Conclusion
This paper introduced a process-driven view on the use of MBT in
agile/lightweight processes. It demonstrated that incorporation of
MBT into a development process should consider an MBT
approach throughout the whole development process, and thus
explicitly deal with process-specific characteristics of the target
development process. It defined two perspectives on the
application of MBT in agile processes, namely the general MBT
process and its requirements, and the particular characteristics of
agile processes as related to testing. Accordingly, it introduced a
set of integration criteria for complete incorporation of MBT into
agile/lightweight processes, focusing on the activities, artefacts,
and people involved in MBT. The integration criteria depict the
specific characteristics of an appropriate MBT process for agile
processes and allow analysts to identify the shortcomings and
potential benefits of existing studies on the use of MBT in such
processes.

Evaluation of existing studies shows that all the studies focus
on minimal modelling and only one study considers the ‘evolution’
of test models and the ‘reuse’ of test cases, whereas these are
considered as essential characteristics in agile processes. It can,
therefore, be deduced that existing methods for applying MBT in
an agile/lightweight development context are far from satisfactory,
and extensive research is required for reaping the potential benefits
of MBT in this important context.

The evaluation results produced herein can be used for
improving existing approaches. They can also be used for
developing a complete AD process that provides full and efficient
support for MBT by addressing the shortcomings in existing
approaches.

9 Acknowledgment
The work of M. Taromirad is supported by Iran's National Elites
Foundation.

10 References
[1] Ambler, S.: ‘Agile modeling: effective practices for eXtreme programming

and the unified process’ (John Wiley & Sons, Inc., NY, USA, 2002)
[2] Faragó, D.: ‘Model-based testing in agile software development’. 30 Treffen

der GI-Fachgruppe Test, Analyse & Verifikation von Software (TAV), Testing
Meets Agility, Munich, Germany, 2010

[3] Tretmans, J.: ‘Formal methods and testing’, in Hierons, R.M., Bowen, J.P.,
Harman, M. (Eds.): ‘Model based testing with labelled transition systems’
(Springer-Verlag, Berlin, Heidelberg, 2008), pp. 1–38

[4] Katara, M., Kervinen, A.: ‘Making model-based testing more agile: a use case
driven approach’, in Bin, E., Ziv, A., Ur, S. (Eds.): ‘Hardware and Software,
Verification and Testing. HVC 2006. Lecture Notes in Computer Science’ vol
4383, (Springer, Berlin, Heidelberg, 2006)

[5] Tan, L., Sokolsky, O., Lee, I.: ‘Specification-based testing with linear
temporal logic’. Proc. Int. Conf. Information Reuse and Integration IRI ‘04,
Las Vegas, NV, USA, 2004, pp. 493–498

[6] Puolitaival, O.: ‘Adapting model-based testing to agile context’. Master
thesis, University of Oulu, 2008

[7] Rumpe, B.: ‘Agile test-based modeling’. Proc. Int. Conf. Software
Engineering Research & Practice SERP ‘06, Las Vegas, NV, USA, 2006

[8] Ussami, T.H., Martins, E., Montecchi, L.: ‘D-MBTDD: an approach for
reusing test artefacts in evolving system’. Proc. Int. Conf. Dependable
Systems and Networks Workshop, DSN-W ‘16, Toulouse, France, 2016, pp.
39–46

[9] Pretschner, A., Lötzbeyer, H., Philipps, J.: ‘Model based testing in
incremental system development’, Syst. Softw., 2004, 70, (3), pp. 315–329

[10] Dias-Neto, A.C., Travassos, G.H.: ‘Model-based testing approaches selection
for software projects’, Inf. Softw. Technol., 2009, 51, (11), pp. 1487–1504

[11] Dias-Neto, A.C., Travassos, G.H.: ‘Supporting the combined selection of
model-based testing techniques’, IEEE Trans. Softw. Eng., 2014, 40, (10), pp.
1025–1041

[12] Utting, M., Pretschner, A., Legeard, B.: ‘A taxonomy of model-based testing
approaches’, Softw. Test. Verif. Reliab., 2012, 22, (5), pp. 297–312

[13] da Silva, A.R.: ‘Model-driven engineering’, Comput. Lang. Syst., 2015, 43,
(C), pp. 139–155

[14] Pretschner, A., Philipps, J.: ‘Methodological issues in model-based testing’
(Springer, Berlin, Heidelberg, 2005), pp. 281–291

[15] Dalal, S.R., Jain, A., Karunanithi, N., et al.: ‘Model-based testing in practice’.
Proc. Int. Conf. Software Engineering ICSE ‘99, Los Angeles, CA, USA,
1999, pp. 285–294

[16] Hierons, R.M., Bogdanov, K., Bowen, J.P., et al.: ‘Using formal specifications
to support testing’, ACM Comput. Surv., 2009, 41, (2), pp. 9:1–9:76

[17] Schwaber, K., Beedle, M.: ‘Agile software development with scrum’
(Prentice-Hall PTR, NJ, USA, 2001)

[18] Rumpe, B.: ‘Model-based testing of object-oriented systems’ (Springer,
Berlin, Heidelberg, 2003), pp. 380–402

[19] Jalalinasab, D., Ramsin, R.: ‘Towards model-based testing patterns for
enhancing agile methodologies’. Proc. Conf. New Trends in Software
Methodologies, Tools and Techniques SoMeT ‘12, Genoa, Italy, 2012, pp.
57–72

[20] Bouquet, F., Grandpierre, C., Legeard, B., et al.: ‘A subset of precise UML
for model-based testing’. Proc. Int. Workshop on Advances in Model-based
Testing, A-MOST ‘07, London, UK, 2007, pp. 95–104

[21] Kaplan, M., Klinger, T., Paradkar, A.M., et al.: ‘Less is more: a minimalistic
approach to UML model-based conformance test generation’. Proc. Int. Conf.
Software Testing, Verification, and Validation ICST ‘08, Lillehammer,
Norway, April 2008, pp. 82–91

[22] Sarma, M., Mall, R.: ‘System testing using UML models’. Proc. Asian Test
Symp. ATS ‘07, Beijing, China, October 2007, pp. 155–158

[23] Utting, M., Legeard, B.: ‘Practical model-based testing: a tools approach’
(Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007)

[24] Abrahamsson, P., Hanhineva, A., Hulkko, H., et al.: ‘Mobile-D: an agile
approach for mobile application development’. Proc. OOPSLA Companion to
Annual ACM SIGPLAN Conf. Object-Oriented Programming Systems,
Languages, and Applications, Vancouver, BC, Canada, 2004, pp. 174–175

[25] Faragó, D.: ‘Improved underspecification for model-based testing in agile
development’. Proc. Int. Work Formal Methods and Agile Methods FM + AM
‘10, Pisa, Italy, 2010, pp. 63–78

[26] Löffler, R., Güldali, B., Geisen, S.: ‘Towards model-based acceptance testing
for scrum’, Softwaretechnik-Trends, 2010, 30, (3), pp. 1–5

[27] Martin, R.C., Martin, M.D., Wilson-Welsh, P.: ‘FitNesse – acceptance testing
framework’, 2008

[28] Vuori, M.: ‘Model-based testing in modern agile software development – how
to integrate it into the development process?’ (ATAC, Tampere University of
Technology, Finland, 2014)

10 IET Softw.
© The Institution of Engineering and Technology 2019



[29] Lity, S., Lochau, M., Schaefer, I., et al.: ‘Delta-oriented model-based SPL
regression testing’. Proc. Int. Work Product LinE Approaches in Software
Engineering PLEASE ‘12, Zurich, Switzerland, 2012, pp. 53–56

[30] Spichkova, M., Zamansky, A.: ‘A human-centred framework for sup-porting
agile model-based testing’. Proc. Int. Conf. Advanced Information Systems
Engineering CAiSE ‘16, Ljubljana, Slovenia, 2016

[31] Elallaoui, M., Nafil, K., Touahni, R.: ‘Introducing model-driven testing in
scrum process using U2TP and AndroMDA’, Int. Rev. Comput. Softw.
(I.RE.CO.S.), 2017, 12, (1), pp. 30–39

[32] ‘TestNG’. Available at http://testng.org/doc/index.html/, accessed 29
September 2018

[33] Elallaoui, M., Nafil, K., Touahni, R.: ‘Automatic generation of UML
sequence diagrams from user stories in scrum process’. Proc. Int. Conf.
Intelligent Systems: Theories and Applications SITA ‘15, Rabat, Morocco,
2015, pp. 1–6

[34] Elallaoui, M., Nafil, K., Touahni, R.: ‘Automatic generation of TestNG tests
cases from UML sequence diagrams in scrum process’. Proc. Int. Colloquium
Information Science and Technology CiSt ‘16, Tangier, Morocco, 2016, pp.
65–70

[35] ‘AndroMDA’. Available at http://www.andromda.org/, accessed 29 September
2018

[36] The Object Management Group. UML Testing Profile (UTP), 2013
[37] EI-Fakih, K., Yevtushenko, N., Bochmann, G.: ‘FSM-based incremental

conformance testing methods’, IEEE Trans. Softw. Eng., 2004, 30, (7), pp.
425–436

[38] Jääskeläinen, A.: ‘Filtering test models to support incremental testing’. Proc.
Testing – Practice and Research Techniques, Berlin, Heidelberg, 2010, pp.
72–87

[39] Németh, G.Á., Pap, Z.: ‘The incremental maintenance of transition tour’, J.
Fundam. Inf., 2014, 129, (3), pp. 279–300

[40] Pap, Z., Subramaniam, M., Kovács, G., et al.: ‘A bounded incremental test
generation algorithm for finite state machines’, in Petrenko, A., Veanes, M.,
Tretmans, J., Grieskamp, W. (Eds.): ‘Testing of Software and Communicating
Systems. FATES 2007, TestCom 2007. Lecture Notes in Computer Science’ vol
4581, (Springer, Berlin, Heidelberg, 2007)

[41] Simão, A., Petrenko, A.: ‘Fault coverage-driven incremental test generation’,
Comput. J., 2010, 53, (9), pp. 1508–1522

[42] Varshosaz, M., Beohar, H., Mousavi, M.R.: ‘Delta-oriented FSM-based
testing’, in Butler, M., Conchon, S., Zaidi, F. (Eds.): ‘Formal methods and
software engineering’ (Springer International Publishing, Cham, Switzerland,
2015) pp. 366–381

[43] Engström, E., Runeson, P.: ‘Software product line testing – a systematic
mapping study’, Inf. Softw. Technol., 2011, 53, (1), pp. 2–13

[44] Oster, S., Wübbeke, A., Engels, G., et al.: ‘Model-based software product
lines testing survey’, in Zander, J., Schieferdecker, I., Mosterman, P.J. (Eds.):
‘Model-based testing for embedded systems’ (CRC Press, Boca Raton, FL,
USA, 2011), pp. 339–381

[45] Thüm, T., Apel, S., Kästner, C., et al.: ‘A classification and survey of analysis
strategies for software product lines’, ACM Comput. Surv., 2014, 47, (1), pp.
6:1–6:45

IET Softw.
© The Institution of Engineering and Technology 2019

11

http://testng.org/doc/index.html/
http://www.andromda.org/

