
Improvement Strategies for Agile Processes: A SWOT Analysis Approach

Hamed Yaghoubi Shahir, Shervin Daneshpajouh, and Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

yaghoubi@ieee.org, daneshpajouh@ce.sharif.edu, ramsin@sharif.edu

Abstract

Agile software development methodologies have
been greeted with enthusiasm by many software
developers, yet their widespread adoption has also
resulted in closer examination of their strengths and
weaknesses. While analyses and evaluations abound,
the need still remains for an objective and systematic
appraisal of Agile processes specifically aimed at
defining strategies for their improvement. We provide
a review of the strengths and weaknesses identified in
Agile processes, based on which a Strengths-
Weaknesses-Opportunities-Threats (SWOT) analysis of
the processes is performed. We suggest this type of
analysis as a useful tool for highlighting and
addressing the problem issues in Agile processes, since
the results can be used as improvement strategies.

1. Introduction

The widespread adoption of Agile software
development methodologies has prompted closer
scrutiny of the reasons behind their success [15]. It can
now be safely observed that speed has been the key
factor contributing to the success of Agile
methodologies, as it makes them extremely appealing
to many companies and organizations which constantly
strive to develop software in the shortest time possible.
This requirement cannot be readily satisfied by
traditional methodologies such as SA/SD and OMT, or
modern heavyweights such as RUP and FOOM. Agile
methodologies claim to have found a solution to this
problem by shrinking the software development
process and basing the endeavor on a set of sound
principles and practices that speed up the development
process. As a consequence, these methodologies
gained extensive popularity shortly after their advent,
and were widely accepted in the software development
community. However, the success has come at a cost,
as some fairly standard software development
philosophies and practices were sacrificed in the

euphoria, some even dismissed as myths. The
misunderstandings and ambiguities, the radical
leanings of some Agile advocates, and the extreme
criticisms expressed by cynics led to the formal
announcement of the Agile Manifesto and the widely
accepted Agile Principles [7].

Apart from numerous fiery – albeit enlightening –
debates (such as that seen in [6]), Agile methodologies
have been extensively and objectively analyzed over
the years. Most of these analyses focus on the
limitations and weaknesses of the processes
[9,11,16,20,21]. However, there have also been
numerous research efforts directed towards providing a
more balanced appraisal of the methodologies through
paying proper attention to their strengths as well
[2,10]. What seems to be lacking, however, is a
comprehensive review of the capabilities and the
limitations that can then be used as a basis for
identifying areas for improvement, as well as strategies
for attaining the desired results. In this paper, we strive
to provide a thorough examination of the known
strengths and weaknesses of Agile methodologies,
based on the literature and our own observations from
studying seven prominent Agile methodologies:
DSDM, Scrum, XP, dX, ASD, Crystal Clear, and FDD
[19]. The strengths/weaknesses thus identified are then
fed into a Strengths-Weaknesses-Opportunities-Threats
(SWOT) analysis process, which identifies factors
external to the methodologies (opportunities and
threats) that can help or hinder their advancement, and
ultimately results in improvement strategies.

The rest of this paper is organized as follows: A
brief overview of SWOT analysis is presented in
Section 2; Section 3 contains a review of the strengths
and weaknesses of Agile processes, and section 4 lists
the set of opportunities – that can help improve Agile
processes, as well as the threats – that can hinder their
advancement; Section 5 contains the results of the
SWOT analysis and provides strategies for improving
Agile methodologies; Conclusions and areas for
furthering this research are discussed in Section 6.

Sixth International Conference on Software Engineering Research, Management and Applications

978-0-7695-3302-5/08 $25.00 © 2008 IEEE

DOI 10.1109/SERA.2008.33

221

2. SWOT Analysis: An Introduction

Strengths - Weaknesses - Opportunities - Threats
(SWOT) analysis is a strategic planning tool used for
analyzing and evaluating the strength-, weakness-,
opportunity-, and threat points that projects and
business ventures face, and thereby helps identify
possible strategies for achieving predefined objectives
[4]. In identifying these critical aspects, one should
note that strengths and weaknesses are generally
internal to the business, while opportunities and threats
are external factors. Once these four categories of
factors are identified, they are placed in a matrix called
SWOT, based on which strategies for achieving the
objectives are defined.

Figure 1 shows an example SWOT matrix. Four
types of strategies can be defined: Strengths-
Opportunities (SO), Weaknesses-Opportunities (WO),
Strengths-Threats (ST) and Weaknesses-Threats (WT).
As the names imply, strategies are formed through
combining different factors. For instance, one or more
strengths pointed along one or more opportunities may
be used to define an SO strategy; in this type of
strategy, strength points are utilized in order to make
use of the opportunities. In a WO strategy, the purpose
is to diminish the weak points by the help of
opportunities. In a ST strategy, the strength points are
used to reduce the threat points, and finally in a WT
strategy, defensive approaches are used to cover the
weaknesses and to avoid threats.

Even though mainly used in marketing and strategic
business planning, SWOT analysis is quite useful in
other applications as well, especially for research
aimed at improving processes: it helps concentrate on
objectives and strengths/weaknesses, identify
potentialities for improvement, and define strategies
for achieving the desired outcome [4]. It should be
noted, however, that the main focus will inevitably be
on WO strategies, since they are the most relevant to
process improvement.

3. Strengths and Weaknesses of Agile
Methodologies

A review of the properties of Agile methodologies
is presented in this section, according to which the
strengths and weaknesses of these methodologies will
be analyzed. Several research efforts have been
conducted on Agile methodologies and have
established their strengths and weaknesses [13,21]. In
addition, the Agile Manifesto and the Agile Principles
[7] can be used as useful pointers. The strengths and
weaknesses thence compiled are presented in the
following subsections.

3.1. Strengths

Strengths of Agile methodologies have been
stressed time and again, yet there is still need for a
recap of what has been observed in this regard:
1- Welcoming Changing Requirements, Even Late

in Development: As amply stated in [11]: “[Agile
methodologies see] change as an ally rather than an
enemy. Change allows for more creativity and
quicker value to the customer.” Highsmith states in
[14] that Agile methodologies are suitable for
projects that demonstrate high variability in tasks.

2- Satisfying Stakeholders and Users: The presence
of stakeholders in the development team causes
their viewpoints to be taken into account when
development decisions are made, typically reducing
the need for later rework. On the other hand, by
valuing the users’ viewpoints (even if not
implementing them all), they consider themselves a
part of the development team and tend to fully
commit themselves to advancing the project.

3- Iterative-Incremental Development: Iterative-
incremental development is a characteristic of all
Agile methodologies: To achieve frequent delivery,
an iterative-incremental development engine with
short iterations seems like the logical choice. Yet it
also provides benefits of a rather more subtle nature
which are valuable per se; enhanced risk
management and quality assurance are notable
examples.

4- Simplicity: Striving for simplicity is an important
Agile principle. Simplicity can be considered both
as an advantage and a disadvantage for this group of
methodologies. In fact, in small projects, design
simplicity is an advantage since it reduces the
overheads and the time the project takes, whereas it
can prove a disadvantage in larger projects, where
more rigorous processes are required. There are
three different aspects related to simplicity in Agile
methodologies:
a) Process Simplicity: Agile methodologies

incorporate lightweight processes.
b) Design Simplicity: Agile design is mostly

limited to informal architectural design and
elaborate (albeit ad hoc) program design.

c) Code Simplicity: Simplifying the code
enhances its intelligibility, and is therefore
instrumental in guaranteeing the level of
flexibility and maintainability needed in Agile
development. Moreover, since there is little
stress on documentation in Agile processes, the
code itself becomes a major communication
medium.

222

5- Test-Driven Development: Most Agile
methodologies focus on coding and testing rather
than analysis and design, to the extent that in many
Agile methodologies, test cases and test code are
generated before the coding commences on the
actual release. The main advantages of test-based
coding are: improved code maintainability,
reduction in inconsistencies, and enhanced quality
assurance [16].

6- Pair Programming: In some Agile methodologies,
pair programming has been considered an enabling
factor for Agile development, and has been
explicitly or implicitly fused into the process. Pair
programming means that developers work in pairs,
performing all their tasks together. As stated in [5]
and [11], these tasks are not limited to
programming, as the two programmers continually
collaborate on the same design, algorithm, code, or
test as well. This way, there are two people
responsible for a task and they can cover each
other's weaknesses. Nevertheless, although pair
programming is considered as a strength of Agile
methodologies, it can also cause quite a few
problems, as mentioned in [1].

7- Refactoring: Because of some of the defining
characteristics of Agile methodologies, such as their
concentration on the code rather than on the design,
the need for dynamicity and circulation of the team
members, and the requirement for the product to be
highly flexible, refactoring is essential and
inevitable in Agile processes. In this context, the
main goals of refactoring are: removing redundant
and unnecessary code, increasing code simplicity,
achieving flexibility without any change to the
behavior of the system, and improving
communication among developers.

8- Frequent Integration: In most of the Agile
methodologies studied, integration occurs
continuously during the development and
production processes. This is because the
development process in Agile methodologies is
iterative-incremental, and executable increments are
released in the very first iteration. To achieve this,
and also to be able to test the product in the user
environment and receive feedback, integration
becomes an essential activity.

9- Dynamicity of the Development Team: Team
members involved in the project are constantly
reallocated and interchanged, with the following
advantages:
a) Dynamicity will result in a better flow of

information among team members.
b) Dynamicity reduces the dependency of the

project on a limited number of team members.

c) The team’s productivity is increased
considerably [9].

10- Effective Planning: Since most Agile
methodologies are iterative-incremental, planning
is an issue taken very seriously. Agile
methodologies are also extremely wary of the
“Death by Planning” risk encountered in non-Agile
processes, and therefore stress the need for regular
plan reviews.

11- Reflection and Retrospective Review: Reviewing
the completed tasks and the deliverables mainly
aims at making assessments as to how the project is
progressing in order to obtain accurate estimations
for the next iterations of the development process
[11]. It also helps verify that the project is on the
right track, and may even focus on verifying the
efficiency of the development process itself.

12- Prioritizing Requirements: Prioritizing the
requirements (according to the risks associated
and/or their value to the customer) is a common
practice in Agile methodologies, mainly because it
facilitates frequent release of executable software,
provides better support for iterative-incremental
production of software, helps mitigate project risks,
and helps focus on satisfying the stakeholders.

13- Teamwork and Collaborative Decision Making:
Collaborative decision making means that the
opinion of each team-member can affect the final
decision. In other words, the power of decision
making is distributed among the project managers
and developers [16]. Nevertheless, in such
circumstances, project managers should be more
careful of the “Design by Committee” and “The
Grand Old Duke of York” syndromes, and also
make sure that the project does not deviate from its
main path.

14- Rapid Development: In Agile methodologies, we
intend to increase the speed of the development by
overlooking some unnecessarily rigorous tasks.
Naturally, these methodologies are not appropriate
for every project, and are certainly not expected to
be. What is considered a strength here is the ability
of Agile methodologies to do what they do fast.

3.2. Weaknesses

By weaknesses, we mean areas where Agile
methodologies have been shown to need improvement.
The weaknesses are listed below, with a more in-depth
account of the particulars of each provided:
1- Inefficiency of Interaction and Communication

Methods: The prevalent type of interaction in Agile
methodologies is face-to-face communication.
Although other kinds of communication media

223

(such as sticky notes and whiteboards) are also used
to exchange ideas, lack of models and documented
design leads to insufficient references in case
disagreements occur or a state of oblivion develops.
Furthermore, human interaction is prone to various
anomalies by its very nature, and therefore not
adequate as the main communication medium in
software development efforts.

2- Limitations in Global or Distributed
Developments: In Agile methodologies,
development-team members work in proximity to
each other; some processes even require that the
whole team be collocated, i.e. in the same room or
building. This is due to the fact that face-to-face
communication, daily and weekly meetings, and
human interactions have a critical role in the
success of such processes. Although Agile
developers stress the applicability of Agile
processes to distributed applications, the evidence
seems to point to these applications as a likely
problem area for Agile methodologies [9,11,16,20].

3- Need for Customer Presence during
Development: Developing and producing software
is the responsibility of the development team.
Forcing user participation may not be acceptable or
even possible in many organizations.

4- Heavy Reliance on Development Team: As
stressed in the Agile Manifesto, Agile
methodologies are more people-oriented rather than
process-oriented. Consequently, situations develop
where teamwork issues become more problematic
that they normally should [9,11].

5- Lack of Documentation and Modeling: Agile
methodologists believe that project knowledge
should be in the participants’ heads rather than on
paper. This causes every item that is considered
non-essential to be omitted. These may even include
essential analysis and design documents. It should
be noted, though, that complete omission is not
possible, and few projects (mostly simple and small
projects) can be developed this way. The extreme
views enforced by some Agile methodologies,
however, impose unnecessary restrictions on the
applicability of these processes.

6- Products Suffering from Deficiency in
Reusability: As pointed out in [21], Agile
processes are mainly targeted at developing custom
software. Developing generalized solutions or
products facilitating future development projects is
usually sacrificed in order to gain higher
development speed, and reusability suffers as a
consequence. Agile principles emphasize early and
frequent delivery of working software, rather than
developing software made up of reusable or general
components. In fact, lack of design and modeling

restrains reusability and generality: It is in the
design and modeling phases that generalization and
reusability can be provisioned for and achieved.
Furthermore, producing reusable components needs
unambiguous and precise “Quality Control”, which
is typically not supported by Agile methodologies.
This type of quality control is necessary to prevent
the propagation of errors.

7- Misestimation of Project Time and Budget:
Allowing frequent changes to the requirements is an
Agile principle, yet it complicates the estimation of
project time and cost [13]. In addition, due to the
lack of modeling and design processes, estimating
the workload is difficult. For example, the absence
of analysis class diagrams usually means that the
number of the classes to be implemented remains
unknown until downstream phases. Therefore,
project managers cannot perform adequate
planning, and project plans have to be changed
frequently.

8- Limitations in Subcontracting and Outsourcing:
Lack of precise documented requirement
specifications causes difficulty in using Agile
methodologies for outsourcing and subcontracting
[21]. Outsourcing and subcontracting need precise
contracts, while in Agile processes requirements are
allowed to change frequently, even late in the
course of development. In addition, some
organizations do preliminary design themselves and
order a product afterwards; lack of design reduces
the applicability of Agile methodologies in such
situations.

9- Limitations in Developing Safety-Critical
Software: Agile methodologies alone are not
sufficient for developing safety critical software, as
quality control mechanisms incorporated in Agile
methodologies do not provide the (mostly formal)
features required for this purpose [5,12,21]. Some
Agile features, such as the test-driven approach and
the early delivery of working software, are useful
practices in this regard, but they are by no means
sufficient.

10- Limitations in Developing Large and Complex
Software: Refactoring is a very useful technique in
software development. However, Agile
methodologies assume that the need for design can
be replaced by refactoring [21]. Although such an
assumption is possible for small to medium-sized
software, it is not suitable for large and complex
systems, where a central architecture and detailed
design models are essential.

11- Limitations in Managing Large Teams: Agile
methodologies are able to manage, control, and
coordinate small to medium-sized teams. Agile
communication mechanisms are also suitable for

224

such team sizes. As the team size increases, Agile
mechanisms fail to act effectively. For example,
informal face-to-face communication and
management and holding stand-up meetings and
review sessions are not readily possible in large
teams [21].

12- Lack of Metrics and Measures: The metrics
typically encountered when applying Agile
processes are the Project Velocity, and the ratio of
implemented features (such as requirements, user
stories, features, etc.) to elicited features.
Obviously, these metrics are not sufficient for
measuring a project’s progress.

13- Heavy Dependence on Tools: One of the problems
in using Agile methodologies is their heavy
dependence on tools. XP, for instance, is
completely based on “Collective Code Ownership”,
and therefore is not applicable and successful
without the appropriate support tools. Practices
such as test-driven development are essentially
tool-dependent, and since Agile development
processes are dependent and based on such
techniques, almost no Agile methodology is
practical without such tools.

14- Insufficient Guidelines for Testing: As we saw in
the previous section, Test-Driven Development
(TDD) is an Agile strength; however, it can also be
problematic at times, mainly due to lack of
adequate guidelines [5,9].

4. Opportunities and Threats

In this section, a number of opportunities and
threats relevant to Agile methodologies are listed. It
should be mentioned that not all such opportunities and
threats have been identified. We have focused on
opportunities which can improve the weaknesses of
Agile methodologies, and similarly threats which can
be reduced using the opportunities.

4.1. Opportunities

The opportunities identified are as listed below:
1- Methodology Engineering: It has been observed

that a single methodology is not suitable for all
situations. Hence, Methodology Engineering – or
Method Engineering (ME), as it has come to be
called – has been proposed as a way to develop,
adapt, configure, or enhance methodologies [18]. Of
the three most common ME approaches: Assembly-
based (assembling method components retrieved
from method repositories), Paradigm-based
(instantiating a process meta-model), and
Extension-based (enhancing an existing

methodology with new features), the latter provides
suitable opportunities for targeting the weaknesses
of existing methodologies. The following extension
means (or extension patterns) can be identified as
useful tools in this context:
a) Agile Modeling (AM) and Agile Model-Driven

Development (MDD): A collection of practices
and principles for adding simple modeling
activities to Agile methodologies [3].

b) Feature Driven Development augments:
Feature Driven Development (FDD) is an Agile
methodology core, later augmented with
Project Management, Configuration
Management, and Quality Assurance features
[17]. These augments can also be used for
enhancing other Agile methodologies.

c) Scrum extension patterns: The Scrum
methodology relies on efficient inter-team and
intra-team communication. It therefore requires
special provisions when multiple and
distributed teams are involved. The original
Scrum methodology has been augmented with
various Project Management, Complexity
Management, Communication Management,
Planning, and Scheduling features. These
extensions can be applied to other Agile
methodologies as well.

2- Light Analysis and Design: In a light analysis and
design approach, only the most basic and essential
models (such as those depicting the use cases and
classes) are utilized during analysis and design.
Some Agile processes – such as ASD and FDD –
already include such practices, thereby remedying
the chronic model-phobia with which older Agile
methodologies were afflicted.

3- Expert Advice: Using expert opinion in different
contexts is an opportunity that should be put to
maximum use. This not only refers to development
experts, who are involved extensively in Agile
teams, but also includes domain-, technology- and,
above all, methodology experts, who can help tune
the methodology to fit the project at hand.

4- Distributed Software Development Strategies
and Techniques: The daily expansion of the
Internet and the constant increase in its speed has
made distributed software development a modern
trend. Teleconferencing technologies and web-
based development environments are becoming
increasingly popular because of their availability
and usability: local installation is not required and
the customer can review a sample of the product
simply by connecting to the central server used by
the development team.

5- Reverse Engineering: It is often the case that the
implemented classes are different from the ones that

225

were originally designed. This difference can be in
terms of class attributes and methods, or even
simply as an undesirable increase in the number of
the classes. Reverse engineering tools can be used
so that the models are developed quickly (in less
than a few minutes) based on the code.

6- Standardized Testing Methods: Years of
experience in developing software has led to
compilation and standardization of different testing
methods. Such proven techniques can and should
complement TDD practices, and can have a
profound effect on Q/A support in Agile
development.

4.2. Threats

Threats facing Agile processes in the software
world are mainly limited to cases where these
processes face fierce competition and/or skepticism.
We have elaborated on one such important instance:
1- Lack of Interest in Utilization of Agile

Methodologies in Traditional Organizations: As
aptly stated in [11], Agile methodologies have not
been received well in traditional organizations,
mainly due to difficulties in coordinating traditional
and Agile processes and/or human resources, and
difficulties in conforming to standards such as
CMM.

5. SWOT Analysis

In the previous sections, the strengths, weaknesses,
opportunities and threats relevant to Agile
methodologies were identified. In this section, we
present strategies for improving the processes by
putting these factors in a SWOT matrix, as shown in
Figure 1. What we are trying to demonstrate is the
usefulness of the SWOT analysis approach in
addressing the problem issues.

5.1 Objective

The ultimate SWOT analysis objective – although
rather ambitious – is to improve agile methods so that
they can replace their heavyweight counterparts.

With this objective in mind, and considering the
strengths, weaknesses, opportunities, and threats
identified, all the suggested improvement strategies are
in the W-O category. While the other three categories
can be of merit in this context, we have intentionally
limited our focus to the category that is most relevant
to our ultimate intention, i.e., process improvement.
The results are explained in the following subsection.

5.2. W-O Strategies

W1, O1, O2: Using light analysis/design and ME to
ameliorate the weaknesses in information interchange.
Since light analysis/design stays loyal to the Agile
manifesto, it can be used as a solution to information
exchange problems in Agile methodologies.
Incorporating analysis/design activities reduces
misunderstandings and personal misinterpretations.
Method engineering can also be used to extend and
adapt an existing methodology to improve
communications; Scrum extensions proposed in [8] can
be applied to this aim. Agile Modeling (AM) can also
improve communications by providing models to be
used as information interchange media.
W2, O1, O2, O3, O4: Using light analysis and design,
expert advice, distributed software development
strategies and techniques, and ME extension patterns
(Agile Modeling and Agile Model-Driven
Development) to overcome the problems caused by
distributed and global development of the product.
W3, O4: Using distributed software development
strategies and techniques to help with the problem of
the customer not being present at the development
team’s location, and vice versa.
W4, O1, O2: Using light analysis and design, and
Agile Modeling to reduce the weaknesses caused by
over-reliance on the development team. Analysis and
Design helps improve organization and distribution of
the tasks, and also gives the development team
members a better knowledge of their responsibilities.
W5, O1, O2: Using light analysis and design, and
Agile Modeling extensions to overcome the lack of
modeling and documentation. Light analysis and
design can be used for providing the minimum
modeling and documentation required.
W6, O1, O2, O5: Using light analysis/design, reverse
engineering tools, and Agile Modeling extensions for
producing a reusable product. A basic principle for
creating a reusable product is to produce a blueprint for
the structure (architecture) and the classes of the
system. This can be done using light analysis and
design at the early stages of the software development
process. Models should remain consistent during later
stages, yet implementation teams (being agile) tend to
overlook this requirement. Reverse engineering tools
can be used for producing/updating the models.
W7, O1, O2: Using light analysis and design, and
extension-based ME (through applying FDD project-
management augments) for estimating the amount of
work required, resulting in better scheduling and time
estimation in each iteration. It is clear that having a
design gives a better understanding of the amount of
work required, giving the project manager a better

226

knowledge of the work, hence helping him in obtaining
a better estimation of the implementation time and the
cost of the project.
W8, O1, O2: Using light analysis/design, Agile
Modeling, Agile MDD, and communication-
management extensions to enable outsourcing. This
means that a better understanding of the product is
achieved in the early stages of its production, thereby
facilitating the outsourcing of the whole product or
parts of it.
W12, O2: Using light analysis and design to overcome
the weakness in measurements and using metrics.
W14, O6: Using existing standardized testing methods
to overcome the weakness caused by lack of sufficient
guidance on testing methods in Agile methodologies.

5.3. Summary of SWOT Analysis

Some of the strengths and weaknesses of Agile
methodologies were compiled and discussed;
furthermore, the opportunities and threats related to
these methodologies were identified. By feeding these
into a SWOT analysis process, we have strived to

demonstrate how improvement strategies can be
obtained.

Ten improvement strategies were presented for
fourteen weaknesses. It seems that the remaining
weaknesses cannot be resolved based on the
opportunities identified herein, as some basic Agile
principles are contradicted when applying the
opportunities to overcome these weaknesses; agility is
therefore jeopardized.

Through this research, we have come to the same
conclusion as that reported by Boehm in [6]: Agile and
Traditional approaches complement each other, and
convergence attempts are therefore beneficial to both
parties. The best solution to the Agile-Traditional
confrontation seems to be to find a balance between
Agile and Traditional features. Indeed, light analysis
and design and methodology engineering approaches
are suggested as solutions in most of our improvement
strategies; this brings Agile processes closer to
Traditional processes. In other words, the analysis
applied herein seems to confirm that striving for a
balance between Agile and Traditional methodologies
is likely to be feasible, and worthwhile.

Strengths
S1. Welcoming changing requirements even late

in development
S2. Satisfying stakeholders and users
S3. Iterative-incremental development
S4. Simplicity
S5. Test driven development
S6. Pair programming
S7. Refactoring
S8. Frequent integration
S9. Dynamicity of the development team
S10. Effective planning
S11. Reflection and retrospective review
S12. Prioritizing requirements
S13. Teamwork and collaborative decision making
S14. Rapid development

Weaknesses
W1. Inefficiency of interaction and

communication methods
W2. Limitations in global or distributed

developments
W3. Need for customer presence during

development
W4. Heavy reliance on development team
W5. Lack of documentation and modeling
W6. Products suffering from deficiency in

reusability
W7. Misestimation of project time and budget
W8. Limitations in subcontracting and

outsourcing
W9. Limitations in developing safety critical

software
W10. Limitations in developing large and complex

software
W11. Limitations in managing large teams
W12. Lack of metrics and measures
W13. Heavy dependence on tools
W14. Insufficient guidelines for testing

Opportunities
O1. Methodology engineering
O2. Light analysis and design
O3. Expert advice
O4. Distributed software development strategies

and techniques
O5. Reverse engineering
O6. Standardized testing methods

S-O Strategies

Out of the Scope of this Research

W-O Strategies
W1,O1,O2
W2,O1,O2,O3,O4
W3,O4
W4,O1,O2
W5,O1,O2
W6,O1,O2,O5
W7,O1,O2
W8,O1,O2
W12,O2
W14,O6

Threats
T1. Lack of interest in utilization of Agile

methodologies in traditional organizations

S-T Strategies
Out of the Scope of this Research

W-T Strategies
Out of the Scope of this Research

Figure 1. SWOT Matrix and Proposed W-O Strategies

227

6. Conclusion

Our main objective has been to highlight the

usefulness of SWOT analysis as a process
improvement tool, specifically targeting existing Agile
methodologies. In striving to achieve this objective, we
have limited our focus to one category of SWOT
strategies (namely, addressing Weaknesses through
utilizing the Opportunities), since it is the most
relevant to the task at hand. We have thereby suggested
concrete strategies for improving Agile processes.
Many of the results may not seem novel or
revolutionary, yet the analysis approach is shown to be
a promising means for process improvement.

This research can be furthered by attempting to
implement the strategies in existing Agile
methodologies, and thereby producing concrete Agile
methodologies with improved features. Perfecting the
SWOT matrix should be an ongoing process aiming to
stay current with new trends, be they considered
opportunities or threats.

7. Acknowledgements

We wish to thank the Research Vice-Presidency of
Sharif University of Technology for sponsoring this
research.

8. References

[1] Abrahamsson, P., “Pealing the Hype into Pieces: What

Do We Really Know about Agile in Research and
Practice?”, VTT Technical Research Centre of Finland,
Oulu, Finland, Available at: http://www.agile-
itea.org/public/papers/OLIO_abrahamsson.pdf, 2006.

[2] Abrahamsson, P., Warsta, J., Siponen, M.T., and
Ronkainen, J., “New Directions on Agile Methods: A
Comparative Analysis”. In Proceedings of 25th
Conference on Software Engineering (ICSE), 2003, pp.
244-254.

[3] Ambler, S. W., Agile Modeling, Available at:
http://www.agilemodeling.com, visited in December
2007.

[4] Armstrong, M., Management Processes and Functions,
CIPD, London, 1996.

[5] Beck, K., and Andres, S., Extreme Programming
Explained: Embrace Change, 2nd Edition, Addison-
Wesley, Reading, MA, 2004.

[6] Beck, K., and Boehm B., “Agility through Discipline: A
Debate”, Computer, IEEE, Vol. 36, No. 6, June 2003,
pp. 44-46.

[7] Beck, K., et al., Principles behind the Agile Manifesto,
Available at:

 http://www.Agilemanifesto.org/principles.html, visited
in May 2007.

[8] Beedle, M., Devos, M., Sharon Y., Schwaber, K., and
Sutherland, J., “SCRUM: An extension pattern language
for hyperproductive software development”, Available
at: http://jeffsutherland.com/scrum/scrum_plop.pdf.

[9] Berard, E.V., “Misconceptions of the Agile Zealots”,
The Object Agency, L.L.C., Available at:
http://www.svspin.org/Events/Presentations/Misconcept
ionsArticle20030827.pdf, 2003.

[10] Boehm, B., and Turner, R., Balancing Agility and
Discipline: A Guide for the Perplexed, Addison-Wesley,
Reading, MA, 2004.

[11] Boehm, B., and Turner, R., “Management Challenges to
Implementing Agile Processes in Traditional
Development Organizations”, IEEE Software, Vol. 22,
No. 5, September 2005, pp. 30-39.

[12] Boehm, B., “Some Future Trends and Implications for
Systems and Software Engineering Processes”, Systems
Engineering, Vol. 9, No. 1, 2006, pp. 1-19.

[13] Coram, M., and Bohner, S., “The Impact of Agile
Methods on Software Project Management”, In
Proceedings of the 12th IEEE International Conference
and Workshops on the Engineering of Computer-Based
Systems (ECBS), April 2005, pp. 363-370.

[14] Highsmith, J., “Agile Project Management: Principles
and Tools”, Cutter Consortium, February 2003.

[15] Maurer, F., and Melnik, G., “Agile Methods: Moving
Towards the Mainstream of the Software Industry”, In
Proceedings of 28th International Conference on
Software Engineering (ICSE), 2006, pp. 1057-1058.

[16] Nerur, S., Mahapatra, R., and Mangalaraj, G.,
“Challenges of migrating to Agile methodologies”,
Communications of the ACM, Vol. 48, No. 5, May 2005,
pp. 72-78.

[17] Palmer, S. R., and Felsing, J. M., A Practical Guide to
Feature-Driven Development, Prentice-Hall, Englewood
Cliffs, NJ, 2002.

[18] Ralyté, J., Deneckére, R., and Rolland, C., “Towards a
generic model for situational method engineering”. In
Proceedings of CAiSE 2003 (LNCS 2681), 2003, pp. 95-
110.

[19] Ramsin, R., and Paige, R. F., “Process-Centered Review
of Object Oriented Software Development
Methodologies”, ACM Computing Surveys, Vol. 40, No.
1, February 2008, pp. 3:1-89.

[20] Taylor, P.S., Greer, D., Sage, P., Coleman, G., McDaid,
K., and Keenan, F., “Do Agile GSD Experience Reports
Help the Practitioner?”, In Proceedings of the 2006
International Workshop on Global Software
Development for the Practitioner, 2006, pp. 87-93.

[21] Turk, D., France. R., and Rumpe, B., Assumptions
Underlying Agile Software-Development Processes,
Journal of Database Management, Vol. 16, No. 4, 2005,
pp. 62-87.

228

