
Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 525–540, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Computer-Aided Method Engineering: An Analysis of 
Existing Environments 

Ali Niknafs and Raman Ramsin 

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran 
niknafs@ce.sharif.edu, ramsin@sharif.edu 

Abstract. Analogous to Computer-Aided Software Engineering (CASE), which 
aims to facilitate Software Engineering through specialized tools, Computer-
Aided Method Engineering (CAME) strives to support a wide range of activities 
carried out by method engineers. Although there is consensus on the importance 
of tool support in method engineering, existing CAME environments are incom-
plete prototypes, each covering just a few steps of the method engineering proc-
ess. This paper summarizes the history and the state of the practice in CAME 
technology, and provides criteria-based critique on existing CAME environ-
ments, thus highlighting their strengths and weaknesses. 

Keywords: Software Development Methodologies, Method Engineering, Com-
puter-Aided Method Engineering, Criteria-Based Analysis. 

1   Introduction 

“If it says one size fits all, it doesn’t fit anyone”: Although it is safe to assume that 
every methodology fits at least one project situation, this variant of the Murphy’s Law 
stresses the fact that there is no general-purpose methodology applicable to all differ-
ent situations. This motivates the development of project-specific methodologies, 
using an approach known as Situational Method Engineering (SME) [1], a complex 
and error-prone process that cannot be properly performed without automated sup-
port. The automated support required is provided by Computer-Aided Method Engi-
neering (CAME) environments [1, 2, 3, 4, 5, 6]. A CAME environment is composed 
of a set of correlated tools aiming to facilitate, in its ideal form, the entire SME proc-
ess. CAME technology dates back to the early days of method engineering, when 
several academic prototypes were first introduced.  

A method is composed of two parts: The product part which captures the product-
related knowledge, and the process part encompassing the activity-related aspects of 
the method. Due to this division, two types of method fragments can be defined: 
Product fragments are artifacts such as models, diagrams, and documents, whereas 
activities, stages, and tasks are considered Process fragments. To enable computer-
ized support for SME, method fragments need to be stored in a repository called the 
Method Base. They thus need to be described in a formal way. Several method repre-
sentation languages have been proposed for this purpose, which are either textual or 
graphical, or both. Graphical languages are called meta-modeling languages, e.g. 
GOPPRR in MetaEdit+ [7]. Object Z [8] is a textual language, whereas the Method 



526 A. Niknafs and R. Ramsin 

Engineering Language (MEL) [9] is both textual and graphical. Meta-modeling lan-
guages are more popular than textual ones. This popularity is mainly because they are 
easier to use, learn, and implement.  

As shown in Fig. 1, CAME environments are made up of two parts: The CAME 
part provides facilities for method engineering, whereas the CASE part offers means 
for the generation of CASE tools and process support environments. The set of 
Method Engineering Tools and the Method Base form the main elements of the 
CAME part. The Method Engineering Toolset offers tools for facilitating the work of 
method engineers, e.g. for extracting components of existing methods and storing 
them in the Method Base. The Method Base upon which a CAME environment is 
built is the kernel of the CAME environment. The method obtained from the CAME 
part will be fed as input to the CASE part. The CASE Generator gets the product part 
of methods and generates the project specific CASE tool. Process-centered Software 
Engineering Environments (PSEEs) are used for generating process support environ-
ments based on the process part of methods.  

 

Method Engineering 
Tools

Method 
Engineer

CASE 
Generator

Project-specific Method Application 
Engineer

PSEE

CASE Tool

Process 
Support 

Environment

Existing 
Methods

Uses

Method Base

RetrievesStores

Product Model

Process ModelMethod 
Requirements

CAME Part CASE Part

Generates

Generates

Guides

Uses

Feedback

GeneratesAnalyzes

Extracts

 

Fig. 1. General architecture of CAME environments 

In [10], three distinct approaches to SME are proposed. The assembly-based  
approach is the most common and consists of three steps: specifying method require-
ments, selecting method fragments, and assembling them into a method. Extension-
based SME aims at adapting and extending an existing method with new features; 
whereas in the paradigm-based approach a new method is developed by instantiating, 
abstracting or adapting an existing meta-model. As we will see in the following sec-
tions, almost all the existing CAME environments support the assembly-based ap-
proach, and other approaches are almost completely overlooked.  

CAME environments can be classified as product-oriented and process-oriented, 
depending on the way they facilitate the enactment of the method engineering proc-
ess. Those that focus on modeling the product-related issues of methods, and provide 
less support for the method’s process model and its enactment, are classified as prod-
uct-oriented CAME environments. Process-oriented CAME environments deal with 
the process-related issues of methods and support the enactment of the process model. 



 Computer-Aided Method Engineering: An Analysis of Existing Environments 527 

Most of the existing CAME environments fit into the first class, due to their emphasis 
on modeling the product part of methods.  

Coverage of the method engineering process is one of the major shortcomings of 
existing CAME environments. Several method engineering processes have been pro-
posed in the literature [10, 11, 12, 13], yet they can all be considered as consisting of 
the following generic phases: 

1. Method Requirements Analysis (MRA): focuses on the identification of important 
features of the method under construction. Method requirements are those features 
that are expected to be present in an Information Systems Development (ISD) 
method, such as traceability to requirements or support for umbrella activities [14]. 
In the MRA phase, the method requirements should be defined in a formal way, 
and should therefore precisely describe the features that the desired method needs 
to offer.  

2. Method Design (MD): focuses on determining a blueprint for the method, based on 
the requirements defined in the previous phase. 

3. Method Implementation (MI): focuses on selecting suitable method fragments and 
assembling them, instantiating an existing meta-model or process pattern, or modi-
fying or extending an existing method. The result of this phase is a set of CASE 
tools providing means to support the method’s product model, and process support 
environments to guide the application engineer during the ISD project. 

4. Method Test (MT): focuses on the verification and validation of the newly devel-
oped method. The results of the MRA phase are fed as input to this phase. Testing 
a newly developed ISD method is similar to testing any other type of system: de-
velop test cases (in this case, sample systems), perform verification and validation, 
and correct the defects detected. Testing the resulting ISD method is a weak point 
of existing CAME environments: CAME environments do not offer adequate 
means for determining whether a newly developed method realizes the predefined 
method requirements or not. 

The aim of this paper is to present a brief overview of past research conducted on 
CAME environments and the state of the practice as reported and documented by 
researchers, identifying the shortcomings and thereby offering suggestions for future 
research. The remainder of the paper is structured as follows: in section 2, several 
existing CAME environments will be briefly described; these will be analyzed in 
section 3, based on analysis criteria adapted from the attributes presented in the 
ISO/IEC 9126 quality model; section 4 contains the conclusions, and outlines our 
plans for furthering this research.  

2   CAME Environments 

Several CAME environments have been proposed, yet even though the achievements 
of these environments have been remarkable, none of them provide a comprehensive 
set of means for enacting the method engineering process. In this section, we provide 
concise descriptions for several existing CAME environments, limiting our review to 
those environments for which adequate documentation is available.  



528 A. Niknafs and R. Ramsin 

All the environments discussed come from research communities, with very little 
support from the industry. This is the reason why most of them do not have a long 
history of usage, even though they enjoy extensive documentation and many years of 
investigation. There exist tools and environments, such as Rumi [15], that because of 
little or no available documentation, are very hard to assess and have therefore not 
been included in this research. 

2.1   MERET 

The Methodology Representation Tool (MERET) is a forerunner of present-day 
CAME environments, and focuses on method engineering in a product-oriented fash-
ion, dealing with the adaptation and customization of existing methods. MERET pre-
sents a comprehensive methodology representation model [16] used for the specifica-
tion of methods. This representation model uses a semantic data-model called ASDM 
[16] for representing method knowledge. ASDM provides a powerful means for mod-
eling objects and their interrelationships. The root concept used in the methodology 
representation model is the so-called MERET object, which provides the attributes 
common to all other objects (e.g. name). A MERET object can be a methodology 
object or a guideline object: the former consists of all the objects needed for method 
specification, whereas the latter describes the rules, constraints and experiences relat-
ing to the former. Rules are represented in a formal way by means of Horn clauses. 
Methodology objects are partitioned into Methods and Techniques, where a method 
consists of techniques used to develop products. The process model is described by 
means of actors, milestones, processes and deliverables. A process can be either a 
phase or an activity. A technique consists of several resources, which are non-human 
requirements such as any CASE tool feature, and representation types, which define 
the representation of deliverables (e.g. text or a special diagram such as a DFD). 
MERET provides means for automatic application of consistency checks on the 
method specification, and the integration of different methods, and the customization 
of the method produced to specific projects. 

2.2   MethodBase 

MethodBase is one of the first academic CAME prototypes introduced. The aim of 
this environment is to facilitate method customization, rather than assembly-based 
SME. MethodBase assists the method engineer in the selection of a method that best 
fits the project at hand [1].  

The MethodBase system’s database consists of complete methods. Therefore, 
methods can be selected and be customized to fit a project situation. Its data model is 
divided into product and process parts. The product part consists of the concepts 
State, Event, Data, Entity, and Association, whilst the concepts Activity and Activity-
relationship, constitute the process part. By means of the process part, the method 
engineer can define guidelines to support the enactment of the method process model. 

2.3   MetaEdit+ 

MetaEdit+ is the result of the MetaPHOR project initiated in 1990, and was originally 
developed as a metaCASE environment. A commercial version of MetaEdit+ has also 



 Computer-Aided Method Engineering: An Analysis of Existing Environments 529 

been released. MetaEdit+ uses techniques similar to those used in assembly-based 
method engineering. It uses the GOPPRR [7] conceptual data model as its method 
specification language, which is an evolutionary extension of the OPRR and GOPRR 
models [17]. The basic constructs of the GOPPRR model are Graph, Object, Port, 
Property, Relationship, and Role. Graph is the top-level structure of the meta-model, 
which is an aggregate concept, composed of objects and their relationships. Object 
types are the design objects that typically appear as shapes in diagrams. Examples of 
objects are Class in Class Diagrams and Entity in Entity Relationship Diagrams. As-
sociations between objects are regarded as their relationships. Each object has a role 
in the relationships in which it participates. Ports allow additional semantics or con-
straints on how objects can be connected. Ports can be used as parts of objects, to 
which roles can be attached. Properties are the characterizing attributes attached to 
each of the types. MetaEdit+ incorporates a specialized tool for creating and maintain-
ing each of these basic types.  

The OPRR meta-modeling language and its extensions – GOPRR and GOPPRR – 
only deal with the product aspects of methods. However, a process meta-modeling 
language called GOPRR-p [18, 19] has also been proposed as an extension to 
GOPRR; this language provides concepts and integration rules for defining different 
Process Modeling Languages (PML).  

MetaEdit+ consists of several tool families, among which are Method Management 
Tools [17], aiming at providing CAME functionalities. This tool family consists of the 
following main parts: 

• The Method Base: consists of method fragments, symbols needed for representing 
object types, and generic reports used by the report generator tool to deliver several 
reports on methods. 

• The Method Assembly System: consists of tools needed for method assembly, such 
as Meta-model Editors, which provide various tools for specifying the GOPPRR 
constructs and their connections. The resulting method will be checked for incom-
pleteness and inconsistency by means of the Consistency Checking System. The 
Symbol Editor is a drawing tool used for specifying symbols for each object type. 
A number of reports on the newly developed method can be generated using the 
report generator tool included in the Metrics & Statistics System. Metrics reports 
are used for analyzing the properties of methods (e.g. the number of objects 
therein).  

• The Environment Generation System: is the CASE part of MetaEdit+ offering 
several generators for delivering a CASE tool, an online help, and a number of re-
ports on the models. 

2.4   Decamerone 

Decamerone extends the Maestro II metaCASE environment with CAME capabilities, 
taking advantage of the features already present in Maestro II. Decamerone uses the 
Object Management System (OMS) [1, 21], which is the online object-oriented DBMS 
of Maestro II. The architecture of Decamerone is shown in Fig 2. As expected, the 
Method Base is the central repository containing method fragments and their relation-
ships. The Selected Method Fragments Repository (SMFR) is a subset of the Method 
Base, containing the selected method fragments for integration into a new method. 



530 A. Niknafs and R. Ramsin 

The Situational Method Database is another subset of the Method Base containing the 
assembled method. The CASE tool repository stores all the products used and pro-
duced during the project. 

At the core of Decamerone is the Method Base Management System (MBMS) [21], 
which provides facilities for the specification, storage and selection of method frag-
ments and their assembly into a new method. The MBMS is an interface for accessing 
the OMS databases. This will help the method engineer avoid the low-level complexi-
ties of actually accessing an OMS database.  

The novel feature of Decamerone is the Method Engineering Language (MEL) [9], 
which is not only used for the representation of method fragments, but also offers 
constructs for their manipulation operations. Thus, MEL supports the administration, 
selection and manipulation of fragments. As mentioned before, MEL is both textual 
and graphical; however, its textual form is much more powerful than the graphical 
form. Decamerone’s user interface consists of three parts: The MEL Command Line 
Interface, which is a text editor used for the selection and manipulation of method 
fragments in a high-level method engineering language; the graphical editors of the 
Concept Structure Diagram (CSD) and the Process Structure Diagram (PSD), which 
aid in the specification and assembly of product and process fragments respectively;  
and the MEL Editor, which aids in creating MEL specifications for the graphical 
forms of the method fragments produced, in order to construct finer grained method 
fragments.  

 

Fig. 2. Architecture of Decamerone 

Consistency and completeness of method fragments are checked by the MEL Edi-
tor and the CSD/PSD Editors. The MEL Interpreter acts as an interface for MBMS 
and gets user commands and translates them into MBMS function calls. Thus, the 
MBMS is only called by, and returns values to the MEL interpreter. The newly devel-
oped method will be given to Maestro II for CASE tool generation. The Project and 
Configuration Management System (PCMS) is a part of Maestro II used for defining 



 Computer-Aided Method Engineering: An Analysis of Existing Environments 531 

Process Managers, which enact the method’s process model. PCMS offers function-
alities for configuration management, project scheduling and estimation. The Reposi-
tory Generator takes the product part of the method as input and generates the CASE 
tool repository. Notational symbols of the elements manipulated through diagram 
editors are specified using the Tool Customizing Interface (TCI).  

Decamerone provides facilities for defining the semantics of method fragments. An 
ontology is defined for product fragments, as well as a process classification system 
[1] for all method fragments, thereby specifying the semantic aspects of the method 
fragments. The proposed ontology is called the Methodology Data Model (MDM) [1] 
which consists of the basic concepts of ISD products and the associations between 
them. The process classification system employs the notion of goal, which is repre-
sented as a tuple (Action, Measure, Product). Goals are taken from a process classifi-
cation, consisting of a set of basic actions in ISD, a set of measures, and a set of prod-
uct types required in ISD. Basic actions are those actions in ISD which have the same 
effect; a product type is a class of products in ISD with the same purpose; and a 
measure is a qualifier of a product, to indicate temporal state, level of detail, or level 
of abstraction. 

2.5   MENTOR 

The core component of MENTOR is its Guidance Engine [22] which provides guid-
ance to both method engineers and application engineers; MENTOR is therefore a 
guidance-centered environment. MENTOR uses the NATURE contextual approach to 
describe method fragments. In the NATURE approach, a method is viewed as a set of 
method fragments which can either be a forest, a tree or a context. A forest is a set of 
trees where trees are hierarchies of contexts. Contexts are pairs of the form <situation, 
decision>, where decision states the intention of the method engineer, and the state of 
the product that the decision can be taken on forms the situation. Method fragments, 
or method chunks, are of two kinds: Components, which are parts of the prod-
uct/process model of methods; and generic method construction Patterns [23, 24], 
which can be instantiated to new method fragments. The main components of MEN-
TOR are: 

• The Method Engineering Environment, which consists of a set of tools, editors, 
and browsers for facilitating the work of method engineers [25]. The product edi-
tor and the process editor allow the graphical specification of the product model 
and the process model respectively. The method generator aids in the automatic in-
stantiation of predefined generic patterns stored in the method base. Browsers are 
also provided to help retrieve the necessary method fragments.  

• The Application Engineering Environment, which constitutes the CASE part of 
MENTOR, providing tools for supporting the enactment of methods. 

• The Guidance Engine, which advises the method engineer in his method engineer-
ing activities and guides the application engineer by executing the resulting process 
model.  

• The Repository, which is organized in three interrelated levels [25]: The Applica-
tion Knowledge level, which is the lower level consisting of the process model and 
the products under development; the Method Knowledge level, which is composed 



532 A. Niknafs and R. Ramsin 

of method fragments; and the Method Meta Knowledge level, which deals with the 
semantics of the method fragments. Product and process meta-models are placed in 
the Method Meta Knowledge level, whereas product models and process models 
are placed into the Method Knowledge level. These two latter levels constitute the 
Method Base of MENTOR. 

2.6   MERU 

The main feature of Method Engineering Using Rules (MERU) that distinguishes it 
from other existing CAME environments, is a technical document describing method 
requirements called the Method Requirements Specification (MRS) [11]. MRS is im-
plementation-independent and only expresses the nature of an ISD method. MRS is 
based on a meta-model called MVM. In MVM, method concepts, which are called 
things, are partitioned into links, constraints and product elements. A link is any thing 
of the product that connects two product entities together. Constraints are those things 
that can be used by application engineers to specify properties of links and product 
entities. Finally, any thing that is not a link or constraint is a product entity. The inter-
relationship between concepts are captured through two relationships: is composed of, 
which identifies concepts that are made up of other concepts; and is mapped to, which 
relates together concepts of two different models. The meta-model proposes to parti-
tion things into product entities, constraints and links. The procedure of ME per-
formed by means of MERU consists of 3 main steps. In the first step, called the 
Method Requirements Engineering (MRE) phase, the method engineer expresses the 
preferred method requirements in the form of an MRS. A language based on the 
MVM meta-model, called Method Requirements Specification Language (MRSL), is 
developed to express the MRS. In contrast to other CAME environments, in which a 
specification language is developed to express the method fragments, MRSL is used 
only for describing the MRS made by the method engineer. This step is supported by 
the MRS Creator. The MRS thus obtained will then be checked for inconsistencies 
such as incompleteness and non-conformity with the MVM; this is performed through 
the Method Analyzer. The analysis results are used to provide guidance for refining 
the MRS. After obtaining the desired MRS, Method Design is performed as the next 
step. Method Design focuses on the translation of the MRS into an instantiation of the 
MVM. In order to perform this instantiation, for every concept of the given MRS, 
decisions need to be made as to the type, relationships, and attributes of the concept. 
The output of this step is called a plan of instantiation, which can be modified by the 
method engineer to obtain the preferred instantiation.  

The Method Construction and Implementation (MCI) step is then commenced, in 
which method fragments are created by means of the Component Builder. In the 
method assembly approach used in MERU, method fragments are generated auto-
matically, based on the given MRS. Method fragments are described in terms of MRS 
Components (MRSCs), which only consider the product part of the methods. The 
Component Builder uses several predefined rules to identify MRSCs by retrieving the 
appropriate method fragments from the method base (hence the tool’s name). The step  
 



 Computer-Aided Method Engineering: An Analysis of Existing Environments 533 

is concluded by giving the resulting method description to a metaCASE called 
RAPID, which generates the appropriate CASE tool. 

2.7   Method Editor 

Method Editor takes advantage of UML as its meta-modeling technique for express-
ing the method fragments [3]. Class diagrams are used for the specification of product 
fragments, while process fragments are described by means of activity diagrams. The 
process part of a method is attached to each corresponding product fragment, i.e. each 
product fragment and its development procedure will be shown as a pair of diagrams, 
a class diagram and an activity diagram.  

Method Editor is complemented by a CASE part, so that the Method Editor’s out-
put, the resulting ISD method, is fed to the CASE part as input. The CASE part con-
sists of a Diagram Generator as the CASE generator, and a Navigator Generator 
which develops a Navigation Browser guiding the application engineer through the 
process of software development. An OCL checker [26] is provided as a part of the 
resulting CASE tool to check method fragments against the predefined constraints. 
Any inconsistency seen in the development process will affect the continuation of the 
whole process, i.e. the process part of methods will be controlled dynamically, forcing 
adherence to the predefined rules of the method.  

The recent version of Method Editor is extended by means of a Version Control 
System [26],  thereby supporting version control and change management of methods 
or their parts. 

3   Analysis of Existing CAME Environments  

In this section, we examine the CAME environments introduced in the previous sec-
tion. Table 1 is a summary of the major features and characteristics of existing CAME 
environments. In Table 2, the environments have been analyzed and compared with 
each other based on a few general criteria. In analyzing the environments based on 
their Number of Features, environments with numerous implemented features, par-
tially implemented features, and very few implemented features have been marked as 
High, Average and Low respectively. The number and importance of the innovations  
 

Table 1. Summary of existing CAME environments 

Environment 

Coverage of ME 
Process

SM
E

A
pp

ro
ac

h Method Representation 
Language

  P
ro

ce
ss

  
  E

na
ct

m
en

t  
 S

up
po

rt
 

 C
A

SE
 T

oo
l  

 G
en

er
at

or
 

  P
ro

du
ct

- 
 O

ri
en

te
d 

 P
ro

ce
ss

- 
 O

ri
en

te
d 

  M
R

A
 

  M
D

 

  M
I 

  M
T

 Textual 
Language Meta-model 

Semantic 
Data-
Model 

Decamerone Assembly-based MEL MDM MDM 
MENTOR Assembly-based, 

Paradigm-based - NATURE - 

MERET Method
Customization 

Methodology 
Representation 

Model
ASDM ASDM 

MERU Assembly-based MRSL MVM - 
MetaEdit+ Assembly-based - GOPPRR - 
MethodBase Method

Customization Object Z - - 
Method Editor Assembly-based MEL UML -  



534 A. Niknafs and R. Ramsin 

that each CAME environment has offered is evaluated and rated as its Contributions. 
We have also strived to provide a measure of the documentation available on each 
environment: If more than one author have published more than one paper on a CAME  

environment at different levels of detail, its Available Literature is marked as High; if 
more than one author have published papers on a CAME environment but they do are 
not much different as to their span and/or level of detail, it has been marked as Aver-
age; and if available publications on a CAME environment are rare or do not have the 
needed level of detail, it has been marked as Low. 

In order to provide a more detailed analysis of CAME environments, we propose 
the ISO/IEC 9126 quality model [27] as a useful evaluation framework. ISO/IEC 
9126 is one of a large group of internationally recognized standards applicable across 
a wide range of applications. We have instantiated the model to fit the CAME 
domain, and the CAME environments described above have been evaluated based on 
this adapted model, with the results tabulated for enhanced legibility. 

Table 2. General analysis and comparison of existing CAME environments 

Environment Use Number of Features Contributions Available Literature Year of Introduction 

Decamerone Research High High Average 1995 
MENTOR Research Average Average Average 1996 
MERET  Research Low Average Low 1992 
MERU Research High High Low 2001 

MetaEdit+ Research and 
Commercial High Average High 1994 

MethodBase Research Low Average Low 1992 
Method Editor Research Average Average Average 2003 

3.1   The ISO/IEC 9126 Quality Model 

ISO/IEC 9126 was originally developed in 1991 by the International Organization of 
Standards to provide a framework for the evaluation of software quality. However, 
ISO/IEC 9126 does not provide requirements for software, but defines a quality 
model which is applicable to any kind of software. This model defines six product 
characteristics which are further subdivided into a number of sub-characteristics (See 
Table 3). These characteristics and sub-characteristics constitute a detailed model for 
evaluating any software system. To be able to take different requirements of different 
systems into account, the model needs to be instantiated for each concrete domain by 
weighing the different characteristics and sub-characteristics accordingly.  

3.2   A Quality Model for CAME Environments  

Our quality model for CAME environments is an adaptation of ISO/IEC 9126; i.e. we 
have applied the model to the domain of method engineering. Table 4 illustrates our 
CAME quality model. The three characteristics of Functionality, Usability and Port-
ability of the original quality model can be assessed based on the available literature; 
we have therefore focused on these characteristics. We use these quality characteris-
tics and sub-characteristics to evaluate the CAME environments discussed earlier in 
this paper. 



 Computer-Aided Method Engineering: An Analysis of Existing Environments 535 

Table 3. ISO/IEC 9126 characteristics and sub-characteristics [27] 

Characteristic Sub-Characteristics Definition 
Suitability The presence of the required functions 
Accurateness The correctness of the results 
Interoperability Ability of software to interact with other systems 

Functionality 

Security The ability of software to prevent unauthorized access 
Maturity The frequency of failure by faults in the software 
Fault Tolerance The capability of software to maintain its level of performance under stated 

conditions for a stated period of time 

Reliability 

Recoverability The capability of software to resume working and recover the data after failure 
Understandability The effort needed for use the software 
Learnability The easiness of learning how the software works  
Operability The effort needed for operating the software 

Usability 

Attractiveness The quality of the user interface 
Time Behaviour The response and processing times Efficiency 
Resource Utilisation The resource utilisation  
Analysability The effort needed for diagnosis of faults  
Changeability The effort needed for modification 
Stability The risk of modification effects 

Maintainability 

Testability The effort needed for testing the modified software 
Adaptability The opportunity for moving the software to other environments 
Installability The easiness of software installation 
Co-existence The ability of software to coexist with other software systems in a common 

environment  

Portability 

Replaceability The effort needed for replacing other software  
All characteristics Compliance The compliance of software with regulations and rules 

Table 4. The CAME Quality Model 

Characteristic Sub-Characteristics Criteria Description 
Suitability  Evaluates if the CAME environment offers a suitable toolkit for the  

development of project-specific CASE tools. 
 Evaluates if the CAME environment supports various SME approaches. 
 Evaluates if the CAME environment supports process enactment. 
 Evaluates if the CAME environment offers facilities to define semantics of 
method fragments. 

Accurateness  Evaluates if ample knowledge is available as to the results of own tests or 
tests published by third parties that indicate the degree of effectiveness of 
the CAME environment. 

Functionality 

Functionality  
compliance 

 Evaluates if the CAME environment supports standards and techniques 
such as: UML, XML … 

Understandability  Evaluates the level of understandability and usability of the interfaces. 
 Evaluates the level of understandability and usability of the method  
representation language. 

Learnability  Evaluates if the CAME environment has adequate documentation. 
 Evaluates the level of learnability of the method representation language. 

Operability  Evaluates if the CAME environment has graphical tools that facilitate the 
development of Method fragments. 

Usability 

Attractiveness  Evaluates if the CAME environment has attractive graphical design. 

Installability  Evaluates if the provider provides technical support and online help for the 
installation of the CAME environment. 

Portability 

Co-existence  Evaluates the capacity of the CAME environment to coexist with other 
independent CAME or MetaCASE environments in a common  
environment sharing common resources. For example, whether other  
MetaCASE tools can be installed to satisfy the CASE generation  
functionality. 



536 A. Niknafs and R. Ramsin 

3.3   Evaluation Results 

The results are summarized into a matrix relating the characteristics and sub-
characteristics to the features offered by the CAME environments reviewed (See 
Table 5) Deficiencies identified during the evaluation are indicated by a number, and 
an explanation is given in the legend below of how the system failed to meet the crite-
ria in these cases. 

Table 5. Evaluation of the CAME environments using the CAME Quality Model 

Quality Characteristics 
Functionality Usability Portability 

Environments 

Su
ita

bi
lit

y 

A
cc

ur
ac

y 

Fu
nc

tio
na

lit
y 

co
m

pl
ia

nc
e 

Si
m

pl
ic

ity
 

L
ea

rn
ab

il
it

y 

O
pe

ra
bi

li
ty

 

A
ttr

ac
tiv

en
es

s 

In
st

al
la

bi
li

ty
 

C
o-

ex
is

te
nc

e 

Decamerone 3,4   7      
MENTOR 4         
MERET 1,2,3,5     -   - 
MERU 3,4    -     
MetaEdit+ 3,4,5         
MethodBase 2,3,4   6 - -   - 
Method Editor 3,4        - 
 
 

Legend: 
 Supported to a good extent 
 Not supported 

-  Inadequate information to assess 
1. Lack of CASE tool generation facilities 
2. Partial coverage of the ME process 
3. Inadequate support for SME approaches 
4. Lack of semantic definition features for method fragments  
5. Poor process support  
6. Does not provide graphical meta-modeling language 
7. Poor graphical meta-modeling language 

4   Conclusion and Future Work 

In this paper, we have summarized the main efforts performed in the development of 
CAME environments. Although CAME technology dates back to the early days of 
method engineering, it is not mature enough to support the whole process of situ-
ational method engineering. Each current CAME prototypes has its own advantages 
and shortcomings. In the following, the main shortcomings that current CAME tech-
nology suffers from are listed: 
 

• Weak process enactment support: Even though product-related issues of ISD 
methods are fully considered and have been provided with computerized support, 
the process-related issues still need to be researched in order to find suitable ways 
for representing method process models. Process Modeling Languages (PML) [28, 
29, 30] can be considered as suitable means for process representation; however, 
guidelines should be attached to a process described in a PML in order to support 
process enactment in actual ISD projects. 



 Computer-Aided Method Engineering: An Analysis of Existing Environments 537 

• Lack of support for situational method engineering approaches: The assembly-
based approach is the only one adequately addressed. Paradigm-based and Exten-
sion-based approaches should also be supported by CAME environments.  

• Partial coverage of method engineering process: Although method design and 
implementation phases are properly supported, there are still severe shortcomings 
as to support for method requirements analysis and method test.  

• Method verification: Verifying the newly built method may be the last phase of the 
method engineering process, but it is never the least. Method verification requires a 
criterion set which a method can be checked against. But the difficult part of the 
task is determining how to perform the evaluation. Due to this difficulty, method 
verification is one of the hardest to automate. Current CAME prototypes perform 
method test through prompting feedback from the users of the method. Therefore, 
the newly developed method would not be verified until it is tested in an actual 
project situation.  

• Weak method representation mechanisms: As mentioned in [31], there is no ulti-
mate method representation language. Therefore, method representation languages 
are composed of fragments originating from several languages in a bid to obtain a 
purpose-fit language. This leads to a situation which is called Method Engineering 
of Method Engineering Languages. New method engineering languages need to be 
developed to support method verification.  

• Lack of support for semantic definitions of method fragments: We believe that 
semantic meta-models should be an integral part of any CAME environments’ 
Method Base, but few of the existing CAME environments address this issue. The 
lack of means for capturing and specifying the semantic aspects of method frag-
ments leads to complications; examples are the selection and assembly of method 
fragments that may not be semantically composable into a method [32]. Describing 
the semantics of method fragments is one of the major problems in SME. To over-
come this problem, method fragments need to be described in a complete and un-
ambiguous way. However, as stated in [1], since methods and their semantics are 
interpreted differently by different human beings, there is no unique meaning for a 
method fragment. Nevertheless, method fragments can be anchored, i.e. described 
in terms of unambiguously defined concepts and relationships between those con-
cepts, in a system for which the meaning is defined. Such systems are defined as 
ontologies in Decamerone and MERET. 

Our future work focuses on the development of a CAME environment supporting the 
Hybrid Methodology Design approach [14]. This approach to methodology design 
uses alternative method engineering approaches for different parts of the process and 
at different levels of abstraction. It also provides an iterative and incremental frame-
work allowing flexible application of four method development approaches, namely:  

• Instantiation approach: with the focus on instantiating an already available process 
meta-model. 

• Artifact-oriented approach: devising a seamless complementary chain of artifacts 
and building the process around it. 

• Composition approach: using one of the already available libraries of process  
patterns. 



538 A. Niknafs and R. Ramsin 

• Integration approach: integrating features, ideas and techniques from existing 
methods. 

 

Two of these approaches, Instantiation and Composition, are analogous to the Para-
digm-based and Assembly-based approaches of method engineering, whereas the 
Integration and Artifact-oriented approaches are relatively novel in this context.  The 
Integration approach is particularly nonconformist in comparison to usual method 
engineering practices, in that it promotes integrating ideas and techniques directly 
from existing methods, instead of first dissecting the methods into method fragments 
and then storing them in a method repository (as is common practice in the assembly-
based method engineering approach); the motivation behind this stance is the observa-
tion that “breaking down the methods into fragments may result in loss of synergy 
and functional capacity” [14].  

Acknowledgments. We wish to thank the Research Vice-Presidency of Sharif 
University of Technology and Iran Telecommunication Research Center (ITRC) for 
sponsoring this research. Also, special thanks to the anonymous reviewers of this 
paper for their helpful feedback. 

References 

1. Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young, Utrecht (1997) 
2. Rolland, C.: A Primer for Method Engineering. In: Proceedings of the INFormatique des 

ORganisations et Systèmes d’Information et de Décision (INFORSID 1997), Toulouse 
(1997) 

3. Saeki, M.: CAME: The First Step to Automated Method Engineering. In: Workshop on 
Process Engineering for Object-Oriented and Component-Based Development, Anaheim, 
CA (2003) 

4. Arni-Bloch, N.: Towards a CAME Tools for Situational Method Engineering. In: Proceed-
ings of the 1st International Conference on Interoperability of Enterprise Software and 
Applications, Geneva (2001)  

5. Dahanayake, A.N.W.: Computer-Aided Method Engineering: Designing CASE Reposito-
ries for the 21st Century. Idea Group Publishing, Delft (2001) 

6. Kumar, K., Welke, R.J.: Methodology engineering: a proposal for situation-specific meth-
odology construction. In: Cotterman, W.W., Senn, J.A. (eds.) Systems Analysis and De-
sign: A Research Agenda, pp. 257–268. John Wiley & Sons, Chichester (1992) 

7. MetaCase Consulting: Method Workbench User’s Guide, MetaCase Consulting, Jy-
väskylä, Finland (2005),  
http://www.metacase.com/support/40/manuals/mwb40sr2a4.pdf 

8. Saeki, M., Wenyin, K.: Specifying software specification and design methods. In: Wijers, 
G., Wasserman, T., Brinkkemper, S. (eds.) CAiSE 1994. LNCS, vol. 811, pp. 353–366. 
Springer, Heidelberg (1994) 

9. Brinkkemper, S., Saeki, M., Harmsen, F.: A Method Engineering Language for the De-
scription of Systems Development Methods. In: Dittrich, K.R., Geppert, A., Norrie, M.C. 
(eds.) CAiSE 2001. LNCS, vol. 2068, pp. 473–476. Springer, Heidelberg (2001) 

10. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method 
Engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110. 
Springer, Heidelberg (2003) 



 Computer-Aided Method Engineering: An Analysis of Existing Environments 539 

11. Gupta, D., Prakash, N.: Engineering Methods from Method Requirements Specifications. 
J. Requirements Engineering 6(3), 135–160 (2001) 

12. Leppanen, M.: Conceptual Analysis of Current ME Artifacts in Terms of Coverage: A 
Contextual Approach. In: 1st Workshop on Situational Engineering Processes, Paris 
(2005) 

13. Prakash, N., Goyal, S.B.: Towards a Life Cycle for Method Engineering. In: 12th Work-
shop on Exploring Modeling Methods in Systems Analysis and Design (2007) 

14. Ramsin, R.: The Engineering of an Object-Oriented Software Development Methodology. 
Ph.D. Thesis, University of York (2006),  
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2006-12.pdf 

15. Tekinerdoğan, B.: Synthesis-Based Software Architecture Design. Ph.D. Thesis, Univer-
sity of Twente (2000) 

16. Heym, M., Osterle, H.: A Semantic Data Model for Methodology Engineering. In: 5th 
Workshop on Computer-Aided Software Engineering, pp. 142–155. IEEE Press, Los 
Alamitos (1992) 

17. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, 
J. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996) 

18. Tolvanen, J.P.: Incremental Method Engineering with Modeling Tools. Ph.D. Thesis, Uni-
versity of Jyväskylä (1998) 

19. Koskinen, M., Marttiin, P.: Process Support in MetaCASE: Implementing the Conceptual 
Basis for Enactment Process Models in MetaEdit+. In: Ebert, J., Lewerentz, C. (eds.) 
Software Engineering Environments, pp. 110–123. IEEE Computer Society Press, Los 
Alamitos (1997) 

20. Koskinen, M.: Beyond Process Modelling Languages: A Metamodelling Approach to Cus-
tomizable Concepts and Enactability in MetaCASE. In: Proceedings of the 4th Doctoral 
Consortium on Advanced Information Systems Engineering, Barcelona (1997) 

21. Brinkkemper, S., Harmsen, F.: Design and Implementation of a Method Base Management 
System for a Situational CASE Environment. In: Proceedings of the 2nd Asia-Pacific 
Software Engineering Conference, pp. 430–438. IEEE Computer Society, Los Alamitos 
(1995) 

22. Si-Said, S., Rolland, C., Grosz, G.: MENTOR: A Computer Aided Requirements Engi-
neering Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.) CAiSE 
1996. LNCS, vol. 1080, pp. 22–43. Springer, Heidelberg (1996) 

23. Plihon, V., Rolland, C.: Genericity in Method Construction. In: Proceedings of the 4th 
Asia-Pacific Software Engineering Conference, pp. 302–311. IEEE Computer Society, 
Washington, DC (1997) 

24. Rolland, C., Plihon, V.: Using Generic Method Chunks to Generate Process Model Frag-
ments. In: Proceedings of the 2nd International Conference on Requirements Engineering 
(ICRE 1996), pp. 173–181. IEEE Computer Society, Colorado (1996) 

25. Plihon, V.: MENTOR: An Environment Supporting the Construction of Methods. In: Pro-
ceedings of the 3rd Asia-Pacific Software Engineering Conference, pp. 384–392. IEEE 
Computer Society, Washington, DC (1996) 

26. Saeki, M.: Configuration Management in a Method Engineering Context. In: Dubois, E., 
Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 384–392. Springer, Heidelberg (2006) 

27. International Organization for Standardization (ISO), International Electrotechnical Com-
mission (IEC): ISO/IEC: 9126: Software engineering - Product quality; Parts 1-4. Geneva 
(2004) 



540 A. Niknafs and R. Ramsin 

28. Cugola, G., Ghezzi, C.: Software processes: a retrospective and a path to the future Soft-
ware Process. J. Improvement and Practice 4(3), 101–123 (1998) 

29. Zamli, K.Z., Lee, P.A.: Taxonomy of process modeling languages. In: ACS/IEEE Interna-
tional Conference on Computer Systems and Applications, pp. 435–437. IEEE Computer 
Society, Washington, DC (2001) 

30. Zamli, K.Z.: Process Modeling Languages: A Literature Review. Malaysian Journal of 
Computer Science 14(2), 26–37 (2001) 

31. Harmsen, A.F., Saeki, M.: Comparison of Four Method Engineering Languages. In: Pro-
ceedings of the IFIP TC8, WG8.1/8.2 working conference on method engineering: princi-
ples of method construction and tool support, pp. 209–231. Chapman & Hall, London 
(1996) 

32. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modeling based assembly techniques for 
situational method engineering. J. Information Systems 24(3), 209–228 (1999) 


	Computer-Aided Method Engineering: An Analysis of Existing Environments
	Introduction
	CAME Environments
	MERET
	MethodBase
	MetaEdit+
	Decamerone
	MENTOR
	MERU
	Method Editor

	Analysis of Existing CAME Environments
	The ISO/IEC 9126 Quality Model
	A Quality Model for CAME Environments
	Evaluation Results

	Conclusion and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




