
G.A. Lewis, I. Poernomo, and C. Hofmeister (Eds.): CBSE 2009, LNCS 5582, pp. 54–68, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Process Patterns for Component-Based Software
Development

Ehsan Kouroshfar, Hamed Yaghoubi Shahir, and Raman Ramsin

Department of Computer Engineering
Sharif University of Technology

kouroshfar@ce.sharif.edu, yaghoubi@ieee.org, ramsin@sharif.edu

Abstract. Component-Based Development (CBD) has been broadly used in
software development, as it enhances reusability and flexibility, and reduces the
costs and risks involved in systems development. It has therefore spawned
many widely-used approaches, such as Commercial Off-The-Shelf (COTS) and
software product lines. On the other hand, in order to gain a competitive edge,
organizations need to define custom processes tailored to fit their specific de-
velopment requirements. This has led to the emergence of process patterns and
Method Engineering approaches.

We propose a set of process patterns commonly encountered in component-
based development methodologies. Seven prominent component-based method-
ologies have been selected and reviewed, and a set of high-level process patterns
recurring in these methodologies have been identified. A generic process
framework for component-based development has been proposed based on these
process patterns. The process patterns and the generic framework can be used for
developing or tailoring a process for producing component-based systems.

Keywords: Component-Based Development, Software Development Method-
ologies, Situational Method Engineering, Process Patterns.

1 Introduction

Although Component-Based Development (CBD) is not a novel approach, it is still
extensively used for building various types of software systems, and is expected to
remain popular for the foreseeable future. There exist several software development
methodologies that support the construction of component-based systems, and the
domain has matured over the years. When viewed collectively, CBD methodologies
have indeed addressed all the relevant issues; however, none of the methodologies
covers all the aspects of component-based software development. A general method-
ology can resolve this through addressing the deficiencies while being customizable
according to the specifics of the project situation at hand. An alternative approach to
tackling this problem is Assembly-Based Situational Method Engineering (SME), in
which a bespoke methodology is constructed according to the characteristics of the
project situation at hand. The construction process involves selecting and assembling
reusable process fragments from a repository [1, 2].

 Process Patterns for Component-Based Software Development 55

Process patterns were first defined as “the patterns of activity within an organiza-
tion (and hence within its project)” [3]. Later definitions focused on defining patterns
as practical process chunks recurring in relevant development methodologies. One
such definition, focusing on the object-oriented paradigm, defines a process pattern as
“a collection of general techniques, actions, and/or tasks (activities) for developing
object-oriented software” [4]. Process patterns are typically defined at three levels of
granularity: Tasks, Stages and Phases [4]. A Task process pattern depicts the detailed
steps to perform a specific task. A Stage process pattern includes a number of Task
process patterns and depicts the steps of a single project stage. These steps are often
performed iteratively. Finally, a Phase process pattern represents the interactions
between its constituent Stage process patterns in a single project phase. Phase proc-
ess patterns are typically performed in a serial manner.

Since process patterns describe a process fragment commonly encountered in soft-
ware development methodologies, they are suitable for being used as process compo-
nents. They can thus be applied as reusable building blocks in an assembly-based
SME context, providing a repository of process fragments for assembling processes
that are tailored to fit specific projects or organizational needs. The OPEN Process
Framework (OPF) is an example of using process patterns for general method engi-
neering purposes [5]. Sets of process patterns can also be defined for specific devel-
opment approaches; the object-oriented process patterns of [4], and the agile process
patterns proposed in [6] are examples of domain-specific patterns, and have indeed
inspired this research.

Although a number of process patterns have been introduced in the context of
component-based development [7], a comprehensive set of patterns providing full
coverage of all aspects of component-based development has not been previously
proposed. We propose a set of process patterns commonly encountered in component-
based development. The patterns have been identified through studying seven
prominent component-based methodologies. A generic process framework, the Com-
ponent-Based Software Development Process (CBSDP), has been constructed based
on these process patterns. The generic framework and its constituent process patterns
can be used for developing or tailoring a methodology for producing component-
based systems. It should be noted that the proposed framework is not a new method-
ology for component-based development, but rather a generic pattern-based SME
model for CBD: method engineers can instantiate the generic framework and populate
it with instances of the constituent process patterns according to the particulars of
their CBD projects. This approach is already prevalent in methodology engineering
frameworks such as OPEN/OPF [8], SPEM-2 [9], and the Eclipse Process Framework
(EPF) [10]; indeed, the proposed framework and process patterns can be defined and
used as method plug-ins in the Eclipse Process Framework Composer (EPFC) tool.

The rest of the paper is structured as follows: Section 2 provides brief descriptions
of the seven CBD methodologies used as pattern sources; Section 3 contains the pro-
posed generic framework for component-based software development (CBSDP); in
Section 4, the proposed phase-, stage-, and task process patterns are explained;
Section 5 validates the patterns through demonstrating how the proposed patterns
correspond to the methodologies studied; Section 6 contains the conclusions and sug-
gestions for furthering this research.

56 E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin

2 Pattern Sources: Component-Based Software Development
Methodologies

The seven methodologies that have been studied for extracting process patterns are:
UML Components, Select Perspective, FORM, KobrA, Catalysis, ASD, and RUP.
These methodologies were selected because they are well-established and mature, and
also because adequate resources and documentation are available on their processes.
We briefly introduce each of these methodologies in this section.

UML Components is a UML-based methodology aiming to help developers use
technologies such as COM+ and JavaBeans for defining and specifying components
[11]. The process shows how UML can be used in a CBD context; that is, to define
components, their relations, and their use in the target software system.

Select Perspective was the result of combining the object modeling language intro-
duced in [12] with the Objectory use-case-driven process (later integrated into RUP).
In its original form, it incorporated business modeling, use case modeling and class
modeling activities. A CBD extension was later added, addressing business-oriented
component modeling, component modeling of legacy systems, and deployment mod-
eling. Select is based on a service-oriented architecture adapted from the Microsoft
Solution Framework application model. It constitutes of three types of services: user
services, business service, and data services.

Feature-Oriented Domain Analysis (FODA) was introduced in 1990, and presented
the idea of using features in requirement engineering [13]. It was later extensively
used in several product-line engineering methods. One such method is the Feature-
Oriented Reuse Method (FORM) [14, 15], which has added the features of architec-
tural design and construction of object-oriented components to FODA, thus providing
a CBD methodology.

The KobrA methodology is based on a number of advanced software engineering
technologies, including product-line engineering, frameworks, architecture-centric
development, quality modeling, and process modeling [16, 17]. These methods have
been integrated into KobrA with the specific aim of systematic development of high
quality, component-based software systems.

The Catalysis methodology is a component-based approach based on object-
oriented analysis and design [18]. It has been influenced by other object-oriented
methodologies such as Syntropy and Fusion. Catalysis provides a framework for
constructing component-based software.

 The Adaptive Software Development (ASD) methodology was introduced in
1997 [18], and is the only Agile method that specifically targets component-based
development.

The Rational Unified Process (RUP) is the most well known of the selected
methodologies [18]. As a third-generation object-oriented methodology, RUP is use-
case-driven and architecture-centric, and incorporates specific guidelines for compo-
nent-based development. It should be noted, however, that RUP has evolved into a
method engineering framework (Rational Method Composer – RMC); a further testi-
mony to the changing nature of software engineering, stressing the importance of
process patterns in this new trend.

 Process Patterns for Component-Based Software Development 57

3 Proposed Component-Based Software Development Process
(CBSDP)

A thorough examination was conducted on the selected methodologies, as a result of
which, 4 phase process patterns, 13 stage process patterns, and 59 task process pat-
terns were identified.

The process patterns have been organized into a generic process framework for
CBD methodologies. This framework, which we have chosen to call the Component-
Based Software Development Process (CBSDP), is shown in Figure 1. CBSDP
consists of four phases (each considered a phase process pattern): Analysis, Design,
Provision, and Release.

Requirements

Outline plan

Define
infrastructure

Component
based justify

Analysis Design

Component
Identification

Component
Specification

Component
Interaction

Provision

Assembly

Deploy

Test in the
large

Release

Component
Reuse

Component
Test

Concurrent
Engineering

Legend
CBDStagePhase Optional

Fig. 1. The proposed Component-Based Software Development Process (CBSDP)

The process begins with the Analysis phase, in which the requirements of the
system are elicited first. The applicability of the component-based approach to the
project at hand is then investigated; after all, the component-based approach may not
be suitable for the project. The infrastructure of the project is then defined, and a
preliminary project plan and schedule is outlined. In the Design phase, the compo-
nents of the system are identified; based on the interactions among these components,
complete specifications are defined for each component. In the Provision phase,
components are classified into two categories: Those which are retrieved from a re-
pository of reusable components, and those which are constructed from scratch. Com-
ponents are then developed and tested individually. In the Release phase, components
are assembled together to form the system proper. After system testing is conducted,
the end-product will be deployed into the user environment.

It is worth noting that CBSDP is a framework that guides the method engineer
when assembling instances of process patterns. Not all stage process patterns in
CBSDP are mandatory; pattern selection is based on the needs of the project situation
at hand. For example, suppose that a method engineer needs to construct a methodol-
ogy for a product line project that is similar to a previous project. Hence, the Compo-
nent-based Justify stage will not be required in the Analysis phase. In addition, the
Concurrent Engineering stage in the Provision phase could be omitted, since it may
be possible to use existing components instead of constructing new ones.

58 E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin

4 Proposed Stage and Task Process Patterns

In this section, details of the Stage process patterns constituting each of the four
aforementioned phases are discussed. Furthermore, some of the constituent Task
process patterns are briefly reviewed in the descriptions. As previously mentioned,
these process patterns can be used independently by method engineers to ex-
tend/enhance an existing process, or to construct a new component-based software
development methodology.

It is important to note that the arrows connecting the task process patterns do not
imply any sequencing. Although it is logical to assume that some of the tasks will
precede others, we do not intend to impose any such ordering. The main purpose of
this approach is to enable the method engineer to decide the order of the tasks based
on the specifics of the project situation at hand.

4.1 Requirements

Requirements Engineering is where the high level Requirements of the target system
are defined (Figure 2). The inputs to this stage include the Project Vision and the
Customer’s Viewpoints on the different aspects of the project. The key factor in com-
ponent-based development projects – as emphasized in many component-based meth-
odologies such as Select Perspective, UML Components, and KobrA – is how to use
previous experience and existing components in future projects. In order to support
this purpose, Existing Components and Previous Projects’ Assets are two important
inputs to this stage.

Project Description,
Project Vision,
Existing Components,
Previous Projects,
Customer’s Viewpoint

Requirements
Document,
Models

Problem
Domain
Analysis

Responsibility
Analysis

Interaction
Analysis

Get
Customer’s
Approval

Legend

Task

Fig. 2. Constituents of the Requirements stage process pattern

Requirements are defined during the Problem Domain Analysis task. During Inter-
action Analysis, the interactions of the system with its environment are examined. The
system boundary and the external actors interacting with the system are thus deter-
mined. In the Responsibility Analysis task, the main functionalities of the system are
investigated, and functional and non-functional requirements are identified through
active collaboration with the customer. The customer’s approval is obtained through
the Get Customer’s Approval task.

 Process Patterns for Component-Based Software Development 59

4.2 Define Infrastructure

The Project Infrastructure should be defined at the beginning of the project. As
shown in Figure 3, it includes Standards, Teams Definition, Tools used during the
project, and the Development Platform. The tailored version of the development proc-
ess to be used in the project is also determined, with Method Constraints (covering
modeling, testing, build, and release activities) duly defined. In product-line engineer-
ing and component-based projects, the Project Infrastructure is a key product because
it can be used in various projects. Similarly, the infrastructure of previous projects can
be tailored for use in future projects.

The inputs to this stage are the requirements extracted in the Requirements stage,
along with previous experiences compiled in the Previous Projects document, Exist-
ing Infrastructure, and the Project Plan. As a result, the Project Infrastructure Docu-
ment and Team Definition are produced. The requirements document may be refined
during this stage.

In cases where the organization imposes predefined standards and development
platforms, the Select Standards and Specify Development Platforms tasks are not
applicable. These tasks have therefore been defined as optional.

Requirements,
Previous Projects,
Existing Infrastructure,
Project Plan

Infrastructure
Document,
Team
Definition

Define Teams

Select
Standards

Select Tools

Define
Methodology
Constraints

Specify
Development

Platforms

Legend
Task

Optional

Fig. 3. Constituents of the Define-Infrastructure stage process pattern

4.3 Outline Plan

In this stage of the CBSDP (Figure 4), the initial project management documents
(such as project scope, time schedule, etc.) are produced. The management documents
are used and updated during the development lifecycle.

The inputs to this stage are the Requirements Document, Infrastructure Document,
Existing Components, and Project Objectives. Preliminary estimation of time and
resources and the definition of the project scope are also performed during this stage.
An initial viable schedule is then outlined for the project. Based on the team definition
provided in the infrastructure document, the work units are assigned to team mem-
bers. Initial risk assessment activities are also conducted in this stage.

In component-based projects, there is a need to study the market in order to obtain
information about existing systems, similar solutions, and reusable components. This
information can be used in time and resource estimation, and also when preparing an
initial schedule for the project.

60 E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin

The Project Plan, Management Document and Risk Assessment are the deliver-
ables of this stage. The management document contains all the information needed for
managing the project. It includes the project plan and schedule (among other things),
and may be refined during later stages of the project.

Requirements
Document,
Infrastructure Document,
Existing Components,
Project Objectives

Project Plan,
Management
Document,
Risk Assessment

Time and
Resource

Estimation

Initial Risk
Assessment

Define
Project Scope

Create Initial
Schedule

Legend
Task

Fig. 4. Constituents of the Outline-Plan stage process pattern

4.4 Component-Based Justify

This stage determines whether the component-based approach can be used on the
project at hand (Figure 5). It is a critical stage of the analysis phase since it checks if
the project makes sense in a component-based context. It makes use of the Require-
ments Document, Risk Assessment Document, Existing Components and Previous
Projects experience to produce the Feasibility Study and the Business Case, which
justifies the project financially.

Requirements Document,
Risk Assessment ,
Existing Components,
Previous Projects

Feasibility Study ,
Business Case

Reusability
Analysis

Financial
Analysis

Market
Analysis

Technical
Analysis

Legend
Stage

Task

CBD

Fig. 5. Constituents of the Component-based-Justify stage process pattern

During the Technical Analysis task, we investigate whether it is possible to build
the system and realize all of its functional features on the basis of components. Since
Reusability Analysis contains various tasks, it is defined as a stage process pattern. In
this stage, the component repository is first checked in order to assess the applicabil-
ity of existing components; furthermore, the system components which are to be pro-
duced during the current project are explored as to their potential reusability. During
the Market Analysis task, we search for similar components and systems available on
the market. We also investigate the marketability of the components developed for the
new system. Based on this information, Financial Analysis is performed to assess the
economic feasibility of the project.

 Process Patterns for Component-Based Software Development 61

4.5 Component Identification

The second phase, Design, starts with the Component Identification stage (Figure 6).
It accepts the Requirements Document, Existing Interfaces, Existing Components,
Previous Projects, and the Business Case as input. The main goal of this stage is to
create an initial set of interfaces and component specifications. It determines the
System Interfaces from the interactions between the system and its environment.
Business Interfaces and Technical Interfaces are also identified in this stage. Business
Interfaces are abstractions of all the information that should be managed by the sys-
tem, while Technical Interfaces manage the technical components (such as database
components). The Business Type Model contains the specific business information
that must be maintained by the system, and will be used in the Component Specifica-
tion stage. Furthermore, an Initial Architecture and Components Specification are
defined in this stage. At the end of this stage, the Business Type Model, System Inter-
faces, Business Interfaces, and Component Specs and Architecture will be produced.

Requirements
Document,
Existing Interfaces,
Existing Components,
Previous Projects,
Business Case

Business Type
Model,
System Interfaces,
Business Interfaces,
Component Specs
and Architecture

Develop
Business Type

Model

Define Initial
Architecture

Identify
Business
Interfaces

Define Initial
Component

Specification

Identify
System

Interfaces

Identify
Technical
Interfaces

Legend
Task

Optional

CBD

Fig. 6. Constituents of the Component-Identification stage process pattern

4.6 Component Interaction

After defining an initial set of components and their interfaces, we should decide how
these components should work together. This task is performed in the Component
Interaction stage (Figure 7), which uses and refines the Business Interfaces, System
Interfaces, Technical Interfaces, and Component Specifications and Architecture.

Business operations needed by system to fulfill all of its expected functionality are
defined. Existing design patterns are used for refining the Interfaces and Component
Specs. Certain optimization criteria, such as minimization of calls, removal of cyclic
dependencies, and normalization of operations and interfaces should be considered
during this refinement.

Business Interfaces,
System Interfaces,
Technical Interfaces,
Component Specs and
Architecture

Interfaces,
Component Specs
& Architecture

Define
Business

Operations

Refine
Component

Specs

Refine
Interfaces

Refine
Architecture

Legend

Task

CBD

Fig. 7. Constituents of the Component-Interaction stage process pattern

62 E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin

4.7 Component Specification

This is the last stage of the Design phase; this means that all the information needed
for building the components should be provided to the development teams. In this
stage (Figure 8), Design by Contract is applied through specifying preconditions and
postconditions for class operations. A precondition is a condition under which the
operation guarantees that the postcondition will be satisfied. Furthermore, constraints
are added to components and interfaces to define how elements in one interface relate
to elements in others. Furthermore, Business Rules and Invariants are added to the
component specifications. Finally, interfaces will be merged or broken in order to
provide simpler interfaces.

Business Type Model,
Interfaces,
Component Specs and
Architecture

Interfaces,
Component Specs
& Architecture

Specify
Operation Pre/
Postconditions

Specify
Interface

Constraints

Specify
Component
Constraints

Add Business
Rules/

Invariants

Legend
Task

Optional

CBD

Fig. 8. Constituents of the Component-Specification stage process pattern

4.8 Component Reuse

The Component Reuse stage (Figure 9) determines a specific strategy for providing
the components which can be constructed or purchased. All components should be
classified according to this strategy. For example, one strategy is to build Business
Components, and purchase all the others. Based on the acquisition strategy, compo-
nent specifications can be issued to the organization’s development teams, commis-
sioned to trusted partners, or sought from commercial sources.

Component Specs,
Existing Components,
Previous Projects,

Reused Components,
Cost Analysis Document ,
Component Classification

Classify
Components

Locate
Components

Acquire
Components

Cost
Analysis

Certify
Components

Search
Component
Repository

Legend
Stage

Task

CBD

Fig. 9. Constituents of the Component-Reuse stage process pattern

When a candidate component arrives, it undergoes formal certification, which results
in acceptance or rejection. If the component is certified, it will be stored in the compo-
nent repository, and then published for access by developers in different projects. Com-
ponent developers first search the component repository for components they require.
Whenever components are discovered, they will be retrieved and examined, perhaps
even tested, before they are reused. Cost Analysis is performed to determine which

 Process Patterns for Component-Based Software Development 63

alternative is economically preferable: to build a new component or to reuse an existing
one. At the end of this stage it would be clear which component should be constructed
from scratch and which one should be reused.

4.9 Concurrent Engineering

As depicted in Figure 1, the Concurrent Engineering stage is an optional stage,
since we may be able to reuse existing components instead of constructing new
ones. Components to be built are assigned to development teams and are concur-
rently constructed in this stage (Figure 10). Since teams work in a parallel fashion,
the development pace is sped up considerably. Each team first Defines Cycles for
implementing the components assigned to it. Implementation is performed itera-
tively according to component specifications in fixed time-boxes. Test code and
documentation can be written in tandem with coding the components. Code inspec-
tion, with the aim of code refactoring and optimization, may also be done during the
Components Implementation task.

Component Classification,
Component Specs,
Infrastructure Document,
Team Definition,
Project Plan

Components,
Test Code

Define Cycles

Implement
Components

Assign
Components

Manage
Cycles

Prepare for
Quality Review

and Test

Legend

Task

CBD

Fig. 10. Constituents of the Concurrent-Engineering stage process pattern

It is important to note that each team manages the project pace through continuous
monitoring and control during the Concurrent Engineering stage. Keeping the cycles
on track is the main concern of the Manage Cycles task. At the end of the stage, com-
ponents should be prepared for quality review and testing. The Concurrent Engineer-
ing stage uses Component Classification, Component Specs, Infrastructure Document,
Team Definition and the Project Plan to produce the new components.

4.10 Component Test

The Component Test stage (Figure 11) focuses on the verification and validation of
the components. Documents, code and models should be tested and verified. The goal
of Component Testing is to ensure that the components are ready to be delivered.
Component Test is not a system-level test, and mainly consists of black box testing,
unit testing and regression testing.

The Requirements Document and Component Specs are the inputs to this stage. Af-
ter defining the Test Plan, Test Cases are either selected from the test base or gener-
ated according to Component Specs. The next step is to run the test cases on different
components and record the results. Code inspection and review can also be conducted
with the purpose of code refactoring, but this is not mandatory in all projects. During
Fix Bugs tasks, minor defects would be resolved, but major errors should be ad-
dressed in the Concurrent Engineering stage.

64 E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin

Requirements
Document,
Component Specs,
Test Collection

Test Cases,
Test Collection,
Test Document,
Component Specs

Define Test
Plan

Generate Test
Cases

Review Code

Run Test
Cases

Record Defects

Fix Bugs

Legend
Task

Optional

Fig. 11. Constituents of the Component-Test stage process pattern

4.11 Components Assembly

Assembly is the process of putting components and existing software assets together
in order to build a working system. User interfaces of the system, which satisfy the
user requirements, should then be designed (Figure 12). This stage shares many char-
acteristics with standard configuration practices. Each individual component can be
viewed as a separate configuration item, and the Components Architecture represents
the system configuration definition.

Components,
Existing Assets ,
Component Specs and
Architecture

Application

Prepare
Environment

Prepare
For Test

Integrate new
ComponentsLegend

Task

CBD

Fig. 12. Constituents of the Components-Assembly stage process pattern

The environment should first be prepared for installing the new component. Then
the current system, which is integrated with the new component, will be prepared for
testing. Components can be assembled simultaneously or incrementally based on the
project strategy.

4.12 Test in the Large

System-level testing is conducted in this stage. The goal of Test in the Large
(Figure 13) is to prove that the application is ready to be deployed. Defects found in
this stage are either resolved by the Fix Bugs task, or referred to the Provision phase.
The tasks of this stage are very similar to the Component Test stage, with one differ-
ence: the planning and generation of test cases is based on system-level testing strate-
gies. User Test is an important stage during which the whole system is validated by
users. Important tasks such as Acceptance Testing and Quality Assurance are con-
ducted during this stage. The system will be ready to be deployed in the working
environment after the completion of Test in the Large stage.

 Process Patterns for Component-Based Software Development 65

Component Specs,
Requirements Document,
Test Collection,
Application

Test Cases,
Test Collection,
Test Document,
Component Specs

Define Test
Plan

Generate Test
Cases

Fix Bugs

Run Test
Cases

User Test

Legend

Task

Stage

Fig. 13. Constituents of the Test-in-the-Large stage process pattern

4.13 Deploy

The aim of this stage (Figure 14) is to deploy the developed system into the user envi-
ronment. The environment should first be set up for the deployment of the new system.
Providing the necessary software and hardware is a prerequisite to the installation of the
developed system. System users should then be prepared for working with the new
system. To this aim, user manuals and appropriate application documents are provided,
and users at different organizational levels are trained. The new system is then de-
ployed. Deployment tasks should be performed with due attention to the project Infra-
structure Document. In addition, components which have been tested and validated so
far are added to the components repository for future reuse.

Application,
Infrastructure
Document

User Manuals &
Documents,
Deployed System

Prepare User
Environment

Train Users

Prepare User
manuals &
Documents

Deploy
System

Legend

Task

CBD

Add to
Repository

Fig. 14. Constituents of the Deploy stage process pattern

5 Realization of Proposed Process Patterns in Component-Based
Methodologies

In this section, we demonstrate how different phases of the component-based meth-
odologies studied can be realized by the proposed process patterns. Table 1 shows
how the phases of the seven methodologies used as pattern sources correspond to the
proposed stage process patterns. The results seem to indicate that the process patterns
are indeed valid as to the coverage of activities that are typically performed in com-
ponent-based development. In other words, all of these methodologies can be engi-
neered by using the proposed framework and process patterns. It can therefore be
concluded that the stated framework and process patterns are valid, although it is
possible to enrich the repository by adding new process patterns.

66 E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin

Table 1. Realization of proposed process patterns in the source CBD methodologies

Methodologies Phases Corresponding Stage Process Patterns
Requirements Requirements, Define Infrastructure, Outline Plan,

Component-based Justify
Specification Component Identification, Component Interaction,

Component Specification
Provisioning Component Reuse, Concurrent Engineering, Component Test
Assembly Assembly
Test Test in the Large

UML
Components

Deployment Deploy

Supply Component Specification, Component Reuse, Concurrent
Engineering, Component Test, Assembly, Test in the Large

Manage Component Reuse, Component Test
Select

Perspective
Consume Requirements, Outline Plan, Component Identification,

Component Interaction, Deploy

Feature Modeling Requirements
Architecture Design Component Interaction
Architecture Refinement Component Interaction
Candidate Object Identification Component Identification
Design Object Modeling Component Identification, Component Interaction

FORM

Component Design Component Specification

Context Realization Requirements
Specification Requirements, Component Identification
Realization Component Identification, Component Interaction,

Component Specification
Implementation & Building Concurrent Engineering
Component Reuse Component Reuse
Quality Assurance Component Test, Assembly, Test in the Large

KobrA

Incremental Development Concurrent Engineering, Assembly

Project Initiation Requirements, Define Infrastructure, Outline Plan
Adaptive Cycle Planning Outline Plan, Component Identification, Component Interac-

tion, Component Specification
Concurrent Component
Engineering

Component Reuse, Concurrent Engineering, Component
Test, Assembly

Quality Review Test in the Large

ASD

Final Q/A and Release Test in the Large, Deploy

Requirements Requirements, Define Infrastructure, Outline Plan,
Component-based Justify

System Specification Requirements, Component Identification
Architectural Design Component Identification, Component Interaction

Catalysis

Component Internal Design Component Specification, Component Reuse, Concurrent
Engineering, Component Test, Assembly, Test in the Large

Inception Requirements, Define Infrastructure, Outline Plan
Elaboration Requirements, Component Identification
Construction Component Interaction, Component Specification,

Component Reuse, Concurrent Engineering, Component Test
RUP

Transition Assembly, Test in the Large, Deploy

6 Conclusions

We have proposed a generic process framework for component-based software devel-
opment. Within this general process, we have proposed a number of process patterns
that are commonly used in component-based development. Extraction of these proc-
ess patterns was based on a detailed review of seven prominent component-based
development methodologies.

After the identification of the process patterns, they were checked against the
source methodologies to demonstrate that they do indeed realize the phases of the

 Process Patterns for Component-Based Software Development 67

methodologies. The results, as depicted in Table 1, seem to verify that the patterns do
indeed cover the activities performed in the source methodologies.

The proposed process patterns can be used in component-based development
projects for engineering a custom process tailored to fit the requirements of the pro-
ject at hand.

The process patterns proposed in this paper were detailed at the phase and stage
levels. Further work can be focused on detailing the task process patterns introduced.
Through completing the specifications of the task process patterns, it will be possible
to set up a repository of component-based development process patterns to enable
assembly-based situational method engineering. The general process presented in this
paper can be used as a template for defining component-based processes. A method
engineer can use this general template and populate it with specialized instances of
the proposed process patterns, thus instantiating a new component-based software
development methodology. To this end, work is now in progress on defining our pro-
posed framework and process patterns as method plug-ins in the Eclipse Process
Framework Composer tool.

Acknowledgement. We wish to thank the ITRC Research Center for sponsoring this
research.

References

1. Mirbel, I., Ralyté, J.: Situational Method Engineering: Combining Assembly-based and
Roadmap-driven Approaches. Requirements Engineering 11(1), 58–78 (2006)

2. Ralyté, J., Brinkkamper, S., Henderson-Sellers, B. (eds.): Situational Method Engineering:
Fundamentals and Experiences. In: Proceedings of the IFIP WG 8.1 Working Conference,
Geneva, Switzerland, September 12-14. IFIP International Federation for Information
Processing, vol. 244. Springer, Boston (2007)

3. Coplien, J.O.: A Generative Development Process Pattern Language. In: Pattern Lan-
guages of Program Design, pp. 187–196. ACM Press/ Addison-Wesley, New York (1995)

4. Ambler, S.W.: Process Patterns: Building Large-Scale Systems Using Object Technology.
Cambridge University Press, Cambridge (1998)

5. Henderson-Sellers, B.: Method Engineering for OO Systems Development. Communica-
tions of the ACM 46(10), 73–78 (2003)

6. Tasharofi, S., Ramsin, R.: Process Patterns for Agile Methodologies. In: Ralyté, J., Brink-
kemper, S., Henderson-Sellers, B. (eds.) Situational Method Engineering: Fundamentals
and Experiences, pp. 222–237. Springer, Heidelberg (2007)

7. Bergner, K., Rausch, A., Sihling, M., Vilbig, A.: A Componentware Development Meth-
odology based on Process Patterns. In: 5th Annual Conference on the Pattern Languages of
Programs, Monticello, Illinois (1998)

8. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework: An Introduction.
Addison-Wesley, Reading (2001)

9. Object Management Group: Software and Systems Process Engineering Metamodel Speci-
fication v2.0 (SPEM), OMG (2007)

10. Haumer, P.: Eclipse Process Framework Composer, Eclipse Foundation (2007)
11. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying Compo-

nent-Based Software. Addison-Wesley, Reading (2003)

68 E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin

12. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented Mod-
eling and Design. Prentice-Hall, Englewood Cliffs (1991)

13. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

14. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE Soft-
ware 9(4), 58–65 (2002)

15. Sochos, P., Philippow, I., Riebisch, M.: Feature-Oriented Development of Software Prod-
uct Lines: Mapping Feature Models to the Architecture. In: Weske, M., Liggesmeyer, P.
(eds.) NODe 2004. LNCS, vol. 3263, pp. 138–152. Springer, Heidelberg (2004)

16. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., Zettel, J.: Component-Based Product-Line Engineering with UML.
Addison-Wesley, Reading (2001)

17. Atkinson, C., Bayer, J., Laitenberger, O., Zettel, J.: Component-based Software Engineer-
ing: The KobrA Approach. In: 22nd International Conference on Software Engineering
(ICSE 2000), 3rd International Workshop on Component-based Software Engineering,
Limerick, Ireland (2000)

18. Ramsin, R., Paige, R.F.: Process-Centered Review of Object-Oriented Software Develop-
ment Methodologies. ACM Computing Surveys 40(1), 1–89 (2008)

	Process Patterns for Component-Based Software Development
	Introduction
	Pattern Sources: Component-Based Software Development Methodologies
	Proposed Component-Based Software Development Process (CBSDP)
	Proposed $Stage$ and Task Process Patterns
	Requirements
	Define Infrastructure
	Outline Plan
	Component-Based Justify
	Component Identification
	Component Interaction
	Component Specification
	Component Reuse
	Concurrent Engineering
	Component Test
	Components Assembly
	Test in the Large
	Deploy

	Realization of Proposed Process Patterns in Component-Based Methodologies
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

