
Process Patterns for Aspect-Oriented Software Development

Massood Khaari, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

khaari@ce.sharif.edu, ramsin@sharif.edu

Abstract—Focusing on aspects during early stages of the
software development lifecycle has received special attention
by many researchers, leading to the advent of numerous
Aspect-Oriented Software Development (AOSD) methods. This
has consequently given a relatively high level of maturity to
aspect-oriented processes. Process patterns, on the other hand,
have been adopted as suitable mechanisms for defining or
tailoring processes to fit specific organizational/project
requirements. Process patterns, which essentially are reusable
process components extracted from successful processes and
practices, can be used to engineer new software development
methodologies or to enhance existing ones.

We propose a generic Aspect-Oriented Software Process
(AOSP), constructed through studying and abstracting
prominent aspect-oriented processes. Based on the proposed
AOSP, process patterns are provided which incorporate well-
established aspect-oriented practices for different development
stages. By employing specific process evaluation criteria, the
characteristics of these patterns have been analyzed.

Keywords-component; Process Patterns; Situational Method
Engineering; Aspect-Oriented Software Development

I. INTRODUCTION
Process patterns are attracting growing attention for

engineering software development processes [1, 2]. They are
created by searching for processes that have been proved to
be successful in practice, and abstracting away their low-
level details in order to make them reusable in other
situations and contexts. They therefore provide a suitable
mechanism for composing processes based on the specific
requirements enforced by organizations and projects. This
particularly goes well with the assembly-based approach of
Situational Method Engineering (SME) which proposes the
idea of reusing existing method parts to construct new
methodologies or enhance existing ones [3]. This approach
takes advantage of a repository of reusable method
fragments from which method engineers can select and
assemble appropriate elements to create a custom
methodology. Process patterns are thus suitable for use as
method fragments in this context.

Aspect-Oriented Software Development (AOSD), on the
other hand, has long been hailed as an effective means for
addressing crosscutting concerns in software development.
AOSD processes have matured over the years and have
attracted widespread attention in the research community;
however, the experience and knowledge gained has not been

compiled, abstracted and distilled in the form of process
patterns.

We propose the Aspect-Oriented Software Process
(AOSP) as a generic process model for aspect-oriented
software development. The primary aim of AOSP is to
provide a generic pattern-based framework to support
method engineering in the context of AOSD. It can also be
used as a means for assessing aspect-oriented (AO)
processes. Based upon AOSP, a set of process patterns is
also proposed; these patterns have been extracted through
studying prominent AO methodologies (as well as AO
practices offered for different phases of software
development), abstracting them, inspecting their
commonalities, and extracting well-established AO process
components. It is worth noting that AOSP is not itself an AO
methodology. Rather, using its constituent patterns as
process components, the AOSP can be used by method
engineers as a general framework for engineering bespoke
aspect-oriented methodologies. We also introduce coherent
sets of analysis criteria for assessing the validity of the
patterns proposed.

The rest of the paper is organized as follows: Section 2
provides an overview of the research background on process
patterns and AOSD; Sections 3 and 4 present the proposed
AOSP and describe the constituent process patterns; Section
5 introduces a set of analysis criteria, based on which an
analysis on the AOSP and the process patterns is conducted;
and Section 6 provides a summary, and briefly touches on
potential strands for furthering this research.

II. RELATED RESEARCH
This section provides a brief account of the research

conducted on process patterns and AOSD.

A. Process Patterns
Application of a comprehensive set of process patterns

was first conducted by Ambler in the domain of object-
oriented (OO) software development; Ambler used the
patterns to form a process framework, called Object-
Oriented Software Process (OOSP) [1]. His proposed OO
process patterns are classified, based on their level of
abstraction and granularity, into three levels of phase, stage,
and task. A task process pattern defines a fine-grained
activity to perform a small part of a process. Stage patterns
define the activities required to accomplish a single stage of
a process (usually in an iterative fashion), and are typically
composed of a number of task (or nested stage) process

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.33

241

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

patterns. Phase patterns consist of two or more stage process
patterns, and collectively form the high-level software
development lifecycle.

Catalysis [2] is one of the first methodologies to use
process patterns as frameworks for adapting to different
project characteristics. Some methodologies, such as OPEN
[2], effectively use process patterns as reusable process
components for assembling custom processes. Sets of
process patterns have also been defined targeting specific
development domains; a set of process patterns for agile
methodologies was developed in [4], while [5] and [6]
provide process patterns for the development of real-time
and component-based systems respectively.

Process patterns are now widely used, as process building
blocks, in method composition/configuration environments
such as Rational Method Composer (RMC) [7] and Eclipse
Process Framework Composer (EPFC) [8], which support
process engineering by providing state-of-the-art
technologies and tools.

B. Aspect-Oriented Processes
During the last decade, the advent of various aspect-

oriented processes has resulted in efforts aimed at reviewing
and analyzing these processes in order to identify their
advantages and deficiencies (e.g. [9, 10]). Consequently, an
opportunity has been provided to create generic aspect-
oriented processes by exploring the commonalities among
existing processes, focusing on the strengths to exploit and
the pitfalls to avoid. For instance, as a result of research
efforts reported in [11, 12] (among others), generic processes
have been proposed for Aspect-Oriented Requirements
Engineering (AORE). Furthermore, generic processes have
been proposed for architectural AO design [13], and detailed
AO design [14]. Most of these processes, however, apply
only to specific phases of the development process, and
hence miss the lifecycle-wide view that focuses on the
continuous chain of development activities and their
interrelationships.

Some aspect-oriented processes are proposed as coherent
methodologies. Theme [15] is an aspect-oriented
methodology spanning the analysis and design phases of the
development process with its two main constituents,
Theme/Doc and Theme/UML. Aspect-Oriented Software
Development with Use Cases (AOSD/UC) [9] is a use-case-
driven full-lifecycle methodology. The Aspect-Oriented
Component Engineering (AOCE) approach [9] encompasses
phases to specify, design, and implement software
components by using aspects. Aspect-Oriented Generative
Approaches (AOGA) [9] suggests a development process
aimed at integrating generative programming and AOSD,
encompassing the domain analysis, architectural design, and
implementation phases. A combinative approach proposed in
[16] is yet another aspect-oriented process which integrates
the Theme/Doc approach for the requirements analysis
phase, Component and Aspect Model (CAM) [16] for the
architectural design phase, and Theme/UML for the detailed
design phase.

Some of these methodologies, however, depend on
specific technologies, preventing their consideration as

generic processes. AOCE, for instance, is appropriate for
projects utilizing a component-based development approach.
Theme and the combinative approach of [16], although
rather general, lack support for important phases such as
requirements elicitation and implementation, thus losing
comprehensiveness.

No process patterns have been proposed in the domain of
AOSD to capture common and well-founded aspect-oriented
practices, thus hindering method engineering approaches in
targeting this domain. Some method fragments have been
proposed in [17], targeted at Aspect-Oriented Modeling
(AOM) processes, in order to be used as components in the
OPEN methodology’s repository. However, it only addresses
the modeling dimension of aspect-orientation, leaving the
remaining process parts (such as architectural design, test,
etc.) to conventional methods. In order to fully support SME
in an AOSD context, however, there is a need to address
other dimensions of aspect-orientation as well, as AOSD
manifests itself in different phases, and thus affects the
whole development lifecycle.

III. ASPECT-ORIENTED SOFTWARE PROCESS
In this paper, we propose an Aspect-Oriented Software

Process (AOSP), as depicted in Fig. 1, which incorporates
and sequences the activities necessary to form a complete
AOSD process.

Based upon the AOSP, a set of process patterns have
been identified and developed which reflect the significant
activities observed in AO processes. The AOSP provides an
organization for the process patterns by sequencing them
within a generic lifecycle. The patterns, based upon their
level of abstraction and granularity, are categorized into the
three classes of phase, stage, and task. AOSP contains four
serial phase process patterns (Fig. 1), each of them made up
of a number of finer-grained iterative stages represented as
stage process patterns. The arrow below the diagram
represents umbrella activities which span the whole project.

IV. THE PROPOSED SET OF PROCESS PATTERNS FOR
ASPECT-ORIENTED SOFTWARE DEVELOPMENT

This section provides a detailed description of the
process patterns comprising the AOSP. AOSP includes
general process patterns – referred to as regular patterns in
this paper – that do not directly apply to aspect-orientation.
These are activities that should be included in any typical
software process, and are incorporated in AOSP so as to
elevate its completeness. Regular patterns and umbrella
activities are not further explained in this paper, as they are
relatively general, and can hence be adopted from other
processes or repositories. We refer to the remaining process
patterns as aspect-oriented (AO) patterns. These are patterns
that introduce processes which either directly deal with
crosscutting concerns (e.g. through identification,
composition, or conflict resolution between these concerns)
or streamline the AO software development endeavor by
emphasizing specific conventional development practices
(e.g. identification of user requirements and concerns, or
techniques of concerns separation).

242

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

Figure 1. The proposed Aspect-Oriented Software Process (AOSP)

Phase and stage process patterns that contain one or more
AO process patterns are also considered as AO patterns.
They are shaded in gray in the figures to signify their special
importance. Patterns recurring in only a few processes or
required in only specific situations are usually considered as
optional, and are characterized in the figures by dashed
borders. Stage process patterns, in contrast, are designated by
weighted borderlines within the figures.

A. Phase Process Patterns
The four phases of AOSP include Initiate, Develop,

Deliver, and Maintain and Support (Fig. 1).
The starting phase of the generic AO process lifecycle is

delineated by the Initiate phase pattern. The project starts
with a preliminary study of the system and a justification for
running the project. High-level requirements of the system
are identified and defined, and an initial set of crosscutting
and non-crosscutting concerns are extracted. Considering
system concerns from the very beginning of the project will
smooth the transition to the subsequent AO design and
implementation. Defining project infrastructure and software
architecture, though optional, is critical when facing up to
relatively large systems. An initial plan for conducting the
project is also outlined in this phase.

The Develop phase covers the core development
activities, during which the requirements are further detailed
and the system is designed and implemented. The design and
implementation of the concerns is verified during Test
Concerns and Aspects. The possibility of generalizing and
reusing the concerns is explored during Generalize Concerns
and Aspects.

In the Deliver phase, system-wide testing is performed
and the system is deployed to the user environment. A
project review is optionally conducted to document the
experiences gained.

The Maintain and Support phase aims to keep the system
running and in production after its deployment to the user
environment.

B. Aspect-Oriented Stage Process Patterns
In this section, we describe the activities performed in

each of the AO stage process patterns. Due to space
limitations, we cannot describe the patterns using a detailed

template. Rather, we try to provide a concise informal
description which suitably captures the major points of the
patterns. For each stage pattern, we mention the pattern
name, intent, required/produced artifacts, a short
enumeration of its constituent patterns, a diagram, applicable
guidelines, and a description of the rationality behind the
proposed tasks. Task process patterns are not expanded
further; however, whenever applicable, we refer to a number
of existing processes as concrete instances that exemplify the
task patterns.

A detailed version of the process patterns is being
prepared to be published as a method plug-in for the Eclipse
Process Framework Composer (EPFC) tool.

1) AO Requirements Engineering: In this stage, system
requirements are identified and its high-level features are
extracted (Fig. 2). As a result of previous research, generic
processes have already been proposed for AO Requirements
Engineering (AORE) [11, 12]. This stage pattern has been
inspired by these processes, and is somewhat comparable to
them. In fact, existing AORE processes have been
investigated and encapsulated in the form of process
patterns; the AO Requirements Engineering process pattern
thus formed has then been refined based on its relationships
with other process patterns.

The artifacts input to this stage are: Business Case,
Maintenance Plan, and Previous Projects Experiences.

The requirements are extracted during Analyze
Problem/Solution Domain, which involves Interviewing
Customer.

Figure 2. AO Requirements Engineering process pattern

243

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

Identifying Interaction Scenarios of different
stakeholders with the system will help determine major user
concerns. The interaction scenarios and the domain may
optionally be modeled. Initial Test Plans are also created
based on the interaction scenarios.

Identification of the initial concerns of the system is
carried out through Identify and Treat Concerns, continued
until the expected system functionality is satisfied by the set
of composed concerns (see the following section).
Prototyping may be performed in order to better understand
the stakeholders' needs.

The artifacts produced in this stage are: Requirements
Document, Models, and Test Plan.

2) Identify and Treat Concerns: During this pattern,
system concerns and aspects are identified and handled (Fig.
3). This is a generic pattern – performed during
requirements analysis, architecture definition, and detailed
design – which addresses concerns at different levels of
abstraction.

This stage uses the Requirements Document and Existing
Models as input artifacts, which are received from AO
Requirements Engineering, AO Architecture, or AO Design
process patterns. We start by analyzing the input
Requirements Document to Identify and Specify New
Concerns. To efficiently separate and modularize the
concerns, each of them are first defined independently of the
others, ignoring the effects other concerns may have on it.

Although many AO approaches follow asymmetric
separation of concerns [9], the symmetric approach is
recommended in this pattern due to the advantages it is
believed to bring about. Improved understandability,
evolvability, and reusability, for example, are the results of
applying the symmetric approach [10].

The relationships between concerns are then explored to
detect the impact of each concern on the others. This helps
determine the type of the concerns (non-crosscutting or
crosscutting), as the crosscutting concerns, or aspects, are
related to and usually affect several other concerns. The
concerns and the relationships between them are specified
and optionally modeled in this pattern.

The Concern-Oriented Requirements Engineering
(CORE) approach [12], Theme/Doc [15], and AOSD/UC [9]
are instances of this task.

Figure 3. Identify and Treat Concerns process pattern

Theme/Doc, for example, utilizes a visual graph
representing the relationships between concerns and
requirements to identify candidate aspects, and provides
some heuristic questions for sifting through them. The
CORE approach, on the other hand, makes use of a
relationship matrix to detect which concerns crosscut other
stakeholders' requirements in order to identify candidate
aspects. It uses a well-defined XML-based template to
specify the concerns and their relationships.

Concerns identified thus far are then composed to
produce a holistic representation of the system. The
composition may be carried out by means of defining and
using composition rules to indicate which concerns are to be
integrated, and how. Concern composition assists in
detecting possible conflicts between the user concerns. The
conflicts are then resolved by prioritizing the concerns
through negotiation with the software users (Interview
Customer). Consequently, it may become necessary to revise
specific concerns.

Concern composition also allows the evaluation of
system integrity (with the help of the interaction scenarios
identified in AO Requirements Engineering) to ensure that it
behaves as expected. If necessary, we can switch back to the
earlier tasks of the stage, as a result of which extra concerns
may be introduced and/or existing ones may be modified.
The processes reported in [12, 18] are instances of this task.

The relationships, conflicts and resolutions, and the
composition of the concerns are specified in a composition
specification document, as part of output Models. The
decisions made to resolve the conflicts, the alternative
solutions, and the motivations for prioritizing concerns must
be thoroughly documented.

MRAT [18] and Theme [15], provide tools to automate
the identification and composition of the concerns and
aspects, while [19] introduces a tool suite to cover various
AORE tasks. The artifacts produced in this stage are:
Updated Models and refined Requirements Document.

3) AO Architecture: Software architectures are known
to be good means for addressing software quality issues.
The integrated process for AO architectural design proposed
in [13] has inspired us in identifying the tasks of this stage
(Fig. 4). This stage overlaps with the Develop phase, as the
architecture prepared in this stage may be refined when
elaborating the system during development.

Figure 4. AO Architecture process pattern

244

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

The Requirements Document, Project Infrastructure, and
Models are the inputs to this stage. System requirements and
domain models are first analyzed to develop and model an
initial architecture. The pattern Identify and Treat Concerns
is performed (this time at the architecture level) to identify
and extract architectural concerns from the input
requirements (including the already identified requirements-
level concerns) which are then added to the aspect-oriented
architecture in an iterative-incremental manner.

The scenarios of user interaction with the system are also
utilized to discover the architectural concerns/aspects
through inspecting the relationships between the scenarios
and architectural components.

Some system concerns (e.g. response-time) may not fit
into individual architectural aspects, but lead to decisions
that affect architectural design. Decisions are also made to
address future system changes in order to enhance
scalability. All such decisions, along with their driving
factors and the alternatives, must be carefully documented.
Conventional software architecture patterns can also be
utilized, by applying aspectual refactoring wherever
necessary. Partitioning a large system into subsystems helps
manage its complexity.

To ensure proper modularization, the architecture is
evaluated by first looking for scattered concerns and tangled
components, through inspecting the relationships between
the components and the concerns/scenarios. The architecture
is consequently redesigned and refactored, if necessary, by
extracting architectural aspects from the scattered
concerns/scenarios. COSAAM [20], for instance, is an AO
architecture evaluation process which uses Dependency
Structure Matrices (DSMs) to derive architectural concerns
from scenarios, and provides patterns and heuristics to
characterize the modularity of concerns and modules, as well
as transformation rules to support the refactoring of the
architecture. AO architecture definition and evaluation can
be facilitated through the support of tools. DAOP-ADL,
AspectLEDA, ASAAM, and PRISMA [21] are instances of
architectural design approaches that provide tools for this
purpose. The outputs of this stage are: Architecture
Specification Document and refined Requirements
Document.

4) AO Design: In this stage we provide the necessary
details to implement the software solution (Fig. 5).

This stage accepts the Requirements Document, Models,
Architecture Specification Document, Project Plan, and
Project Infrastructure as input artifacts.

While adding low-level details, requirements are
elaborated and refined. Design-level concerns are extracted
from the refined requirements and handled through Identify
and Treat Concerns, during which the typically-optional
Model task is compulsory. We suggest using the Unified
Modeling Language (UML) [22] for modeling, since it is
employed by nearly all existing AO design approaches [9,
10]. Structural models are utilized to describe concerns and
their compositions, and behavioral models are used to
describe the interactions required to realize system functions.

Figure 5. AO Design process pattern

A previously designed artifact/concern may also be
reused if it possesses the desired level of reusability, i.e.
through the application of the Generalize Concerns and
Aspects process pattern. Test Plans are created for the
concerns/compositions in order to prepare for later testing.
Theme/UML [15], for instance, presents an AO design
process that uses themes for encapsulating concerns, which
can be used at different levels of abstraction; it also provides
a tool for designing compositions based on composition
relationships. It is worth mentioning that the generic AO
design process proposed in [14] can be inferred from the
process patterns of AOSP, such as AO Design, Identify and
Treat Concerns, Test Concerns and Aspects, Test Concern
Compositions, and Generalize Concerns and Aspects.

The refined Requirements Document, Models, and Test
Plans are the results of this stage.

5) Generalize Concerns and Aspects: During this
optional stage, we review the designed concerns to check
the possibility for generalizing them so that they can be
reused in other contexts.

Potential concerns for reuse are investigated by holding
Generalization Sessions, during which software artifacts are
reviewed and refactored if necessary (Fig. 6). By decoupling
concerns, especially the crosscutting ones, from the concrete
contexts (De-contextualize Concerns), we increase their
reusability. The AAM and Theme/UML modeling
approaches, for example, use parameterized templates to
describe crosscutting concerns [10]. These concerns can
therefore be reused in different contexts by binding the
template parameters with concrete elements and conditions.

Figure 6. Generalize Concerns and Aspects process pattern

245

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I. SHORT DEFINITION OF THE REGULAR STAGE PROCESS PATTERNS

Pattern Intent Required Artifacts Produced Artifacts
Justify Justify the project by conducting a feasibility study Project Description, Previous

Projects Experiences
Business Case

Outline
Plan

Outline a preliminary plan and schedule for the project; the
initial Test Plans are also scheduled and refined in this stage
based on the Project Plan.

Requirements Document, Project
Infrastructure, Models, Previous
Project Experiences, Test Plans

Project Plan, Management
Document, Updated Test
Plans

Deploy Deploy the software product to the user environment Project Infrastructure, Packaged
Application, Models

Deployed System, User
Documents

Review the
Project

Document the project experiences for use in future projects Plans, Management Document,
Project Infrastructure, Models

Project Review Document

Support Keep the system running and in production User Request The user request and solution
Enhance Respond to the requests for changing the software; changes are

usually made as a result of users’ feedback during Support.
Change Request, Requirements
Document, Models, Project Plan

Upgraded System,
Maintenance Plan

Define
Infra-
structure

Specify the project constraints and standards, and tailor the
software process to fit the project at hand; an AO or non-AO
programming language is also selected during this stage, as well
as tools for automating the tasks of different phases.

Project Description, Requirements
Document, Business Case, Models,
Previous Projects Experiences

Project Infrastructure
document, Updated Models
and Requirements Document

6) AO Implementation: In this stage, source code is

written based on the Models, and is integrated with existing
packages (Fig. 7).

The environment chosen in the Define Infrastructure
stage is used for implementation (Section C). Although not
mandatory, it is highly preferred to choose an AO language
or environment. If a non-AO language is employed, only the
composed models can be used for implementation rather
than the models separated based on concerns/aspects; direct
mapping between individual concerns and programming
constructs is thus lost. Bugs identified during tests are also
corrected in this stage. Source Code and Packaged
Application are the outputs of this stage.

7) Test Concerns and Aspects: In this stage, we perform
tests at the level of individual artifacts and concerns.

This stage accepts Models, Source Code, Requirements
Document, and Test Plans as input artifacts (Fig. 8). Unit
Testing and Model and Code Walkthrough are typical tasks
performed during this stage. Test cases are created and run
for concerns and aspects. Whenever the system is changed,
e.g. a new concern is added to the system or an existing one
is modified, we perform Regression Testing. Tested Artifacts
and Test Results are the outputs of this stage.

8) Test Concern Compositions: In this stage, high-level
tests are performed on the entire system (Fig. 9). Activities
of this stage are similar to the ones in Test Concerns and
Aspects, yet tests are designed at the system-level.

Figure 7. AO Implementation process pattern

Figure 8. Test Concerns and Aspects process pattern

The user interaction scenarios identified during
requirements engineering are utilized to create high-level test
cases. Behavioral test cases can be derived from AO
behavioral models, as proposed in [23, 24, 25]. Whenever a
new concern is added to the system, Regression Testing is
performed as well as Integration Testing on the concern
composition specifications. Defects thus discovered are fixed
through Fix Bugs.

C. Regular Stage Process Patterns
A short definition for the regular patterns is provided in

Table I. Detailed definitions are provided in [1].

Figure 9. Test Concern Compositions process pattern

246

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

V. CRITERIA-BASED ANALYSIS OF THE PATTERNS
Many approaches and tools have been proposed for

assessing AO software artifacts, e.g. models, documents, and
source code [10, 26, 27]. However, there are few full-fledged
mature methods that provide a criteria-based evaluation
framework for AO software processes. The proposed
analysis criteria (e.g., [9, 10, 28, 29]) are either only
pertinent to specific phases of development, or lack the
desired maturity.

We therefore decided to introduce our own evaluation
framework, which consists of coherent sets of analysis
criteria for assessing AO processes as well as process
patterns. The criteria have been compiled through an
iterative refinement process: A collection of analysis criteria
was initially prepared by studying various resources; the
collection was then iteratively refined in accordance with
certain validity meta-criteria (criteria used to evaluate other
criteria). After the criteria were fixed, the proposed process
patterns were analyzed through applying the criteria.

To provide a fair set of evaluation criteria, we first took
into account the meta-criteria cited in [30], including A)
Generality of criteria, in order for the criteria to be
applicable to a wide range of methods, B) Preciseness, to
effectively distinguish similarities and differences between
methods by using the criteria, C) Comprehensiveness, so as
to enhance the coverage of main aspects of methods by the
criteria, and D) Balance of criteria, to address the technical,
managerial, and usage issues in methods.

We have, for example, investigated different resources on
the evaluation of both AO and non-AO processes to make
the criteria comprehensive as well as balanced.
Consequently, three additional meta-criteria were defined to
address the issue, listed as follows:

I) Inclusion of general criteria expected from any
typical methodology;

II) Inclusion of aspect-oriented criteria to address
AO-related issues;

III) Consideration of criteria to assess process
patterns in general.

We then checked the set of criteria for possible
incompatibilities and overlaps, while trying to keep the set as
small and effective as possible. In order to address
generality, we considered those criteria which were
applicable to a wide range of process types.

For assessing a software process from a general
perspective (meta-criterion I) a number of resources [31, 2,
32] were used as the main sources for forming our evaluation
framework. The criteria obtained from these sources were
subsequently pruned so as to include only the items
appropriate for AOSD processes. For evaluating AO
processes, on the other hand, a number of methods have
been proposed as well [9, 10, 28, 29]. However, preparation
of the initial evaluation criteria (concerning meta-criterion
II), was most influenced by the extensive analytical survey
reported in [9].

No specific approach has been proposed in the literature
for criteria-based evaluation of process patterns. We
therefore resorted again to general evaluation criteria and
tailored them by following the meta-criteria of [30] to meet
pattern evaluation requirements. Expert advice was
extensively used in distilling and refining the criteria.

For quantifying the evaluation results, a method similar
to the Feature Analysis approach was followed [33]. As the
approach suggests, a list of relevant features to be assessed is
produced, which is then rated by an individual or a group
according to a predetermined rate scale.

TABLE II. GENERAL ANALYSIS CRITERIA FOR SOFTWARE PROCESSES

Criterion Type / Definition Value / How realized
Coverage of
Generic Lifecycle

E The phases of the generic software development lifecycle
that are covered by the process.

Requirements Engineering, Architecture, Design,
Implementation, Test, Deployment, and Maintenance

Support for
Umbrella
Activities

S A: No support for umbrella activities
B: Supported, yet leaving the concrete definition of the
activities to the developer/method-engineer
C: Supported by providing specific methods for umbrella
activities

B

Configurability/
Extensibility/
Flexibility/
Scalability

D The means by which these criteria are satisfied in order for
the process to fit different project situations.

Naturally satisfied by the concept of process patterns [31].
Also supported by the Define Infrastructure, AO Architecture,
Model, and Generalize Concerns and Aspects process patterns,
as well as the tool support currently available.

Application Scope D The domains for which the process is applicable. General, as the AO approach is based upon object-orientation.
Traceability
Throughout
Lifecycle

D Support for traceability between different states of
artifacts/concerns through the lifecycle.

Supported by separating concerns along with their
corresponding models, and following an iterative-incremental
approach to development.

Verification and
Validation

D The means by which stakeholders are able to verify and
validate the requirements, and also to validate intermediate
artifacts/decisions against the requirements.

Supported through identification of user interaction scenarios,
used in subsequent evaluations, and also Test Concerns and
Aspects and Test Concern Compositions

Tool Support D Whether the process is supported by specific tools. For AO processes: Partially supported by suggesting relevant
external tools.
For Process Patterns: Supported by existing process
authoring/configuration environments [7, 8].

Reusability of
Artifacts

D The ease to reuse process artifacts for different projects [28]. Through Generalize Concerns and Aspects process pattern.

247

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

TABLE III. ANALYSIS CRITERIA FOR ASPECT-ORIENTED PROCESSES

Criterion Type / Definition Value / How realized
Concern
Identification
and Treatment

S A: No support for identifying (crosscutting) concerns
B: Ability to identify and handle crosscutting concerns
C: Ability to identify and handle both crosscutting and non-functional concerns

C

Composability S A: No support for composition
B: Syntactic support for composition
C: Syntactic support for composition as well as semantic support to comprehend
the composition and to identify conflicts

C (Supported through the tasks of Identify and
Treat Concerns process pattern)

Trade-Off
Analysis

P Trade-off analysis and resolution for concern conflicts Supported

Compositional
Separation

E The level of separation – symmetric or asymmetric – of concerns Adaptable to both (yet with tendency towards
symmetric separation)

Evolvability D The ability to add, remove or change individual artifacts – concerns,
requirements, and the relevant models – with ease (aka Change Propagation).

Supported through (symmetrically) separating
the concerns and maintaining their relation with
the corresponding artifacts/decisions, and also
through the use of tools

Support for
Mapping

P Support of the process for mapping concerns – especially the crosscutting ones –
to architectural, design, or implementation decisions

Partially supported though documenting the
relationships and dependencies between the
concerns and the decisions made to realize them

Alignment to
Phases

S Alignment of the concepts of the approach to requirement-level concerns and/or
implementation-level concepts/constructs:
A: To none, B: To either requirements or implementation, C: To both

Aligned to both

Homogeneity
of Treatment

P Homogeneity of treatment process for different types of requirements/concerns
(functional or non-functional, crosscutting or non-crosscutting)

Supported

Platform
Independence

P Whether the concepts of the approach are independent from (unaffected by) any
specific platform or programming language

Supported

Following the Feature Analysis approach and aiming to

define our criteria as precisely as possible, we presented
them in four types of forms: A three-level Scale Form (S),
with a short definition for each level, indicating the degree to
which a particular feature of the method is satisfied; an
Enumerated Form (E), with a list of possible values for the
criterion; a Simple Form (P), with a "yes/no" answer to
whether or not a particular feature is supported by the
method; and a Descriptive Form (D) – for criteria that could
hardly be graded according to a fixed set of degrees – which
describes the way a criterion is satisfied and the rationality

behind it in a narrative form, which should be as clear as
possible to avoid subjective evaluations.

The evaluation criteria were ultimately refined into three
categories, which respectively correspond to the meta-
criteria I, II, and III. The criteria, along with a short
definition for each, the type and range of the domain values,
and the ratio to which they are realized by the proposed
AOSP and process patterns (evaluation results), are
presented in Tables II, III, and IV, corresponding to the three
categories respectively.

TABLE IV. ANALYSIS CRITERIA FOR PROCESS PATTERNS

Criterion Type / Definition Value / How realized
Template Formality S A: No predetermined template

B: Conformance to a concise semi-formal/informal template
C: Conformance to a detailed and well-structured formal template

B

Consistency S Consistency amongst patterns, in terms of input/output work products within a
pattern (local consistency) and between different patterns (global consistency):
A: No consistency
B: Support for either local or global consistency
C: Support for both local and global consistency

C

Complexity
Management

P Provision of techniques to manage large numbers of patterns and/or to manage
large patterns

Supported (By categorizing the
patterns into phases, stages, and tasks)

Determination of Work
Products

P Determining which work products are involved in each process pattern Supported

Determination of Roles P Determining which roles are involved in each process pattern Not supported (work in progress)
Classification of Work
Products/Roles

P Proposal of a classification scheme for work products/roles Not supported (work in progress)

Cohesion E The levels of cohesion satisfied by process patterns Functional, sequential, procedural, and
temporal cohesions

Coupling E The levels of coupling that exist between process patterns Data coupling
Instantiation Guidance P Offering techniques/guidelines for instantiation/composition of process patterns Not supported (work in progress)
Existence of
Configurations of
Process Patterns

P Whether there exist any empirical or illustrative configurations of process
patterns (explicitly or implicitly) regarding specific project situations, to
exemplify the practicality of the application and instantiation of process patterns

Not supported (work in progress)

248

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS AND FUTURE WORK
The proposed generic aspect-oriented software process

(AOSP) reflects the high-level activities considered
necessary to form a complete AO software development
process, and can serve as a framework for instantiating AO
methodologies. The proposed process patterns are extracted
from renowned and/or successful AO processes, and
represent prominent processes and practices for different
stages of an AO software development lifecycle. They can
well serve as method fragments in an SME repository for
assembly-based engineering of AOSD methodologies.

AOSP outlines a generic lifecycle for AO methodologies.
Even though it is abstract and generic, it organizes the AO
practices that can be applied in software development, and
provides a synergistic organization for the relevant process
patterns. To gain a better understanding of the synergy
observable in AOSP, consider the following examples: the
AO Requirements Engineering process pattern identifies the
concerns (non-crosscutting and crosscutting) and system
usage scenarios which will later help in the identification of
architectural- and detailed-design concerns and aspects, as
well as in the evaluation of subsequent artifacts; module-
level AO testing is performed in the core development phase,
whereas integration and system-wide AO testing is deferred
to the end of development iterations and the delivery phase;
moreover, AOSP carefully defines the proper flow of AO
artifacts among process patterns. In other words, AOSP is
larger than the sum of its parts, mainly because it defines and
governs the static and dynamic relationships and interactions
that should exist among its constituent process patterns.

Work is currently underway to detail the task process
patterns in order to publish them to the Eclipse Process
Framework Composer (EPFC) [8] environment. In order to
empirically validate the AOSP and the process patterns, they
will be used for assembly-based construction of concrete
processes to fit specific project situations. Reifying the
process patterns in real projects can also help refine the
patterns and enhance their practicality.

ACKNOWLEDGMENT
We wish to thank Mr. Yusef Mehrdad for assisting in the

refinement of the evaluation criteria.

REFERENCES
[1] Ambler, S. W., Process Patterns: Building Large-Scale Systems

Using Object Technology. Cambridge University Press, 1998.
[2] R. Ramsin, and R. F. Paige, “Process-centered review of object

oriented software development methodologies,” ACM Computing
Surveys, vol. 40, no. 1, Feb. 2008, pp. 1-89.

[3] Ralyté, J., S. Brinkkamper, and B. Henderson-Sellers, Eds.,
Situational Method Engineering: Fundamentals and Experiences.
Springer, 2007.

[4] S. Tasharofi, and R. Ramsin, “Process patterns for Agile
methodologies,” Situational Method Engineering: Fundamentals and
Experiences. J. Ralyté, S. Brinkkemper, B. Henderson-Sellers, Eds.,
Springer, 2007, pp. 222-237.

[5] N. Esfahani, S. H. Mirian-Hosseinabadi, and K. Rafati, “Real-time
analysis process patterns,” Proc. CSICC'08, Mar. 2008, pp. 777-781.

[6] E. Kouroshfar, H. Yaghoubi Shahir, and R. Ramsin, “Process patterns
for component-based software development,” Proc. CBSE'09, Jun.
2009, pp. 54-68.

[7] P. Kroll, “Introducing IBM Rational Method Composer”, 2005,
Published on the web at: http://www.ibm.com/developerworks/
rational/library/nov05/kroll.

[8] P. Haumer, Eclipse Process Framework Composer, Eclipse
Foundation, 2007.

[9] R. Chitchyan, et al., “Survey of analysis and design approaches,”
AOSD-Europe, Deliverable D11, 2005.

[10] S. Op de beeck, et al., “A study of aspect-oriented design
approaches,” Technical Report CW435, Katholieke Universiteit
Leuven, 2006.

[11] R. Chitchyan, A. Sampaio, A. Rashid, P. Sawyer, and S. S. Khan,
“Initial version of aspect-oriented requirements engineering model,”
AOSD-Europe, D36, 2006.

[12] A. Moreira, J. Araujo, and A. Rashid, “A concern-oriented
requirements engineering model,” Proc. CAiSE’05, LNCS 3520, Jun.
2005, pp. 293-308.

[13] I. Krechetov, B. Tekinerdogan, M. Pinto, and L. Fuentes, “Initial
version of aspect-oriented architecture design approach,” AOSD-
Europe, D37, 2006.

[14] A. Jackson, and S. Clarke, “Towards a generic aspect-oriented design
process,” Proc. Int'l Workshop on Aspect-Oriented Modeling,
MoDELS'05, 2005, pp. 110-119.

[15] E. Baniassad, and S. Clarke, “Theme: an approach for aspect-oriented
analysis and design,” Proc. ICSE'04, May 2004, pp. 158-167.

[16] P. Sánchez, L. Fuentes, A. Jackson, and S. Clarke, “Aspects at the
right time,” TAOSD IV, vol. 4640, LNCS, Nov. 2007, pp. 54–113.

[17] B. Henderson-Sellers, R. France, G. Georg, and R. Reddy, “A method
engineering approach to developing aspect-oriented modelling
processes based on the OPEN process framework,” Information and
Software Technology, vol. 49, no. 7, Jul. 2007, pp. 761-773.

[18] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, “Semantics-
based composition for aspect-oriented requirements engineering,”
Proc. AOSD'07, Mar. 2007, pp. 36-48.

[19] R. Chitchyan, A. Sampaio, A. Rashid, and P. Rayson, “A tool suite
for aspect-oriented requirements engineering,” Proc. Int'l Workshop
on Early Aspects, ICSE'06, ACM, May 2006, pp. 19-26.

[20] B. Tekinerdogan, F. Scholten, C.Hofmann, and M. Aksit, “Concern-
oriented analysis and refactoring of software architectures using
dependency structure matrices,” Proc. Workshop on Early Aspects,
AOSD'09, Sep. 2009, pp. 13-18.

[21] A. Navasa, M. A. Pérez-Toledano, J. M. Murillo, “An ADL dealing
with aspects at software architecture stage,” Information and
Software Technology, vol. 51, no. 2, Elsevier, Feb. 2009, pp. 306-
324.

[22] OMG, “Unified Modeling Language Specification, Version 2.0,”
Technical Report, OMG, 2005.

[23] A. Jackson, J. Klein, B. Baudry, S. Clarke, “KerTheme: testing aspect
oriented models,” Proc. IMDT workshop at ECMDA'06, 2006.

[24] P. Massicotte, L. Badri, M. Badri, “Towards a tool supporting
integration testing of aspect-oriented programs,” Journal of Object
Technology, vol. 6, no. 1, Jan.-Feb. 2007, pp. 67-89.

[25] W. Xu, and D. Xu, “A model-based approach to test generation for
aspect-oriented programs,” Proc. Workshop on Testing Aspect-
Oriented Programs, AOSD'05, 2005.

[26] E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena,
“Assessing aspect-oriented artifacts: towards a tool-supported
quantitative method,” Proc. Workshop on QAOOSE, ECOOP'05,
2005.

[27] P. Greenwood et al., “On the contributions of an end-to-end AOSD
testbed,” Proc. Workshop on Early Aspects’07 at ICSE, IEEE
Computer Society, May 2007.

249

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

[28] G. S. Blair, L. Blair, A. Rashid, A. Moreira, J. Ara´ujo, and R.
Chitchyan, “Engineering aspect-oriented systems,” Aspect-Oriented
Software Development. R.E. Filman, T. Elrad, S. Clarke, and M.
Aksit, Eds., Addison-Wesley, Oct. 2005, pp 379-406.

[29] S. S. Khan, and M. J. Rehman, “A survey on early separation of
concerns,” Proc. APSEC'05, IEEE Computer Society, Dec. 2005, pp.
776-782.

[30] G. M. Karam, and R. S. Casselman, “A cataloging framework for
software development methods,” Computer, vol. 26, no. 2, Feb. 1993,
pp. 34-45.

[31] R. Ramsin, “The engineering of an object-oriented software
development methodology,” Ph.D. Thesis, University of York, UK,
2006.

[32] M. Taromirad, and R. Ramsin, “An appraisal of existing evaluation
frameworks for Agile methodologies,” Proc. ECBS'08, IEEE
Computer Society, 2008, pp. 418-427.

[33] K. H. Fung, G. C. Low, “Methodology evaluation framework for
dynamic evolution in composition-based distributed applications,”
Journal of Systems and Software, vol. 82, no. 12, Elsevier, Dec. 2009,
pp. 1950-1965.

250

Authorized licensed use limited to: Sharif University of Technology. Downloaded on June 11,2010 at 11:53:58 UTC from IEEE Xplore. Restrictions apply.

