New Trendys in Software Methodilogies, Tools and Technignes 37
H. Fujita and B, Revetria (Eds |

1S Press, 2002

& 20002 The authars gnd 08 Press, Al rights reserved.

doi: 10,323 3978-1-61499-1 25-0-57

Towards Model-Based Testing Patterns for
Enhancing Agile Methodologies

Darioush JALALINASAB' and Raman RAMSIN

Department of Computer Engineering, Sharif University of Technology, Telwan, fran

Abstract. Quality is one of the most important issues in the context of agile and
lightweight methodologics. These methodologies recommend automated Lesting as
the main method for quality assurance; however, they are plagued with several
deficiencies in this regard, including complex and difficult-to-maintain test case
scripts. Model-based testing 15 an approach for automating the tesi creation process
through replacing individual west-case design with abstract madels, In this paper,
we explore a set of pattems based on current methods used in model-based testing
which can be used to amcliorate the abovementioned deficiencies in
agilelightweight methodologies, We then demonstmate how these patiems can be
apphed to a concrete agile methodology — namely Feature Dnven Development

to address problematic testing issucs while maintaining the agility of the process.

Keywords, Sofltware testing, model-based westing, apile methodologies, feature-
driven development

Introduction

Agile methodologies have permanently changed the way we view software
development. Since agile methodologies were conceived, academia and industry have
focused a great deal of atiention upon them; XP is a prominent example [1]. The
promise of rapid application development while retaining high levels of quality has
made these methodologies appealing to software engineers worldwide.

lterative testing, especially test-driven development (TDD) [2], is the cornerstone
to quality assurance in all agile/lightweight methods. Through bringing testing into the
main development cycle and focusing on automated testing, these methodologies aim
to achieve a low defect rate while remaining faithful to the pninciples of agility.

The spread of apile methodologies was accompanied by a decline in the value of
modeling in the agile/lightweight context. However, recent works such as [3] focus on
reintroducing a minimalistic approach towards modeling. Scalability problems along
with research demonstrating dubious results about quality levels achieved with TDD
[4] may be the root causes for the advent of these approaches.

Model-Based Testing (MBT) techniques predate agile methodologies; however,
many of these methods are not directly suitable for application to these methodologies.
MBT's need for precise and elaborate models, often deliberately avoided by
agile/lightweight methodologies, is the main reason for this mismatch. The recent focus
of MBT on the use of practical, object-oriented models (e.g., UML) on the one hand [5],

: Corresponding Author: Darioush Jalalinasab, Depariment of Computer Engineering, Sharil University
of Technology, Azadi Ave., Tehran, Iran; E-mail: jalalinasabdtce.sharif.edu

5B 0 Jatalingsal and B, Ramsin 7 Towards Model-Based Testing Farerns

and the utilization of models in agile processes on the other, has re-instantiated the
opportunity of benefiting from MBT in agile/lightweight approaches.

This opportunity has already been noticed by research efforts, including [6], [7],
and [8]. Unfortunately, most of this research does not provide general, direct solutions
to problems 1n agile testing. It must also be considered that due to the fact that each
project has its own special conditions and requirements, it would be naive to provide a
single-solution MBT approach and claim that it would be successful in all
agile/lightweight contexts,

We have identified three major areas of agile/lightweight testing in which MBT
may lead to beneficial solutions. The first arca is the abstraction level of test cases.
Achieving a higher level of abstraction 1s often cited as one of the major benefits of
MBT [9]. Since test cases are usually developed in an ad-hoc and individual manner in
agile/lightweight methodologies, the benefits of MBT can be significant in this context.
The second area investigates how MBT can benefit agile/lightweight testing in
resolving design and requirements ambiguities. The third arca deals with how MBT can
provide overall direction to the testing process and provide meaningful test coverage
goals,

Since the now-popular design patterns [10] were introduced, patterns have become
a favorite method of conveying families of solutions to specific problems. Therefore,
we express possible solutions applicable to the mentioned arcas as pattems. For each
pattern, we will discuss the situation in which it should be applied and provide
examples of relevant literature.

The rest of this paper is structured as follows: In section 1, we review MBT and
other related literature with a focus on methods that may be applicable to testing in
agile/lightweight methodologies; in section 2, we discuss some of the major testing
problems these methodelogies are facing, and we propose a set of paterns (as
solutions) based on the literature reviewed in section 1: section 3 demonstrates how
these patterns may be used to augment agile methods by applying them to a concrete
agile methodology, FDD; and the final section is dedicated to providing the
conclusions and proposing possible directions for future research in this context.

1. Related Work

The main benefits of applying MBT to agile development have been explained in [6]:
improving issucs related to meaningful coverage, low flexibility, high maintenance
costs, and how MBT may help in acceptance testing are among the major benefits
mentioned. However, the MBT approach prescribed by [6] is a specific approach to
MBT with limited applicability, whereas we take a more general viewpoint and discuss
how MBT may be applied to agile/lightweight methodologies using testing techniques
based on UML diagrams, metamodels, requirements, and architectural models. The
following subsections present samples of research conducted in each of these arcas.

1.1, MBT hased on UML diagrams

The research reported in [11] proposes a method for using UML models for different
testing purposes. Models are used as test data, test drivers, and test oracles. Object
diagrams are proposed to be used as test data (and oracles) by demonstrating the initial
(and final) conditions; objects involved, their interconnections, and the values of

L Jalclingsal and K. Ramsin £ Towards Model-Based Testing Farterns 30

concrete attributes relevant to testing are specified in these diagrams. A prominent
consequence of utilizing object diagrams as test data is the opportunity to reuse a single
diagram in multiple test cases after applying small modifications (such as changing
attribute values), as mentioned in [11]; in effect, this is similar to the “shared fixture™
pattern discussed in [12].

Furthermore, [11] suggests the use of sequence diagrams as test drivers when the
interaction scenario is not simple. This allows a comprechensible description of
assertions on inter-object behavior, due to the fact that object interactions are well
displayed. OCL constraints can also be used in this context in the same manner as
assertions are used in test scripts.

The spread of UML-based testing methods has led to the creation of the UML
Testing Profile (UTP) as an OMG standard [13]. UTP proposes extensions to sequence
diagrams, such as test verdicts and timing issues, which allow these diagrams to be
used as bases for test case generation, In addition, the UTP pays attention to the “test
context,” which allows for the complete visualization of the SUT, test data (including
rudimentary support for data partitioning techniques), and test doubles. Finally,
although the UTP is not exccutable as is, guidelines are provided for automated
translation to well-known testing frameworks, including jUnit and TTCN-3.

In [14], an interesting MBT technique 1s proposed. The main idea is to raise the
abstraction level of the “design by contract™ [15] concept to the level of design models.
Each method’s functionality is to be specified by a *visual contract”-which consists of
two UML composite structure diagrams [l14]. One diagram designates the pre-
conditions, while the other documents the post-conditions. The proposed notation also
allows for negative assertions. Visual contracts are then automatically translated to
JML [16] assertions. JML 1s an extension to Java which allows such assertions to be
monitored, and an exception will be raised upon the violation of a contract [14].

Another important issue that [14] touches upon is from the process point of view.
It is explicitly suggested that rather than attempting to perform code generation from
behavioral models automatically, as is usual in model-driven engincering approaches,
only structural models be defined; it leaves method bodies to be developed by coders.
As noted in [14], this allows the concept of TDD to be raised to a higher level of
abstraction, since visual contracts can serve as unit tests for methods. This point of
view may allow claims such as relying on TDD as a form of design (as envisioned in
[17]) to be made with a higher degree of confidence.

The technique discussed in [18] allows for QA on static aspects of class diagrams;
therefore, it might not be classified as MBT, or even a testing technique. However,
since class diagrams are among one of the few models allowed in agile/lightweight
methodologies, we have chosen to discuss this technique. This approach proposes an
extension to object diagrams, namely the “modal object diagram™. This diagram allows
defining positive/negative object configurations that the class diagram should
allow/disallow. In addition, it is possible to limit the values of attributes to specific sets.
It is therefore possible to consider each “modal object diagram™ as a test case that the
class diagram should satisty. After these test cases become available, a fully automated
technique based on model-checking {(detailed in [18]) performs the verification.

The potential benefit of the technique proposed in [18] to agile/lightweight
methodologies is that it allows verification to be performed on models created in a
minimal fashion. Even experienced modelers may make mistakes in subtle issues such
as association multiplicities, and preventing them through this method may prove
valuable further on in the process, such as when code is generated from the class

60 0 Jatalingsal and B, Ramsin 7 Towards Model-Based Testing Farerns

diagram. In addition, these “test cases™ may serve as a form of regression testing and
allow the model to evolve alongside the code,

The issue of testing UML models as independent from implementation is discussed
in [19]. In this research, several testing adequacy criteria have been proposed for
various UML diagrams. The crileria related to class diagrams involve crealing
instances with all possible multiplicities (unbounded associations must have an
arbitrary limit assigned), creating all possible subclasses, and creating objects with
different field combinations. Different field combinations may be created based on the
knowledge contained in OCL constraints. or by considering the data type of the field
[19].

However, the most interesting set of coverage is defined for UML collaboration
diagrams. This set includes predicate and term coverage of UML guards assigned 1o
message edges and the execution of all messages and paths on these diagrams [19].
This sort of coverage can automatically be applied to the models created, and may
furthermore result in test cases that can be carried on to code (the latter aspect, however,
is not discussed in [19]).

1.2, MBT bhased on metamodels

In the research reported in [20], a program is discussed that processes the models
themselves. The testing of such applications 1s explored, and a technigue based on the
use of metamodels is proposed. It is mentioned that well-defined metamodels allow the
automatic (or at least, semi-automatic) creation of simple test cases. Some of the
problems that arise in this context are related to the constraints that have not been
mentioned in the metamodel. The approach presented in [21] proposes a method which
allows further automation of this technique. by composing test cases from wvalid,
manually created “model fragments™.

While [20] and [21] discuss the generation of valid test cases from metamodels,
22] mtends to define viable mutation operators which function based on the
knowledge contained in the metamodel. Tt is demonstrated in [22] how these operators
can be defined for a specific domain; in this case, model-processing utilities. The
implication of this research for agile/lightweight methodologies is that mutation testing
is considercd on a more abstract level than procedural or object-oriented code. This
technique can be applied both to domain-specific metamodels and technical models
created during development.

1.3. MBT based on reguirements

Requirements-based MBT forms a large body of the literature in the field. The research
reported in [23] presents one of these approaches. This approach is based on use cases,
and their related activity and collaboration diagrams. After activity diagrams are
obtained for each use case, the data that it operates upon are parameterized; this means
that the parameters required for the use case to operate are specified, much like the
formal parameters of a procedure, Next, the valid paths between use cases are
documented using a language similar to regular expressions. The higher-level
abstractions are then mapped to sequence diagrams. These are in turn once more
mapped to regular expressions, which form the basis of test cases showing the order in
which individual methods should be invoked.

L Jalclingsal and K. Ramsin £ Towards Model-Based Testing Farterns 6l

Use case maps are another model that can guide testing, as suggested in [24]. This
model supports documenting the relationships among use cases, the potential for
concurrency, and the conditionals. Since this model resides at a very high level of
abstraction, it cannot be used by itself for generating test cases [24]. Techniques such
as the one proposed in [23] may be used to provide the necessary details.

The first step in directing the test effort using use case maps is flattening the map
using patterns, as discussed in [24]. Next, a coverage criterion must be selected; the
approach presented in [24] suggests some of these criteria. Also, by knowing the valid
paths, invalid paths may also be generated and tested for enhancing system resilience.

In the research reported in [25], a method is discussed for automatic generation of
test cases from activity diagrams. Activity diagrams are first enriched with data
descriptions. These data descriptions are similar to the parameters mentioned in [23].
Next, the dependencies among activities are extracted in a table. This table, which can
be automatically generated, shows data and conirol flow dependencies among the
activities. Finally, a graph is created based on the dependency table, and all paths in
this graph are enumerated to be used as a basis for testing. The authors of [25] compare
their work with another method which involves both activity and sequence diagrams,
and conclude that their method has been successful in decreasing the complexity of
MBT. Unfortunately, the example 1s a small one, and the result may not be scalable to
more general cases.

The rescarch reported in [7] applies MBT to the GUI of the Nokia-S60
Smartphone. Through the use of state machines, which are labeled as “abstraction
machines” and “activity machines,” use cases are mapped to low-level GUI actions,
such as selecting menus and pressing buttons. What this approach denotes as use cases
are in fact scenarios that involve the invocation of multiple use cases. These high-level
use cases are then re-written according to the abstractions provided by the state
machines, and can be used as bases for test creation.

I.4. MBT hased on architectiire

The research presented in [26] introduces an approach which defines test adequacy
measures based on the structural model of the software architecture. This approach
views the architecture as components and the connectors between them. A number of
interfaces are defined for each component and connector, and then the data flow
dependencies between the interfaces are modeled. The adequacy measures involve
testing each component and connector in isolation, testing the direct connection of
component-connector-component paths, indirect paths, and all paths coverage. The
research presented in [27] proposes another similar approach that emphasizes the
structural role of architecture during testing.

1.5, Oher relevamt work

While not directly related to testing, the research reported in [28] proposes a language
that may be helpful in applying MBT to agile/lightweight methodologies. The proposed
role-based modeling language (RBML) [28] is a pattern description language based on
UML which allows the user to impose structural and behavioral constraints on objects.
It is possible to describe the patterns of a specific domain in RBML. The application of
languages with formal semantics to patterns allows enforcing their correctness.

62 0 Jatalingsal and B, Ramsin 7 Towards Model-Based Testing Farerns

Currently, mainstream languages do not provide the necessary features for verifying the
correctness of the implementation of even the simplest of patterns.

2. Challenges and Patterns for Applying MBT in Agile Methodologies

In this section, we discuss a number of challenges that testing is currently facing in
agile/lightweight communities. We will then attempt to address these issues through
the application of MBT. For each problem, a set of patterns representing a class of
MBT methods will be introduced. along with representative samples from related
literature. The patterns discussed in this section have been summarized in Table 1.

2.1, Problem Isswes pertaining to the level of abstraction

Tests are often developed as individual units, and therefore they tend to reside at a low
level of abstraction. One of the main promises of MBT i1s to raise the level of
abstraction by focusing on models rather than individual test cases; in turn, this will
result in less time spent on testing activities,

In [29], increased development time has been cited as one of the impediments to
the applicability of TDD. Increased abstraction will result in less work. MBT methods
may also include automated methods for tasks previously accomplished in a manual or
ad-hoc manner, which will also decrease total implementation time.

Maintenance costs for large test suites are among the major costs of software
engineering projects, If MBT is practiced, such costs are also expected to decrease,
since applying changes to the models and invoking the (mostly) automated techniques
of MBT is easier than applying changes individually to each test case. Some of these
benefits have been highlighted in [6].

Another problem with traditional test cases is that they are tightly coupled with the
module(s) they are testing, and this provides little opportunity for reuse. If, through
MBT, testing is brought to higher levels of abstraction, more promising opportunities
anse for reuse. If the level of abstraction 1s sufficient enough, cross-project reuse may
become possible, as demonstrated in [30].

In [31], an online survey has been performed which indicates that several of the
most common mistakes when practicing Test-Driven Development are related to test-
case complexity. In fact, “the need for writing complex test scenarios™ has been cited as
the most common mistake. [t may initially scem paradoxical to attempt to solve an
issue of complexity by requiring additional software models; however, as we show in
the patterns, strategic use of modeling can simplify some of the more complex test
SCENarios.

2.1, Pattern: Use of models in place of test data

The initial data that tests operate on, or the results which they must be compared to,
may be complicated or grow to become so. Often in such cases, the test seript setup or
verification logic will grow in complexity to match the complex structure it is creating
or verifying. This will usually be the case when the relationships between objects are
intricate.

Some solutions to this situation are known, such as creating a shared fixture [12] or
storing data in a relational data store. Another alternative is using models to specify the

L Jalclingsal and K. Ramsin £ Towards Model-Based Testing Farterns 63

structure of the initial or expected data. Since the software under test is often written in
the object-oriented paradigm, UML models are best suited to this task. Since the model
provides an abstract, graphical view of the object connections, it is easier to understand
and maintain. Examples of such work can be found in [11] and [14].

2.1.2. Pattern: Use of models in place of behavioral assertions

Mock objects are usually used to monitor the correct invocation of methods on objects.
Although the experience of test developers and the advancement of mock object
libraries (such as jMock [32]) have improved the readability of test cases involving
mock objects, one must admit that the resulting code may be complicated or not easily
legible, and may well become troublesome during maintenance.

Sequence diagrams are well suited to the task of displaying method calls, and can
therefore be used to model the expected behavior of objects. If such diagrams are
augmented with methods of modeling expectations and assertions (such as with OCL),
it 15 possible to use them (and other behavioral models) in place of writing complex
scripts for mock objects. The approaches proposed in [11] and [13] involve methods
based on sequence diagrams which can be used to this end.

2.1.3. Pantern: Monitoring objects at runtime

Object invariants have been known since the advent of the “design by contract™
approach. If taken further, it is possible to use invariants for defining configurations of
objects that should always exist, as well as for expressing configurations that should
never be allowed to exist.

Test cases which attempt to verify such i1ssues will become overly complex if
modeling 15 not used. Indeed, it may not be possible to venfy that a certain
configuration of objects did not occur during the execution of the system under test. In
some cases, mock objects may allow the verification of certain methods not being
invoked; however, even that solution is typically complex.

If the runtime environment is instrumented with Facilities to detect certain patterns
of objects, test seripts which tend 1o assert object configuration invariants and negative
invariants will become much simpler or obsolete.

The research reported in [14] focuses on pre- and post-conditions; the concept of
invariants may also be considered. The rescarch reported in [18] proposes static
verification; however, if this is not possible (perhaps due to the low rigor of the class
diagram) applying the ideas during runtime is also viable. Languages with well-defined
semantics, such as RBML [28] can also be utilized for defining the invariants and
assertions.

2.2, Problem Issues pertaining to design and regquirements ambiguity

Agile/lightweight methodologies have sometimes been criticized for their lack of
design and lack of rigor in documenting requirements. This issue is in part due to their
heavy reliance on testing as their prime method of quality assurance. Pioneers of TDD
even label this method of testing as design [17]; however, this method is not
completely flawless. As an example, research reported in [29] shows TDD has caused
architectural problems in three different case studies (two academic, and one industrial).

In the aforementioned methodologies, requirements are usually captured as “user
stories™ [1] or informal use-cases. Certain acceptance-test-driven development (ATDD)

6 0 Jatalingsal and B, Ramsin 7 Towards Model-Based Testing Farerns

techniques such as FIT [33] have emerged which allow the end-user to specify their
requirements in a more direct fashion. However, since each model, regardless of how
informal or lightweight it may be, is accompanied by certain well-defined syntax and
semantics, it will help specify the requirements in a more reliable manner.

Here, we enumerate methods which may help improve sofiware quality through
design and clarification of the requirements.

2.2.1. Pattern: Using architecture to drive tests

Many agile and lightweight methodologies pay attention to architecture. Even methods
such as XP, which refrain the most from modeling, encourage the use of a “system
metaphor™ as a representative of architecture [1]. This implies that in most projects, a
model of the architecture — albeit very informal — will be available,

However, agile/lightweight methodologies fail to enforce or verify the correct
implementation of the architecture; due to the fact that most of the QA effort is focused
on unit testing and validation through end-user demos and prototypes [34], deviation
from architecture can be expected, as mentioned in [29].

To further ease the burden of such tasks, a library of pattern-like tests can be
created for different architectures. Such a library would contain abstract test cases
based on the connectivity of architectural components. Since architectural
specifications in agile/lightweight methodologies are usually not detailed, it is possible
to view and test them as such. The approaches proposed in [26] and [27] provide
examples as to how architecture can be used for devising tests.

2.2.2. Pavtern: Using domain patterns

Specific domains may be associated with certain structural and behavioral patterns. For
example, accounting software systems will have patterns involving increasing,
decreasing, and viewing the history of accounts, In cases where such patterns have
been documented (e.g., as analysis patterns [35]), it is possible to devise a parallel set
of models that will serve as patterns to create individual test cases.

In addition to domain patterns, several of the design patterns [10] may be
accompanied by tests which verify their implementation according 1o their specified
intent. As an example, the Observer pattern may be accompanied by tests which verify
subscribing, unsubscribing, and the intended broadcast behavior.

The RBML language introduced in [28], along with the examples provided, can
serve as a sample method on how patterns can be formalized. However, the
applicability of such patterns to testing is vet to be explored.

2.2.3. Pattern: Using static analysis

Many agile/lightweight methodologies create some kind of object or class diagram; in
such cases, static analysis can be used as a tool to verify model correctness. Through
static analysis, it may be asserted whether certain states in the system may be reached
(or not) at runtime. This technique is specifically applicable to the verification of the
subtle issues previously mentioned. When the details of the design artifacts are
improved in this manner, they will provide a better basis for code generation and
testing.

Research examples in this area include [18] and [19]. Additionally, it is mentioned
in [14] that if visual contracts are consistently used throughout the project, static

L Jalclingsal and K. Ramsin £ Towards Model-Based Testing Farterns 65

analysis methods can be applied by using the pre- and post-conditions of each method
and the initial system state.

2.3. Problem Issues pertaining to obtaining meaningful coverage

If devising tests is left entirely to the developer, test cases will usually be developed in
an ad-hoc manner, and the sole measure of test suite quality will become code coverage.
However, studies have shown that this measure can be deceptive [6].

MBT is a plausible solution to this issue, since test coverage can be defined at a
higher level and in a more meaningful manner. [n addition, these high level goals can
provide direction to the testing effort, both at the system level and the unit level. In fact,
as described in [6], MBT can play an important part in the definition of work products
in agile methods where this coneept is important.

2.3.1. Pattern: Using architecture to drive tests

In addition to the design-enforcing aspect of this pattern, which was previously
discussed, architectural coverage metrics can be used in place of, or alongside, line
code coverage metrics. These metrics can also be used to provide direction to testing,
especially on the system and integration levels: this can be bencficial to
agile/lightweight methodologies, since they usually emphasize unit testing only. The
research reported in [26] provides several coverage metrics that can be used in this
context.

2.3.2. Patiern: Directing testing by modeling the permissible order of operations

In most agile methods, requirements are captured in some informal format. As
mentioned before, “user stories™ and use cases are commonly used. However, if the
order in which these “user stories” or use cases can be run 1s also modeled, it can be
used as a strong basis for automated MBT at the system level.

The significance of running automated tests at the system level becomes apparent
when we consider that most agile/lightweight methodologies have ignored testing at
this level. Although techniques for automated acceptance testing have emerged,
according to a recent Internet survey [34], in practice they are used significantly less
than unit testing methods.

The coverage provided by this sort of testing can be more rehable than line
coverage, since it demonstrates that the system is capable of performing the normal
paths of execution. Much of the MBT literature is focused on deriving tests from use
cases or other requirements specifications; examples include [7], [23], [24], and [25].

2.3.3. Pattern: Use of models to generate invalid states

Since the models used in sofiware creation (especially UML models) have well-defined
metamodels, it is possible to use valid models of system behavior to create invalid and
irregular behavior through mutation.

By forcing the system through invalid states, it can be ensured that critical errors
will not oceur, or that the system handles these states gracefully. Since such test cases
can be generated automatically, this approach can be classified as online MBT [9].

It must be noted that this form of testing, although similar to “fuzz testing”, can
achieve more fruitful results. Common fuze testing techniques involve mutating valid

Ol 0 Jatalingsal and B, Ramsin 7 Towards Model-Based Testing Farerns

input to find defects; however, the knowledge contained in models allows mutation at a
higher level of abstraction. Therefore, complicated defects (e.g., those involving
several intermediate states) are discovered more efficiently.

Even though the main application of this pattern is in system testing, if the valid
order of operations is specified for a class (e.g., as a regular expression), this method
may be used in unit testing as well. As discussed in the previous pattern, once the valid
ordering of system operations is specified, invalid sequences may be used to
automatically test the system under test for robustness through high level interfaces,
such as the GUIL Since this form of testing is fully automated and may reveal serious
security and reliability bugs, it can be an economic addition to agile/lightweight
methodologies. Additionally, since automated acceptance tests are usually fragile, this
form of testing may be used to obtain a certain degree of system reliability when proper
automated acceptance testing is not feasible.

In addition to the three categories described, the research reported in [36] mentions
that test suites describe a model of the system, even if not comprehensible to
developers and users. This is indeed true, since tests do describe the expected system
behavior. MBT helps make this model explicit and wseful for developers and users.

3. Applying MBT to FDD

In this section, we demonstrate how the suggested patterns can be applied to a concrete
agile methodology. First, a description of this methodology will be provided, and then
we will explain how the patterns should be applied. Feature-driven development (FDD)
[37] was chosen for two reasons: FDD has a well-defined process, and it provides
ample support for modeling activities.

This does not imply that the proposed patterns are not applicable to other
methodologies, such as XP; however, the use of MBT in such methodologies must be
sporadic and opportunistic, and it must not conflict with the level of agility desired by
the team. This issue is not only limited o MBT; it must be taken into consideration
whenever modeling practices are applied in agile methodologies.

3.1 A description of FDD

The FDD methodology consists of five main phases: The first three are performed in a
sequential manner, and the remaining two are iterated as required. In addition to these
steps, FDD advocates a three-laver system architecture. The architecture contains
components for the Ul, business logic, data management, and also a component for
interfacing with external systems. More details on FDD may be found in [37] and [38].
. Develop an overall model: In this phase, modeling is performed to capture the
major features of the domain. While the main focus is on creating a class
diagram. important behavioral patterns of the domain may also be documented
with sequence diagrams [38].
Build a features list: In FDD, requirements are captured through the concept of
a feature. Each feature is an informal statement of a requirement which is
stated in the format of “action result object”. An example could be “calculate
the sum of an invoice”. Next, features are composed into “activities,” and then
categorized into “arcas™ for casier management.

-2

L Jalclingsal and K. Ramsin £ Towards Model-Based Testing Farterns

67

Table 1. Summary of the proposed paticrns for applying MBT in agiledightweight methodologics

Pattern

Context

Situatlon

References

Use of models in
place of 1est data

Unit Tesis

Test seript has become complex due to complexity
in setup or verification logic, Usually will occur
when many objects are involved or inter-ohject
relationships are intricate.

[11]: [14]

Use of models in
place of behavioral
asseriion

Linit Tests

Test seript has become complex due 1o complex
behavioral assertions, An impaortant symptom is the
presence of many mock objects or other test doubles.

1], 113]

Monitor objects
during mantime

Unitl Tests

Test seript has become complex due 1o multiple
inspections of object or inter-object state, trying to
enforce pre- and post-conditions or object invariants.
Mezative behavioral assertions, such as checking thit
a method is never called, are another situation where
this pattemn should be applied.

[14].[1%]

Using architecture
to drive tesis

System Test

Project has deviated from architecture, or developers
have hecome ignorant of architecture, TOD is not
achieving expected results through emergng and
evolving design, Linit test code coverage is high. vet
various components do not interact well, Tests are
developed in an ad-hoe manner and no measure of
progress is available,

[26]. [27]

Using domain
patierns

Unit Tests
System Test

An abstraet descriplion of the expecied system
behavior is available in part in the form of domain or
technical patterns. Enforcing these patterns cnsures
lhigher level of quality than unit test code covernge.

[28], [34]

Using static
analysis

Closs
Dingrams

Astatic model (class/object diagram) of the system
is to be created and maintmned. The quality of the
model is important for future use fe.g., code
generation), and subitle mistakes should be
prevented. The model is subject to evolution and a
form of regression testing is required.

[18].[19]

Directing testing by
modeling the order
of operations

System Tesi
(Umit Tesiz)y

A model demonstrating the valid order ol operations
on a systermn (or ohject) is available (e.g., in the form
of regular expressions). It is important 1o exercise
valid execution paths through the system {or ohject).
Unit test code coverage is high, vet vanoues
components do not interact well, Tests are developed
in an ad-hoc manner and no measure of progress 15
available. It 1s desired to have a form of automated
acceplance lesting. Only high-level interfaces such
as the GUT are available for testing,

(7). (231
[25]

Use of models 1o
generate invalid
stabes

System Test
(Umit Tests)

Models have well-defined metamodels, and valid
examples are available. Mutation operators are
definable for the relevant domain, It is important 1o
test the resilience of the system (or object) against
invalid states. Proper acceplance Lesting 15 too
capensive, but some degree of system reliability is
desired.

[20}-[22]

68 0 Jatalingsal and B, Ramsin 7 Towards Model-Based Testing Farerns

3. Plan by feature: During this phase, a development plan is devised based on the
features defined. This plan will describe the dependencies among features, the
development schedule, and the assignment of feature groups to programmers.,

4. Design by feature: Developers assigned to feature groups meet and determine
how objects will realize the needed behavior. This task is accomplished by
drawing sequence diagrams and modifying the class diagram as needed.

5. Build by feature: Classes and methods needed for the realization of the
features are coded and unit tested.

3.2, Applying the proposed MBT patterns to FDD

During the “Develop overall model” phase, wsing domain patterns can be a helpful
pattern to get started with. Applying this pattern allows domain experts and modelers to
specify test behavior from the beginning. These tests may be later used as acceptance
tests, since they verify the compliance of the system under test to the expected behavior.

Use architecture to drive fests can also be applied during this phase. By
considering the default three-tier architecture and also the logical modules and
components specified in the overall model, tests can be defined that will enforce the
architecture throughout the development process.

Since a relatively complete class diagram is devised, and furthermore, is used as a
guide during the “Design by feature™ phase, 1t is a worthwhile activity to ensure the
correctness of this artifact. Applying wsing static analysis will allow modelers to be
able to test their overall model.

The next modification to FDD must occur in the “Build a features fist” phase. The
allowed order of feature execution should be defined. This ordering will allow the
application of directing testing by modeling the permissible order of operations at the
system level. These tests may be used as automated acceptance tests later on.

The “Design by feature™ phase must also be reconsidered to accommodate for
changes. Use models in place of belavioral assertion allows the sequence diagrams 1o
be augmented with relevant test data. Such diagrams may later become the basis of
component-level testing. Use maodels in place of test data may also be applied o
describe the expectations from class operations at a more abstract level. Monitoring
objects ar runtime may also be taken advantage of in order to define invariants at the
object or component level. Finally, using static analyvsis will enable designers to vernify
the object model. Furthermore, the static analysis test cases produced in “Develop an
overall model” may be used as a form of regression testing at this point.

During the “Build by fearure” phase, unmit testing takes place. In case the
symptoms described in wse models in place of test data or use models in place of
behavioral assertion arise, the respective pattern should be applied.

The final modification involves adding a new phase to FDD. This phase will be
concerncd with acceptance testing. Since the order of allowed operations have been
determined in “Build a featnres lise,” the patterns direct testing by modeling the order
of operations and wse of maodels to generate invalid states can be applied as further
measures of quality enhancement.

3.3, Evaluating the resulting methodology

The change in the degree of agility is the most important factor which must be
evaluated after the application of the mentioned patterns to FDD. In [40], a method 1s

L Jalclingsal and K. Ramsin £ Towards Model-Based Testing Farterns 6o

proposed for quantitatively evaluating the degree of agility in different methodologies.
The evaluation process is based on assigning binary values to flexibility (FY), speed
(SD), leanness (LS), learning (LG), and responsiveness (RS) for each phase and
practice prescribed by the methodology. The values are then averaged across a table,
which results in a numerical metric which can be used for comparison. FDD has been
evaluated in [40], according to these metrics.

In order to evaluate the extension, the speed of the phases “Develap an overall
model” and “Design by fearure” were set 1o 0 instead of 1. Other values are the same
as those used in [40]. In addition, three practices were added to the evaluation matrix.
“Domain level testing” refers to the patterns wsing domain patterns, using architecture
to drive testing, and using static analysis. This 15 the testing counterpart of “Domain
object modeling™; therefore, it has been evaluated identically, except for speed.
“Feature level tests™ refers to the application of use models in place of behavioral
assertion, use models as test data, and monitoring objects during runtime at the feature
level. This is the testing counterpart of “Developing by feature™; therefore, it has also
been evaluated identically, except for speed. “Modeling order of operations™ was not
considered to have the necessary features to be evaluated as an agile practice, and
therefore has been assigned (0 in all fields. Table 2 depicts the details of this evaluation.

It can be observed that the “degree of agility” (as introduced in [40]) drops from
48% to 40% (about 17% decrease) with respect to phases, and it drops from 70% to
62% (about 11% decrease) with respect to practices. Therefore, although there will be a
noticeable decrease in agility, the decrease is not drastic.

However, the method discussed in [40], does not consider the relative length of
phases with respect to one another, nor does it consider the effect of phases which are
repeated iteratively versus the initial, sequential phases of agile methodologies. As
discussed in [37], the three initial, sequential phases of FDD are estimated o require
23% of project resources, while 77% of resources are to be assigned to the iterative
“Design by feature " and “Build by feature” phases.

The key to preserving agility in the modified process is considering that the
application of the wse maodels in place of test data and use models in place of
hehavioral assertion patterns to the "Design by feature " and “Build by feature " phases
is not mandatory. Since these phases are performed iteratively. it can be expected that
through post-iteration retrospectives, team members will become efficient in detecting
situations in which applying these patterns would be beneficial.

In addition, "Design by feature™ benefits from the static analysis test cases created
during the “Develop an overall model™ phase. Although maintaining these test cases
may seem a hindrance at first, this cost is similar to the maintenance of test cases
during TDD, which is usually not considered a hindrance to agile methodologies.

Specification of invariants through the application of the monitor objects during
runtime will also provide benefits through reducing the number of test cases that need
to be coded and maintained.

The three mentioned reasons lead us to expect that afier a few iterations,
performance in the iterative phases of the modified process should not be any worse
than the original FDD process.

The initial, sequential phases, however, will incur a decrease in performance. The
additional time required is due to specifying test cases for architecture, domain patterns,
and for the models in the initial phase. The other loss of performance is due to
specifying the ordering between operations and the data dependencies between them.

T0 0 Jatalingsal and B, Ramsin 7 Towards Model-Based Testing Farerns

Even if the time required for the sequential phases was doubled, the overall time
required would only increase by 23%.

It must also be noted that agility is not the only metric that should be used in
evaluating agile methods. In [41] a comprehensive framework for evaluating agile
processes has been set forth. Although a comprehensive evaluation is out of the scope
of this paper. the FDD extension discussed here enhances many of the metrics
mentioned in [41]; examples include generic development litecyele coverage, adequate
products, modeling coverage, testability, requirements elicitation, and completeness.

Table 2. Quantitative evaluation of the proposed FDID extension

Agility Features
FY sD LS LG R5 Toal

FPhases
Drevelop an overall model
Build a feamre list
Plan by feature
Desten by feature
Bunld by feature
Total
Dregree of agility 3

R o S D) e

—

L R [= == [=]

=

L= = — = —]

ek e
L — I — P

10725

Practices
Damain object modeling 1
Developing by feature 1]
Individual class ownership 1
Feature teams |
Inspection 1
|
|
|
i

- =

Regular builds

Conliguration management
Reporting/visibility of resulis

Doinain level testing

Mudefing order aof aperations il
Feature level tests /
Total 0 7
Degree of agility 911 T 011 941

=

=]
= I~ — N — i — I — I — i — i —]

T R o I —E

=]

=
Lad
E

34/55

4, Conclusions and Future Work

In this paper, we first provided a summary of MBT literature representative of
techniques that we found feasible to apply to agile/lightweight methodologies. Methods
were selected which were based on tangible models that can be created and maintained
in such a methodology. Next, an analysis of several problems that testing currently
faces were presented. The problems discussed included:

e Low level of abstraction of test cases leading to costly maintenance, low
reuse, and high fragility;

o TDD's tendency to generate suboptimal designs;

e The inability of agile/lightweight methodologies to prevent deviation from
architecture;

e Ad-hoc tesis being developed without a meaningful progress indicator;

e The problem of relying on code coverage as the sole test-suite quality metric.

L Jalclingsal and K. Ramsin £ Towards Model-Based Testing Farterns Tl

For each category of problems, a set of patterns were proposed based on the body
of knowledge reviewed. These patterns each represent a category of MBT methods, and
can serve as guidelines for choosing or devising new task-specific methods. These
patterns have been summarized in Table 1.

Finally, it was demonstrated how to apply these patterns to FDD, one of the best
known agile methodologies, as an example of how these patterns can be fused into a
methodology. The modified methodology was then evaluated with respect to the
metrics introduced in [40] and [41]. The evaluation leads us to the conclusion that the
prejudice of agile methodologies towards modeling notwithstanding,. MBT may
actually be able to contribute to software quality and its important metrics while having
only a moderate impact on their agility, if applied properly.

Further research should be carried out on the use of MBT in agile/lightweight
methodologies. Some of the impediments which limit the use of MBT in these fields
are listed below, which should be addressed in future research:

» Configuration management and version control systems are essential to agile
development. Unfortunately, support for managing model artifacts 1s rather
limited in the agile development tools currently emploved.

* Integration of models with popular IDEs, and tool support for the various
methods proposed are essential to the adaptation of MBT to agile contexts.

* A programming language interface should be designed (such as EMF [39])
which allows access to models from scripted tests. and vice-versa.

* Although empinical evidence on the efficacy of MBT exists, industrial
rescarch has vet to prove its symbiosis with agile/lightweight methodologies.

» MBT techniques are not usually designed with agile/lightweight
methodologies in mind; exploring the ability to design specific lightweight
MBT technigues may thus prove to be an interesting field of research.

References

[1] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change (2nd Edition). Addison-
Wesley Professional, 2004,

[2] K. Beck, Test Driven Development: By Example. Addison-Wesley Profiessional, 2002,

[3] 5. W. Ambler, Agile modeling: Effective Practices for Extreme Programming and the Unified Process.
Wiley, 2001,

[4] & Kollenus, “Test-driven development - still 8 promising approach? Intermational Conference on the
Ouality of Information and Communications Technology, QUATIC, pp. 403308, 2010,

[3] A. C. D. Meto, B Subramanyan, M. Vieira, and G. H. Travassos, A survey on model-based testing
approaches: a systematic review,” in ACM Intermational Workshop on Empirical Assessment of
Soltware Engineering Languages and Technologies, WEASELTech, ACM, 2007, pp. 31-36,

[63] I}, Faraga, “Model-based testing in agile software development,”™ in 30, Treffen der Gl-Fachgruppe Test,
Analyse & Vernifikation von Software (TAV), Testing meets Agility, ser.Softwarelechnik-Trends, 2000.

[7] M. Katara and A, Kervinen, “Making model-based testing more agile: A use case driven approach.” in
Haifa Venfication Conference, ser. Lecture Notes in Computer Science, vol. 4383, Springer, 2006, pp.
219-234.

[B] B. Rumpe, “Apile esi-based modeling.” in Software Engineering Research and Practice, CSREA Press,
2006, pp. 10-15.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach. Morgan Koufinann, 2007,

[10] E. Gamma. R. Helm, K. E. Johnson, and I. Viissides, Design Panerns: Elements of Reusable Ohject-
Oriented Software. Addison-Wesley, 1995,

[117 B. Rumpe, “Model-bascd testing of object-orienied sysicms.” in Formal Mceihods for Componenis and
Objects, International Symposium, FMCO, ser. Lecture Notes in Computer Science, vol. 2852,
Springer, 2002, pp. 350402,

T2

[12]
[13]

(14]
[15]
[16]
[17]
[1¥]
[19]

[20]

[22

(23]
[24]

(23]

[26]
[27]
(2]

[29)

[30]
[31]
[32]
[33]
[34]

[33]
[36]

[37]
[3%]
[39]
[40]

[41]

0, Jatalingsal and B Ramsin / Towards Model-Based Testing Fanerns

(. Meszaros, XUnit Test Patterns: Refactoring Test Code. Addison-Wesley, 2007,

P. Baker, Z, R, Dai, O, Haugen, and I. Schieferdecker, Model-Driven Testing: Using the UML Testing
Profile, Springer, 2008,

(. Engels, B, Gldali, and M. Lolmann, " Towards model-driven unit testing.” in MoDELS Waorkshops,
ser, Lecture Motes in Computer Science, vol. 4364, Springer, 2006, pp. 182-192,

B. Meyer. "Applying design by contract,” I[EEE Computer. vol. 25, pp. 40-51, 1992,

The Java modeling language (JIML). [Online]. Available: hitp:/www.cs.ucledu leavens' TM LS

K. Beck, "Aim, fire,” Seftware, IEEE, vol. 18, no, 5, pp. 87-89, 2001,

S. Maoz, 1. (0, Ringert, and B, Rumpe, “Modal object diagrams.” m European Conference on Ohject-
Oriented Programming, ECOOP, ser. Lecture Notes in Computer Science,vol, 6813, Springer, 2011, pp.
281-303,

AL AL Andrews, B B. France, 8. Ghosh, and G. Craig, “Test adequaey eritenia for UML design models.”
Software Testing, Venfication and Reliability, vol. 13, no. 2, pp. 95-127, 2003,

1. Steel and M. Lawley, “Model-based test driven development of the Tefkat model-transformation
engine.” i International Symposiom on Software Relability Engieenng, ISSRE. [EEE Computer
Sociely, 2004, pp. 151-160.

E. Brotiier, F. Fleurey, 1. Steel, B, Bawdry, and Y. L. Traon, “Meiamodel-based test peneration for
model transformations: an algorithm and a teol.” in International Symposium on Software Reliability
Engineering. ISSRE. IEEE Computer Socicty. 2006, pp. B5-94.

1<, Mot, B, Baudry, and Y, L, Traon, “Muotation analysis testing for model transformations.™ in
Evropean Conference on Model Driven Architecture, ECMDA-FA, ser. Lecture Notes in Computer
Science, vol. 4066, Springer, 2006, pp. 376-390.

L. C. Briand and ¥, Labiche, A UML-based approsch to system testing.” in UML, ser, Lectune Notes
in Computer Science, vol. 2185, Springer, 2001, pp. 94208,

¥ Amyvot, L. Logrippo, and M., Weiss, “Generstion of lest purposes from use case maps.” Compuier
Metworks, vol. 49, no, 3, pp. 643660, 2005,

M. H. Pakimam M. Boghdady, Nagwa L. Badr ond M. F. Tolba, “A proposed test case gencrotion
technique based on activity diagroms,”™ Tnternmtional Jouwrnn) of Engiru:l.:ring and Technology, 11ET-
HENS, vol. 11, na, 3, 2001,

£ lin and). Offut, “Derivang tests from software architectures.” i International Symposium on
Software Religbility Engineering, ISSRE. [EEE Computer Society, 2001, pp. 308-313,

H. Reza and 5. Lande, “Maodel based testing using software architecture.” in International Conference
on Information Technology: New Generations, ITNG. [EEE Computer Society, 20010, pp. 188193,

D. Kim, R. France, and 8. Ghosh, A UML based language for specifying domain-specific pattems,”
Journal of Visual Languages and Computing, vol, 15, no. 3-4, 2004,

A, Causevie, [). Sundmark, and 5. Punnckkat, “Factors limiting industrial adoption of test driven
development: A systematic review.” in IEEE Internwtional Conference on Scltware Testing.
Venfication and Validation, ICST. IEEE Compuier Society, 2001, pp. 337-340.

A, £ Javed, P. A, Strooper, and G. Watson, “Avtomated generation of test cases vsing model-dnven
architccture.” in International Workshop on Awtomation of Software Test, AST. IEEE, 2007, pp. 3-9.
M. F. Aniche and M. A, Gerozsa, “Most common mistakes in test-dnven development praclice: Resulis
from an online survey with developers.,” i ICST Workshops, [EEE Computer Socicty, 2000, pp. 4649
478,

IMock — an expressive mock object library for Java, [Onling]. Available: hrp:dwww jmock, org

Fitnesse acceptance IE“!illll'Ig framework. [Onlineg]. Available: hup:Vfimesse.org

5. W, Ambler. “Agile testing and guality strategies: discipline over rthetorie,” [Online]. Available:
hopeffwww ambysoft.comvessayvsiagileTesting himl

M. Fowler, Analysis Patierns: Rensable Object Models. Addison-Wesley, 1996,

D. E. Turk, R. France. and B. Rumpe. "Assumptions underlying agile software-development processes,”
Journal of Database Management, vol. 16, no. 4, pp. 62-87, 2005,

5. R Palmer and J. M. Felsing, A Practical Guide 1o the Feamure Driven Development Prentice Hall,
2002,

. Ramsin and R, F, Paige, “Process-centered review of object oriented software development
methodologies,” AUM Computing Surveys, vel. 4, no. I, pp. 189, February 2008,

Eclipse modeling framework, [Online]. Available: bip:/www.eclipse, org/modeling/em

A, Qumer and B. Henderson-Seflers, *An evaluation of the degree of agility in six agile methods and its
applicability for method engincering,” Information & Softwarne Technology, vol. 50, no, 4, pp. 280-295,
2008,

M. Taromired and R. Ramsin, “CEFAM: Comprehensive Evalustion Framework for Agile
Methodologies,” in Annual |EEE Software Engincering Workshop, SEW, pp. 195-204, 2004,

