
Development of Situational Requirements Engineering Processes:
A Process Factory Approach

Omid Jafarinezhad, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

jafarinezhad@ce.sharif.edu, ramsin@sharif.edu

Abstract— The Software Product Line (SPL) approach is a
paradigm for systematic reuse of software products, and a
Software Factory is a SPL aimed at the industrialization of
software development. Based on the notion that a software/RE
process can be developed via an engineering process (much
akin to engineering other types of software), this research aims
to provide a feature-based RE process factory to develop RE
processes based on the characteristics of the project at hand
(project situation). In our approach, the project situation is
modeled as the problem domain through using the i* modeling
language (resulting in a situation model). A feature model can
encapsulate all the features in an SPL; therefore, the abundant
riches of the RE field – results of decades of research – have
been explored for extracting the variations and commonalities
among existing RE processes, the results of which are
represented in the form of a feature model, considered as a
model of the solution domain. In order to demonstrate the
validity of the proposed feature model, it has been compared
against RE-related activities found in prominent software
development methodologies. A mapping for translating the
situation model to the RE process feature model is proposed
with the specific aim of promoting traceability and rationality
in the selection of RE process features. The efficacy of the
approach is demonstrated through an RE process development
example.

Keywordst; Situational Requirements Engineering, Software
Process Reuse, Process Factory, Software Product Line.

I. INTRODUCTION
As an integral part of the discipline of Software

Engineering (SE), a Software Development Methodology
(SDM) or Methodology refers to the framework for applying
SE practices. It may also be described as consisting of two
main parts: ‘A set of modeling conventions comprising a
Modeling Language (syntax and semantics); and a
Process, which specifies the development activities and their
order, provides guidance for monitoring the activities, and
specifies what artifacts should be developed using the
Modeling Language’ [1]. As a consequence of the famous
observation that ’software processes are software too’ [2],
devising an engineering approach to construct/adapt a
methodology for specific projects has become a subject of
interest for software developers.

Methodology Engineering (ME) emerged in response to
the need for applying an engineering approach to
constructing a SDM. ME later came to be known as Method

Engineering, defined as ’The engineering discipline to
design, construct and adapt methods, techniques and tools
for the development of information systems’ [3]. Situational
Method Engineering (SME) is a well-known subfield of ME,
specifically aimed at constructing/adapting a methodology
for a specific project situation. There exist several synonyms
for it in literature; examples include Situated Method
Engineering, Method Adaptation, and Method Tailoring.

The prevalent belief that no one methodology fits all
project situations has been widely accepted in recent years,
especially considering the recent experiences on replacing
heavyweight methodologies by SME frameworks – for
instance, the RUP and OPEN methodologies have now been
replaced by Rational Method Composer (RMC) and OPEN
Process Framework (OPF), respectively. On the other hand,
the tendency to use configurable and flexible processes, as
observed in recent methodologies such as Catalysis and
Adaptive Software Development (ASD), has resulted in a
tendency to use SME [4]. The idea of SME is not
particularly novel, however: The ’requirements
determination strategies’ approach [5] is an early example of
a methodology that characterizes a specific project on the
basis of certain criteria, and thus provides the means for
situational requirements elicitation.

The pivotal role of RE in SE (and ME) is well
established. Poorly defined requirements are still one of the
main causes of software problems [6], so much so that the
term ‘requirements problem’ has become a cliché, and
improving the RE process has become essential [6, 7].
Hence, the notion that RE processes are situation dependent
[8, 9] has emerged to address the requirements problem.

The idea of manufacturing software products from
reusable components has been around for decades. The
Software Product Line (SPL) [10] approach is a paradigm for
systematic reuse of software products, and a Software
Factory is a SPL for the industrialization of software
development. Software Factories are actually the logical next
step in the continuing evolution of software development
methods and practices.

The major contribution of this paper is a novel approach
for developing (engineering) situational RE processes which
is based on the notion that SDMs (including RE processes)
can be developed via a software engineering process [4]. Our
proposed approach focuses on the idea of developing a RE
process factory to produce RE processes for specific project
situations, promote large-scale reuse, and reduce

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.39

277

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.39

277

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.39

277

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.39

279

development costs. To this aim, a feature-based SPL
approach is proposed. This paper also shows how RE and
SME research efforts can benefit from each other. RE
processes can be engineered through using SME; on the
other hand, SME can be improved by RE guidelines and best
practices. The two disciplines share a common interest, as
they both aim at promoting the quality of software
development.

The rest of this paper is structured as follows: Section II
provides an overview of related research; Section III
introduces the proposed approach and provides detailed
descriptions for its phases; Section IV contains an illustrative
example; and Section V presents the conclusions and
suggests ways for furthering this research.

II. RELATED RESERACH
Various approaches have been proposed for alleviating

the problems encountered in improving and developing a RE
process for a specific project or organization. The related
research can be classified into the following four categories:
1) RE Process improvement models (e.g., [7, 8, 11]), which
assess the current situation and introduce guidelines and
techniques for improving RE processes within an
organization to meet new goals and objectives; 2)
Requirements determination approaches (e.g., [12, 13, 14]),
which suggest project-specific RE processes or techniques to
meet the needs of a target situation; 3) Empirical studies
(e.g., [15, 16, 17]), which provide rich guidelines on the
applicability of certain techniques/practices in specific
projects; and 4) SME approaches (e.g., [11, 18, 19]), which
provide disciplines aimed at constructing or adapting a SDM
to fit a specific situation.

III. FEATURE-BASED RE PROCESS FACTORY
It should be noted that developing RE processes may not

be targeted at just one software development project;
organizations can use it to develop their own adaptive
processes. Therefore, reusability and flexibility are the most
prominent requirements in RE process development. Based
on the notion of software factory, each organization can have
its own RE process factory. For this purpose, a RE process
product line–or “process line”–can be utilized. It has two
main lifecycles, namely domain engineering (similar to ME)
and application engineering (similar to SME). The domain
engineering lifecycle is concerned with analyzing the domain
and identifying the differences and commonalities between
RE processes. The results are modeled in a RE process
feature model which describes the features and their
relationships; and also the RE process components which
have satisfied some of the RE process features. Different RE
processes can be produced depending on the features
selected. The application engineering lifecycle is then
applied; this activity is concerned with the elicitation of the
needs, requirements, and expectations of the target RE
process in order to develop the RE process which best fits
the project situation and the given RE process feature model.

The process of our proposed approach (Figure 1) consists
of the following stages:

1) In Situation Analysis, the method engineer analyzes
the problem domain (which is the specific project situation)
and as a result constructs a situation model. This model is a
goal model – expressed using a specific notation, such as the
i* modeling language [20] – which defines the project
situation in terms of situation factors and RE process criteria
(adapted from methodology requirements/criteria [4]).

2) In RE Process Component Implementation, new RE
process components may be implemented, or existing ones
may be adapted through refactoring; e.g., by applying
generic operators [18]. In addition, a RE process feature
model is constructed through applying abstraction to RE
process components.

3) In Feature Analysis, in order to develop a specific RE
process, the project situation is elicited in terms of situation
factors and RE process criteria; the degree to which each
model element should be satisfied is then computed through
evaluating the situation model. After evaluation, the RE
process feature model is analyzed through applying the
principles of fuzzy set theory, and corresponding features are
selected. For this purpose, each feature is annotated based on
the Fuzzy Inference System [21] (FIS); the degree to which
the model elements of the situation model should be satisfied
are fed to FIS as input variables. Each FIS output value can
be interpreted as the presence condition [22] for the
corresponding feature (it indicates whether the feature should
be kept or removed from the final selection). The process of
selecting appropriate features from the RE process feature
model is referred to as RE process configuration.

4) In RE Process Components Composition, a specific
RE process is assembled or adapted based on the RE process
configuration.

A detailed description of this approach is presented
throughout the rest of this section.

Figure 1. Phases of the proposed approach

A. Situation Model
Seamlessness and smoothness of transition between

project situation/need (problem domain) and RE process
feature/requirement (solution domain) is vital in process
engineering. It also helps promote process requirements
traceability and rationality. In other words, transition
between the situation model and the RE process feature
model should be seamless and smooth.

The project situation is mostly described informally, or
through defining a list of characteristic-value pairs (without
considering their interdependencies). In our proposed
approach, the i* modeling language is used for defining the
situation model in terms of situation factors (typically

Situation Analysis
(Situation model)

Feature Analysis
(RE process feature

selection)

RE Process Component
Implementation

(RE process feature model)

RE Process Component
Composition

(Assembling, Refactoring)

Problem Domain Solution Domain

Domain
Engineering

(ME)

Application
Engineering

(SME)

278278278280

modeled as goals or tasks) and RE process criteria (typically
modeled as soft goals). A goal represents a precise situation
factor, and a soft goal represents a qualitative situation factor
with no clear-cut level of satisfaction. The situation model
can thus depict the mutual effects and interactions of the
situation factors (positive or negative), based on which trade-
off analysis can be performed.

The situation model thus produced defines the project
situation from two viewpoints: The characteristics of the
situation as elicited from the problem domain, and the
process requirements which are discovered by the method
engineer; these requirements are at a deeper level than the
problem domain, and their specification signifies a move
towards the solution domain. It should be pointed out that
these two viewpoints are never isolated, and have certain
relationships with each other: The higher value of one
situation factor might influence the values of other
attributes. For example, a high value for requirements
volatility can affect the value of complexity. Therefore, the
relationships between these elements should also be
modeled; e.g., by contribution links.

The situation factors used in our approach have been
elicited through reviewing and scrutinizing the empirical
studies conducted on enacting certain methods/practices in
specific situations (e.g., [15, 16, 17]), as well as the project
characterization phases of existing SME approaches (e.g.,
[11, 18, 19]); synonyms and homonyms have then been
resolved based on frequency, abstraction level, and existing
guidelines. The basic situation factors that can be considered
when defining project situations are as follows:
 Project type: Real-time system, safety-critical system,

process-controlled system, information system, and web
system are examples of systems targeted by a project,
thereby signifying the project type.

 Application domain: Banking and finance, education,
energy resources, insurance, medical/health care,
telecommunication services, government, military, and
transportation are examples of common application
domains.

 Project size: Size can be defined in terms of the number
of staff and project requirements involved.

 Complexity: Project complexity is defined in terms of
quality criteria, distribution characteristics of the
application, requirements dependency, number of
external interfaces, and understandability of the problem
domain.

 Management commitment: This is determined based on
the level of support provided, availability of influential
project sponsors, and degree of management
involvement.

 Degree of resistance: Interests of the people involved
(which may be conflicting), attitude of the target domain
towards the system, and flexibility and adaptability of
the user organization are some of the sub-factors which
influence this factor.

 Requirements volatility: The probability of requirements
change throughout the project lifecycle. High volatility
typically increases development risk.

 Level of criticality: The impact of failure: Danger to the
environment, loss of human life, damage to equipment,
or depletion of financial resources. An increase in
criticality may require a higher level of support for
formalism in the process.

 Scarcity of people and resources: Availability of
personnel, time, resources, and budget are some of the
sub-factors that influence this factor.

 Team size: The number of team members: This is one of
the most obvious factors that have a strong impact on
the RE process. If the number of people involved in the
project is large, face-to-face communication will not be
sufficient, and higher support for modeling and
documentation might be needed.

 Familiarity with the domain: Possession of relevant
knowledge and experience on the problem domain. If
the project belongs to an unknown or unfamiliar
domain, the development risk is high; this will require a
more rigorous RE process to improve the quality of the
elicitation process.

 Team RE knowledge: Relevant knowledge and
experience of the team as to RE processes and
techniques.

 Degree of knowledge about the requirements: The level
of availability of requirements specifications, accuracy
of business process descriptions, and ease of elicitation.

 The availability of skilled facilitators: The role of a
facilitator is to help a group of people in defining and
planning to achieve their common objectives. A
facilitator can prove indispensable in an RE process.

 Potential for conflict: Stakeholder heterogeneity and the
degree of conflict encountered in the problem domain
are the main sub-factors that influence this factor.

 Innovation level of the project: Innovation required in
the project and the development process, and the need
for state-of-the-art equipment and tools.

 Customer availability: Availability of customers,
whenever needed, for providing information and
feedback.

 Degree of reusability: The importance of the reusability
of the software project artifacts (including the
customized process used), and the potential software
product family.

 Degree of implicit knowledge: Signifying the
importance of eliciting implicit knowledge.

 Degree of outsourcing required: The amount of project
components that will be outsourced.

 Capability maturity level: The supported level of
organization capability maturity, and RE process
maturity.

 Organizational impact: Consequences of the project goal
on the target domain organization, and the system’s
impact on the people involved.

 Strategic importance: Project priority and the system’s
effect in relation to strategic business objectives are the
main sub-factors that influence this factor.

279279279281

It should be mentioned that some of these situation
factors (such as “Degree of reusability”) are difficult to
ascertain during initial cycles of process development;
therefore, previous experience and meticulous scrutiny is
required for resolving their uncertainty. It should also be
noted that the above list is not exhaustive and only includes
the core factors: Additional detail and new factors can be
added, if deemed necessary.

The impact of situation factors on RE process criteria
should be identified and specified as part of the situation
model. RE process criteria define requirements from the
method engineer’s viewpoint. They can be discovered by the
method engineer through analyzing the situation factors. The
basic RE process criteria are as follows:
 RE process definition: The accuracy, precision,

consistency, and completeness of the documentation
available on the process. For a heavyweight process, a
comprehensive, clear, rational, accurate, detailed, and
consistent description should be provided on the
lifecycle, work units, producers, modeling languages,
work products, rules, and umbrella activities of the
process.

 Coverage of RE lifecycle: Degree of support for the RE
process life cycle – spanning negotiation, elicitation,
analysis, documentation, and validation [23].

 Support for umbrella activities: Provision of adequate
support for the umbrella activities that are relevant to the
RE process is typically required and should be
considered (e.g., requirements change management).

 Seamlessness and smoothness of transition between RE
phases, stages and activities: The transition between RE
phases and stages should ideally be as smooth and
seamless as possible.

 Testability and tangibility of RE artifacts, and
traceability to requirements: Testability of the artifacts is
the degree to which an artifact facilitates testing. The
understandability of an artifact to users and developers
is referred to as its tangibility. Secondary RE artifacts
are expected to be traceable to the main artifact:
Requirements.

 Encouragement of active user involvement: RE is
seriously damaged if active user involvement is
neglected. Ambassador users and planning and review
sessions with user participants are proven agile
techniques for this purpose.

 Practicability and practicality: It should be possible to
apply the RE process in practice, and in an effective and
efficient manner.

 Manageability of complexity: The complexity of RE
work-units and work products should be manageable,
typically via applying partitioning and layering.

 Extensibility, configurability, flexibility, and scalability
of the RE process: Adaptability is a very desirable trait
in RE processes.

 Application scope: The intended usage context of the
RE process. The combination of the project type and
application domain situation factors defines the
application scope.

 Support for consistent, accurate and unambiguous
modeling: Diverse modeling viewpoints, logical to
physical modeling, various levels of abstraction and
granularity, and formal and non-formal specifications
are relevant concerns in this regard.

 Provision of strategies and techniques for tackling RE
model inconsistency and managing model complexity:
The modeling language and modeling process are
expected to provide features for managing complexity
and facilitating consistency checking.

B. RE Process Feature Model
A feature model encapsulates all the features in a SPL

and organizes them hierarchically. Connections between a
feature and its group of children are distinguished as And-
(no arc), Or- (solid arc) and Alternative-groups (unfilled arc).
The children of And-groups can be either mandatory (solid
circle) or optional (unfilled circle). Feature models have the
following semantics: If a feature is selected, so too is its
parent. Furthermore, if the parent is selected, all mandatory
children (features) of an And-group are selected; in Or-
groups, at least one child must be selected, and in
Alternative-groups, exactly one child is selected. A feature
model may also have constraints, called cross-tree
constraints, which cannot be easily expressed hierarchically.
Cross-tree constraints can be arbitrary propositional formulas
and may be written below a feature diagram.

The RE process feature model is a compact
representation of all the phases, stages, and tasks of the
generic RE process in terms of features. It is the result of
applying abstraction to the high-level processes of RE
process models [8, 13]. In order to construct this model, we
have explored existing RE processes, extracted their
variations and commonalities, and represented them in the
form of a feature model which constitutes the solution
domain in our approach. The coverage of the proposed RE
process model has been evaluated through comparison with
prominent object-oriented methodologies [1], agent-oriented
methodologies [24], and RE methods (e.g., [25, 26]); a
mapping between the proposed RE process features and the
RE activities in these well-known methodologies is given in
Table I. The evaluation shows that the model provides ample
coverage of RE activities in typical concrete RE processes.
The major features of the RE process feature model are
briefly described throughout the rest of this subsection.

Negotiation: The goals of this feature are to extract
different views and needs, resolve conflicts, and reach an
agreement with the stakeholders. “Negotiate with
individuals”, “Negotiate with groups”, and “Negotiate
around artifacts” are the three subfeatures of this feature.
During “Negotiate with individuals”, the needs and
viewpoints of different stakeholders are elicited from
individuals. Interview and Observation are the technical
components of this feature. Through “Negotiate with
groups”, needs and viewpoints are extracted from groups of
people. Workshop and Group media (such as project Wikis)
are technical instances of this feature. Another source of
knowledge extraction is the set of artifacts (such as
prototypes, similar systems, and standards), the inherent

280280280282

knowledge of which is extracted through “Negotiate around
artifacts”. Requirements prototyping, Requirements reuse,
and Reverse engineering are the technical components of this
feature.
Elicitation: This feature discovers the required knowledge
through negotiation. It consists of five subfeatures: Identify
stakeholders, Determine context/scope/interfaces, Elicit
definitions, Elicit non-functional needs, and Elicit functional
needs. Stakeholders, the relationships between them and
their influence on the system are elicited during “Identify
stakeholders”. Stakeholders are the most important sources
of domain knowledge. The Onion model [27] is a technical
component of this feature. During “Determine
context/scope/interfaces”, the system context is identified by
focusing on determining the system scope and its interfaces.
The Rich picture method [28] of the Soft Systems
Methodology (SSM) is a technical component of this feature.
The project’s data dictionary and glossary are extracted
during “Elicit definitions”. Quality attributes and constraints
imposed by the stakeholders are extracted in “Elicit non-
functional needs”. The goal model is a technical component
of this feature. “Elicit functional needs” is an integral
subfeature which will be described in more detail below.

Elicit functional needs: This important feature consists
of three subfeatures: Elicit usage scenarios, Elicit rationale
and assumptions, and Elicit measurements. A scenario is a
narrative explanation of the user’s need which is elicited
through “Elicit usage scenarios”. Use case (structured) and
User story (unstructured) [29] are technical examples of this
feature. Stating the assumptions and rationale explicitly
results in improvements in tracking, prioritization, and
design decisions. Assumptions and rationale are extracted in
“Elicit rationale and assumptions”. The needs’ acceptance
criteria are extracted in “Elicit measurements”. The
measurability of needs is an important criterion for
requirements validation.

Requirements analysis: This feature deals with mapping
needs to requirements. This feature is the entry point to the
solution domain. It consists of four subfeatures:
Prioritization, Risk analysis and assessment, Feasibility
analysis, and Analysis. Requirements are discovered through
“Analysis”. These requirements are then prioritized through
“Prioritization”. Binary Search Tree, Numeral Assignment
Technique, Planning Game, the 100-Point Method, Theory-
W, Requirements Triage, Wiegers’ Method, MoSCoW
Rules, and the Analytic Hierarchy Process are technical
examples of this feature [30]. Requirements risk is estimated
through “Risk analysis and assessment”. Technical
components of this feature have been presented in [31].
Feasibility assessment is performed through “Feasibility
analysis”. It is an engineering practice which presents
information to determine whether or not the requirements
should be moved forward to final engineering and
construction. Since “Analysis” is a very important
subfeature, it will be further described below.

Analysis: This feature can have different objectives
depending on the development iteration in which it is
performed. For example, in a particular iteration, classifying

the needs and discovering their relationships may be the
goal; whereas in another, discovering the requirements
corresponding to each need may become the main objective.
“Analysis” has four subfeatures: Classification,
Requirements discovery, Interaction analysis, and
Requirements refinement. “Classification” categorizes the
requirements according to the criteria determined by the
development team. A technical component of this feature is
provided in [32]. Requirements are elicited from needs in
“Requirements discovery” based on the previous experiences
of the requirements engineer. Relationships among
requirements are analyzed in “Interaction analysis”. Example
components for implementing this feature are presented in
[33]. “Requirements refinement” reviews and revises the
requirements discovered. A framework for requirements
refinement has been described in [34].

Documentation: This feature’s intent is to produce the
software requirements specification. Documentation
elaborates on the knowledge and understanding elicited from
the domain. It has the following subfeatures: Qualities and
constraints model, Dependency model, Definitions model,
Risk model, Feasibility report, Usage model, and
Requirements model. Non-functional requirements are
documented through “Qualities and constraints model”.
Dependencies between the requirements and the needs are
specified by “Dependency model”. The project data
dictionary is documented in “Definitions model”.
Requirements risks are modeled by “Risk Model”, and
feasibility is modeled by “Feasibility Report”. Needs and
usage scenarios are documented by “Usage model”.
Requirements discovered in analysis are documented
through “Requirements model”.

Requirements validation and verification: In this
feature, requirements are reviewed (through informal or
formal inspection) and validated. It consists of three
subfeatures: Setup criteria, Translate representation, and
Evaluation. The validation criteria are established in “Setup
criteria”. The criteria are selected according to validation
intent: Completeness and testability are examples of
requirements validation criteria. The requirements’
representation may be changed according to the criteria
through “Translate representation”. After the validation
criteria are determined, evaluation will be performed through
“Evaluation”. A framework consisting of common
components for this feature is presented in [35]. For
example, a validation technique can be based on prototyping,
with completeness specified as an evaluation criterion; in this
case, requirements are translated in the form of
prototypes, and evaluation is then performed based on the
scenarios previously defined.

Requirements Management: This feature is present as a
continuous feature throughout the RE process, and is
concerned with coping with requirements traceability,
requirements change management, and other managerial
issues. It consists of the following subfeatures: Tool
management, Requirements traceability, Requirements
change management, and Stakeholder management.

281281281283

TABLE I. REALIZATION OF RE PROCESS FEATURES IN PROMINENT SOFTWARE DEVELOPMENT METHODOLOGIES

Corresponding Process Features RE Activity/Practice Methodology
Negotiation, Analysis, Requirements model Develop overall object model

Fusion

O
bj

ec
t-O

rie
nt

ed
 [1

]

Determine context/scope/interfaces, Elicit usage scenarios, Usage model Develop system object model
Determine context/scope/interfaces, Analysis, Requirements model Develop system interface model
Elicit definitions, Definitions model Develop data dictionary
Requirements validation and verification Evaluate against checklist
Analysis, Requirements model Identify classes, responsibilities, and collaboration RDD Determine context/scope/interfaces, Interaction analysis, Requirements model Analyze subsystems and hierarchies
Identify stakeholders, Determine context/scope/interfaces, Analysis, Elicit
definitions, Definitions model Analyze problem

RUP Negotiation, Elicit non-functional needs, Elicit functional needs Understand stakeholder needs
Elicit usage scenarios, Documentation Define system
Prioritization, Risk analysis and assessment Manage system scope
Analysis, Documentation Refine system definition
Elicitation, Negotiation, Feasibility analysis Feasibility study

DSDM
Determine context/scope/interfaces, Prioritization, Elicit definitions, Definitions
model Business study

Analysis, Requirements model, Documentation, Requirements validation and
verification Functional model iteration

Elicit usage scenarios, Usage model Develop user stories

XP

Feasibility analysis Planning game
Elicitation, Negotiation, Documentation, Requirements validation and verification Develop metaphor
Prioritization Prioritize user stories
Negotiation with groups, Negotiation around artifacts Hold daily stand up meeting
Analysis Analysis
Requirements validation and verification System-wide verification and validation
Elicitation, Requirements analysis Specify project mission

ASD Documentation Create mission artifacts
Negotiation Obtain approval, Share mission value
Requirements validation and verification Quality review, Final Q/A and release
Elicitation, Negotiation Domain-area walkthrough, Study documents

FDD

Analysis, Requirements model Develop small group models and a team model
Requirements refinement Refine overall object model
Analysis Build features list
Prioritization, Risk analysis and assessment, Risk model Plan by feature
Requirements validation and verification Software/Models inspection and reporting
Analysis Capturing goals

MaSE

A
ge

nt
-o

rie
nt

ed
 [2

4]
 Elicit usage scenarios, Interaction analysis, Usage model Applying use cases

Requirements refinement, Requirements validation and verification Refining roles
Identify stakeholders, Stakeholder management, Qualities and constraints model,
Dependency model Early requirements

Tropos Determine context/scope/interfaces, Analysis, Qualities and constraints model,
Dependency model, Requirements model Late requirements

Identify stakeholders, Elicit functional needs Identify the roles
Gaia Determine context/scope/interfaces, Dependency model, Requirements traceability Identify and document role protocols

Dependency model, Usage model, Requirements model Elaborate the roles model
Elicitation, Risk analysis and assessment Project blastoff

Volere [25]

R
E

M
et

ho
ds

Negotiation Trawl for knowledge
Elicitation, Documentation Write the requirements
Requirements validation and verification Quality gateway
Documentation, Requirements validation and verification Prototype the requirements
Requirements management, Risk analysis and assessment, Requirements validation
and verification Requirements retrospective

Requirements analysis Taking stock of the specification
Elicitation, Negotiation Domain analysis
Requirements analysis Reusing requirements
Elicit non-functional needs, Elicit functional needs, Requirements traceability Identify goals and their concerned objects

KAOS [26]

Identify stakeholders, Determine context/scope/interfaces Identify potential agents and their capabilities
Analysis Operationalize goals into constraints
Requirements refinement Refine objects and actions

Requirements validation and verification Derive strengthened objects and actions to ensure
constraints

Risk analysis and assessment Identify alternative responsibilities
Analysis Assign actions to responsible agents

282282282284

Identification, selection and use of suitable tools are
supported through “Tool Management”. Tracing forward and
backward between requirements and artifacts is managed
through “Requirements traceability”. Since changes are
inevitable, they have to be managed through a dedicated
feature: “Requirements change management”. “Stakeholder
management” is concerned with keeping track of
stakeholders, analyzing their influences, prioritizing them,
and involving them in the process.

C. Annotating the RE Process Feature Model
The method engineer usually uses guidelines to select

appropriate techniques for a given feature (stage or task); a
simple example is shown in Table II. Feature values should
be entered into the feature model as informal linguistic terms
(such as good, or poor). The guideline corresponding to each
of the features in the feature model can be modeled through
applying FIS, thereby annotating each feature of the RE
process feature model by its corresponding guideline.

TABLE II. EXAMPLES OF RE GUIDELINES (ADAPTED FROM [11, 14])

Situation Brain-Storming Focus Group JAD …

Ti
m

e
C

on
st

ra
in

ts
 very high − …

high − …
medium − …
low …
very low …

C
om

pl
ex

ity
 very high …

high …
medium …
low − − …
very low …

= very good; = good; − = borderline; = weak; = very weak

FIS is commonly used for handling uncertainty,
vagueness, and imprecision of judgment in multi-objective
decision-making processes. It uses a Fuzzy Rule Engine
(FRE) for mapping an input space to an output space based
on fuzzy logic, in which the truth of any statement becomes a
matter of degree (by assigning a degree of membership); a
Membership Function (MF), which is a generalization of the
indicator function in classical sets, defines a curve that maps
each point to a membership value (or degree of membership)
between 0 and 1. The input and output variables of FIS
typically use a specific form of normal fuzzy set, called
fuzzy numbers, which can be formulated by trapezoidal
fuzzy numbers. A trapezoidal fuzzy number is defined as: ߸ = (ܽ, ܾ, ܿ, ݀), ܽ ≤ ܾ ≤ ܿ ≤ ݀ (if ܾ = ܿ , ߸ is a triangular
fuzzy number); the MF can be defined as shown in figure 2.
FRE is a program that tries to derive a conclusion from a rule
base (a set of logic rules in the form of IF-THEN
statements).

Throughout the rest of this subsection, we will develop a
simple FIS for the Brain-Storming feature (BSF); the result
can be used as a presence condition for BSF. For this
purpose, the following tasks are performed: 1) Defining
input and output variables: In this example, we have two

input variables, time constrains and project complexity; and
one output variable, fitness of Brain-Storming; 2) Defining
the MF for each variable in the form of its scale, as shown in
Figure 3; and 3) Defining rules of FIS according to RE
guidelines. As an example, some of the corresponding rules
for table II are shown in Figure 4.

(ݔ)ధߤ ⎩⎪⎨
⎪⎧ ௫ିି ܽ ≤ ݔ ≤ ܾ1 ܾ ≤ ݔ ≤ ܿ௫ିௗିௗ ܿ ≤ ݔ ≤ ݀0 ݎℎ݁ݐ

Figure 2. MF for a trapezoidal fuzzy number

Figure 3. Model of MF for input variables

Figure 4. Conceptual model for FIS of a feature

D. RE Process Feature Selection
In order to select RE process features, the following

activities should be carried out:
1) The values for situation factors are elicited and the

situation model is evaluated; the results determine the degree
to which each element of the situation model should be
satisfied (in other words, the input variables for FIS are
determined through evaluation). The values of situation
factors can be determined in two ways: Evidential (based on
solid evidence) or Assumptive (without significant
supporting evidence). Situation model evaluation typically
starts by assigning values to leaf nodes (these values are then
propagated to other nodes). This can be performed by
Automatic resolution or Manual resolution. Automatic
resolution follows the i* forward evaluation algorithm [36].
Value propagation will be performed with respect to the
current value of the situation factor and the type of the
contribution link, based on the propagation rules defined in
Table III. If a factor receives various values through its
decomposition links, the minimum label is assigned
(Satisfied > Weakly Satisfied > Conflict > Unknown >
Weakly Denied > Denied). Manual resolution is needed
where the automatic approach cannot be applied; in such
cases, human judgment determines the value of a factor.

2) The corresponding FIS of each feature in the RE
process feature model is used for indicating the fitness of that
feature based on the results of situation model evaluation.

Time Constraints (TC)

Complexity (C)
Fuzzy Rules

Engine
Fitness of Brain-
Storming (BS)

 If (TC= very high) then BS= borderline
 If (TC= high) then BS=good
 If (C= Very High) then BS=very good
 …

1

0.2 1 0 0.4 0.6 0.8

Very low Low Medium High Very high

a b c d

1

283283283285

The method engineer then selects each feature based on its
fitness value and his/her previous experience. Selection is
thus a decision making problem: The fitness value of each
feature helps the method engineer reach the final decision.
This process can be automated, if the method engineer
follows a specific pattern in making the decisions (e.g., as a
simple example, a feature may be selected if the fitness value
is greater than 0.5).

TABLE III. VALUE PROPAGATION RULES (ADAPTED FROM [36])

Original Value Contribution Link Value
Label Name Help Hurt Some+ Some- Unknown

 Satisfied

 Weakly Satisfied

 Unknown

 Weakly Denied

 Denied

E. Assembly and Refactoring of RE Process Components
RE process composition can be performed through the

following three strategies: Assembly-based strategy,
Extension-based strategy, and Paradigm-based strategy
(meta-model instantiation). Assembly and refactoring of RE
process components are the major activities in these
strategies [18]. Assembly can be regarded as the act of
composing RE processes from cohesive RE process
components through integration (refactoring may then be
needed), or through association based on their preconditions
and post-conditions aimed at achieving specific intentions.
Integration involves identifying the common features of RE
process components and merging them (through merge,
generalization, and specialization operators); this can be
done if the elements of integration have the same semantics.
The merge operator is applicable for merging components
with similar semantics and similar structures. The
generalization operator can be used when components have
the same semantics but different structures. The
specialization operator is used when one component is a
specialization of another. Assembly by association simply
involves ordering RE processes. The interested reader is
referred to [18, 19, 37] for a more detailed discussion on the
relevant operators and formal definition techniques.

Validation provides a means for ensuring that the result
of composing the RE process is suitable for the given
situation, and satisfies the quality criteria. As an example,
Harmsen [19] has defined “completeness” as a criterion to
ensure that the target process contains all the process
components referred to by its constituent components; it is in
turn divided into: Input/output completeness, content
completeness, process completeness, association
completeness, and support completeness. Furthermore, the
quality of the constructed situational RE process can be
validated based on assessment models such as the RE
process maturity model [8], and the major concerns
addressed by the RE assessment model [11].

IV. ILLUSTRATIVE EXAMPLE

This section provides an illustrative example for
demonstrating how to use the proposed approach.

Market-driven software development companies have
unique traits and needs, such as short time-to-market, remote
users, very limited opportunity for negotiation, steady stream
of new requirements, and the need for frequent delivery of
new and improved product releases in order to keep users
and customers satisfied. As an illustrative example, we have
considered a market-driven situation where a real-time
developer studio should be developed. The method engineer
uses extension-based SME to construct the RE method by
extending the Scrum framework. Each Scrum iteration
consists of: Sprint planning meeting, Daily Scrum, Sprint
review, and Sprint retrospective. Scrum needs to be extended
to be suitable for a market-driven situation.

Due to space constraints, constructing a complete
process, with all the associated detail, is not possible herein;
therefore, for sake of brevity, only two features –
“Negotiation” and “Elicit usage scenarios” – are considered.
Because the extension-based SME approach is selected, a
Scrum process line must be constructed in domain
engineering. Hence, the method engineer models the
situation factors and their relationships in the situation
model, and produces a Scrum feature model (spanning
original features and potential features) as the RE process
feature model; the results are shown in figure 5. The method
engineer must elicit the values of the situation factors, using
both evidential and assumptive approaches (a subset of
which is shown in Table IV). For example, based on team
knowledge, the value of understandability of problem
domain is set to weakly satisfied, evidentially. After
determining the value of the leaf nodes, the remaining nodes
are evaluated by using automatic resolution as well as
manual resolution. For instance, the value of determine
complexity has been defined as weakly satisfied by manual
resolution. Automatic resolution could not be applied
because it produced different values: Based on the
“minimum label” rule for decomposition links, it is evaluated
as weakly denied, whereas application of the propagation
rule determines its value as weakly satisfied (because of its
Some+ link). As another example, the value for determine
scarcity of people and resources has been determined by
automatic resolution.

It should be noted that even though the values of the
situation factors are determined according to the
project/organization situation, there may be a degree of
uncertainty involved, which has been handled through
applying fuzzy logic in the proposed process. The fitness of
each feature is then calculated based on the FIS values. For
this example, the fuzzy logic toolbox of MATLAB has been
used for implementing FIS; corresponding fitness values are
determined by considering the values of the situation model
(RV = Satisfied, C = Weakly Satisfied, etc.) as inputs for the
annotated FISs. For example, use cases are widely applied to
elicit usage scenarios. However, the fundamental problem in
market-driven RE is that the user is not known beforehand;
therefore, based on the implemented guidelines of FIS, the

284284284286

persona-scenario model [38] has a better fitness value.
Finally, the method engineer uses the fitness values to make
a decision about selecting the final features, and composes
the selected features to develop the targeted situational
(project-specific) RE process. The schema of this process is
shown in figure 5. It should be noted that there are several
resources for discovering RE process components and their
corresponding guidelines; examples include: Relevant RE
literature [5, 8, 11, 13, 14, 23], method repositories [39, 40,
41], and empirical studies.

TABLE IV. A SUBSET OF THE SITUATION FACTORS ADDRESSED IN THE
ILLUSTRATIVE EXAMPLE

Situation Factor Value
Various type of quality criteria Medium

Distributed application structure Unknown
Requirements dependency High

Number of external interfaces 5
Types of customers Not clearly known

Requirements handling Continuous requirements flow
Organizational support High

V. CONCLUSIONS AND FUTURE WORK
In this paper, a process factory for developing situational

RE process is proposed. To this aim, a feature-based SPL is
applied; it takes into account the domain-engineering
lifecycle as ME, and the application lifecycle as SME,
specifically targeted at developing RE processes. It also
implicitly distinguishes between the problem and solution
domains, and provides a mapping between the two through
the use of FIS and guidelines. Thus, the proposed approach
applies SPL best practices to improve SME, and uses SME
to construct situational RE processes.

The proposed approach can also be used as a convenient
way for developing software processes; for this purpose,
process components and the corresponding feature model
should be adapted to the target context. Constructing full-
scale processes from scratch, without the use of repositories
of method components and guidelines, can be a complicated
and time-consuming process. Nevertheless, if an
evolutionary strategy is applied to the enactment and
management of the process factory and the constructed
processes, development costs can be reduced in the long run;
this strategy ensures that the lessons learnt from previous
projects are reflected to the process factory and its products,
mainly as new or updated guidelines, situation patterns, and
feature models.

This research can be furthered by creating a tool to
construct bespoke RE processes supporting this approach.
Another strand of research can focus on constructing a
repository of RE process components, providing detailed
specifications for the features. It can also be completed
through the use of feature-oriented process languages for
implementing RE process components by considering
existing repositories, process pattern languages, and process
metamodels. In this manner, similar to feature-oriented
programming in software development, method engineers

will be able to program their own processes through feature-
oriented process languages.

REFERENCES
[1] R. Ramsin and R. F. Paige, “Process-Centered Review of Object-

Oriented Software Development Methodologies,” ACM Computing
Surveys, vol. 40, no. 1, pp. 1–89, 2008.

[2] L. Osterweil, “Software processes are software too, revisited,” In
Proceedings of the 19th International Conference on Software
Engineering, pp. 540–548, 1997.

[3] S. Brinkkemper, “Method engineering: engineering of information
systems development methods and tools,” Information and Software
Technology, vol. 38, no. 4, pp. 275–280, 1996.

[4] R. Ramsin and R. F. Paige, “Iterative criteria-based approach to
engineering the requirements of software development
methodologies,” IET Software, vol. 4, no. 2, pp. 91–104, 2010.

[5] G. Davis, “Strategies for information requirements determination,”
IBM Systems Journal, vol. 21, no. 1, pp. 4–30, 1982.

[6] S. Beecham, T. Hall, and A. Rainer, “Software process improvement
problems in twelve software companies: An empirical analysis,”
Empirical Software Engineering, vol. 8, no. 1, pp. 7-42, 2003.

[7] S. Beecham, T. Hall, and A. Rainer, “Defining a requirements process
improvement model,” Software Quality Journal, vol. 13, no. 3,
pp. 247–279, 2005.

[8] I. Sommerville and P. Sawyer, Requirements Engineering: A good
practice guide, John Wiley & Sons, 1997.

[9] C. R. Coulin, A situational approach and intelligent tool for
collaborative requirements elicitation, Doctoral Thesis, University of
Technology, Sydney, 2007.

[10] P. Clements and L. Northrop, Software Product Lines, Addison-
Wesley, 2001.

[11] L. Jiang, A framework for requirements engineering process
development, Ph.D. Dissertation, University of Calgary, 2005.

[12] S. Lauesen, Software Requirements: Styles and Techniques, Addison-
Wesley, 2002.

[13] I. Alexander and L. Beus-Dukic, Discovering Requirements: How to
Specify Products and Services. John Wiley & Sons, 2009.

[14] N. Maiden and G. Rugg, “ACRE: selecting methods for
Requirements acquisition,” Software Engineering Journal, vol. 11, no.
3, pp. 183–192, 1996.

[15] R. Moore, K. Reff, J. Graham, and B. Hackerson, “Scrum at a
Fortune 500 Manufacturing Company,” In Proceedings of Agile’07
Conference, pp. 175–180, 2007.

[16] P. Sfetsos, I. Stamelos, L. Angelis, and I. Deligiannis, “An
experimental investigation of personality types impact on pair
effectiveness in pair programming,” Empirical Software Engineering,
vol. 14, no. 2, pp.187–226, 2009.

[17] M. J. O’Donnell and I. Richardson, “Problems Encountered When
Implementing Agile Methods in a Very Small Company,”
Communications in Computer and Information Science, vol. 16, no.
1, pp. 13–24, 2008.

[18] J. Ralyté, R. deneckére, and C. Rolland, “Towards a generic model
for situational method engineering,” Lecture Notes in Computer
Science, vol. 2681, pp. 95–110, 2003.

[19] A. F. Harmsen, Situational Method Engineering, Doctoral Thesis,
University of Twente, 1997.

[20] E. Yu. “Towards modelling and reasoning support for early-phase
requirements engineering,” In Proceedings of the 3rd IEEE
International Symposium on Requirements Engineering, pp. 226–235,
1997.

[21] J. Jantzen, Foundations of Fuzzy Control. John Wiley & Sons, 2007.
[22] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A

template approach based on superimposed variants,” Lecture Notes in
Computer Science, vol. 3676, pp. 422–437, 2005.

285285285287

[23] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques. John Wiley & Sons, 1998.

[24] B. Henderson-Sellers and P. Giorgini, Agent-Oriented
Methodologies. IGI Global, 2005.

[25] S. Robertson and J. Robertson, Mastering the Requirements Process.
Addison-Wesley, 2006.

[26] A. Van Lamsweerde, Requirements Engineering: From system goals
to UML models to software specifications. John Wiley & Sons, 2009.

[27] I. Alexander, “A Taxonomy of Stakeholders: Human Roles in System
Development,” International Journal of Technology and Human
Interaction, vol. 1, no. 1, pp. 23–59, 2005.

[28] P. Checkland, “Soft Systems Methodology: A Thirty Year
Retrospective,” Systems Research, vol. 17, no. 1, pp. 11–58, 2000.

[29] M. Cohn, User Stories Applied: For Agile Software Development.
Addison-Wesley, 2004.

[30] Q. Ma, “The effectiveness of requirements prioritization techniques
for a medium to large number of requirements: A systematic literature
review,” AUT University, 2010.

[31] D. Vose, Risk Analysis: A Quantitative Guide. John Wiley & Sons,
2008.

[32] N. Nurmuliani, D. Zowghi, and S. P. Williams, “Using card sorting
technique to classify requirements change,” In Proceedings of the
12th IEEE International Requirements Engineering Conference. pp.
240–248, 2004.

[33] W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Requirements
Interaction Management,” ACM Computing Surveys, vol. 35, no. 2,
pp. 132–190, 2003.

[34] W. Q. Liu, “A requirements refinement framework,” In Proceedings
of the 2008 ACM Symposium on Applied Computing, pp. 658–659,
2008.

[35] A. Katasonov and M. Sakkinen, “Requirements quality control: A
unifying framework,” Requirements Engineering, vol. 11, no. 1, pp.
42–57, 2006.

[36] J. Horkoff and E. Yu. “A Qualitative, Interactive Evaluation
Procedure for Goal- and Agent-Oriented Models,” In Proceedings of
CEUR Workshop in CAiSE, pp. 19–24, 2009.

[37] D. Gupta and N. Prakash, “Engineering methods from method
requirements specifications,” Requirements Engineering, vol. 6, no.
3, pp. 135–160, 2001.

[38] M. Aoyama, “Persona-and-Scenario Based Requirements
Engineering for Software Embedded in Digital Consumer Products,”
In Proceedings of the 13th IEEE International Requirements
Engineering Conference, pp. 85–94, 2005.

[39] Rational Process Library.
 http://www-01.ibm.com/software/awdtools/rmc/library/

[40] OPEN Process Framework (OPF) Repository. http://www.opfro.org/
[41] Ralph Young repository. http://www.ralphyoung.net/artifacts.html.

FIS Annotation

 If (C =) then User story= very good
 …

RE process

Elicitation Negotiation …
Elicitation of

functional
needs

…

Negotiation with
individuals

Negotiation
with groups …

Daily
Scrum

Brain-
storming

Focus
group

Elicit usage
scenarios

Use
case …

RE process

Elicitation Negotiation …

Elicitation of
functional

needs
… Negotiation with

individuals
Negotiation
with groups …

Daily
Scrum

Brain-
storming

Focus
group

Elicit usage
scenarios

Use case User story

…

…
 If (M =) then Persona= good
 If (RV =) then Persona= very good
…

Evaluating fitness
through using FIS
values of features

Fitness=0.58 Fitness=0.53

Fitness=0.75 Fitness=0.64

A) Excerpt of situation model B) Evaluated situation model

Fitness=0.83

Determine
complexity

Manageability
of complexity

Obtain number
of quality

criteria types

Distributed
structure of
application

Number of
external

interfaces

Obtain
requirements
dependency

Tangibility
of artifacts

Help

Satisfied Weakly Satisfied Undecided Denied Weakly denied

Evaluating the
situation model
according to the

values of the situation
factors, based on i*

evaluation rules

Understandability of
problem domain

Determine
scarcity of
people and
resources

Time
constraints

Cost
constraints

� Help

Requirements
volatility Some+

Persona-
scenario

C) Excerpt of annotated RE process feature model D) Calculated fitness for RE process feature model

Figure 5. Schema of the proposed approach, as applied in the illustrative example

User
story

Determine
complexity

Manageability
of complexity

Obtain number
of quality

criteria types

Distributed
structure of
application

Number of
external

interfaces

Obtain
requirements
dependency

Tangibility
of artifacts

Help

Understandability of
problem domain

Determine
scarcity of
people and
resources

Time
constraints

Cost
constraints

� Help

Some-

Requirements
volatility Some+

Some-

Persona-scenario
Fitness=0.70

= ==

C =

M = RV =

FIS Annotation

286286286288

