
Towards a General Framework for Evaluating Software Development
Methodologies

Shokoofeh Hesari, Hoda Mashayekhi, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

hesary@ce.sharif.edu, mashayekhi@ce.sharif.edu, ramsin@sharif.edu

Abstract—It has become essential to scrutinize and evaluate
software development methodologies, mainly because of their
increasing number and variety. Evaluation is required to gain
a better understanding of the features, strengths, and
weaknesses of the methodologies. The results of such
evaluations can be leveraged to identify the methodology most
appropriate for a specific context. Moreover, methodology
improvement and evolution can be accelerated using these
results. However, despite extensive research, there is still a
need for a feature/criterion set that is general enough to allow
methodologies to be evaluated regardless of their types.
We propose a general evaluation framework which addresses
this requirement. In order to improve the applicability of the
proposed framework, all the features – general and specific –
are arranged in a hierarchy along with their corresponding
criteria. Providing different levels of abstraction enables users
to choose the suitable criteria based on the context. Major
evaluation frameworks for object-oriented, agent-oriented, and
aspect-oriented methodologies have been studied and assessed
against the proposed framework to demonstrate its reliability
and validity.

Keywords- software development methodology; evaluation
framework; process feature; evaluation criterion.

I. INTRODUCTION
With the emergence and widespread application of

software systems in recent decades, it has become necessary
to introduce software development processes targeting
different features and paradigms. The number and variety of
software processes and software development methodologies
has made it difficult to select a methodology for a specific
project, or to construct the appropriate methodology through
assembling method chunks. Methodology evaluation has
hence become an essential task.

Apart from the research conducted on analysis and
evaluation of software development methodologies and
processes, there is still a need for a general multi-aspect
framework that facilitates the evaluation of methodologies of
different types and paradigms (function-oriented, object-
oriented, aspect-oriented, etc.). Indeed, the lack of general
criteria that target different features is a major deficiency of
existing evaluation frameworks.

On the other hand, a potential problem in devising a
general and multi-aspect evaluation framework is defining a
large set of requirement features, as these may be difficult

for the user to understand. This may in turn cause the
framework to lose its applicability. When comparing
methodologies that belong to different contexts, multiple sets
of criteria at different levels of detail may be required.
Hence, a suitable evaluation framework should offer the
possibility of extracting and tailoring a desired subset of
criteria that provides the appropriate degree of precision.
This can facilitate the selection of methodologies by the user.
However, when no specific context is involved, only the
general and main features of methodologies can be compared
[1]. To overcome these problems, an appropriate solution is
to categorize the set of features at different levels of
abstraction. A hierarchical set of criteria is therefore
preferable, as exemplified by the ISO-9126 standard [2]. By
presenting the features from the user’s viewpoint, the
framework gains in understandability and applicability.

We propose a general methodology evaluation
framework that can be instantiated and refined to fit specific
paradigms and evaluation situations. The framework has
been defined through studying, abstracting and unifying
methodology features and existing evaluation frameworks.
To this aim, methodologies and their general features have
first been studied. An analytical assessment of existing
evaluation frameworks – targeting object-oriented, agent-
oriented and aspect-oriented methodologies – has then been
carried out, thereby identifying their capabilities and
limitations. Lastly, the target multi-aspect framework has
been delineated by defining, abstracting, and structuring a set
of hierarchical evaluation criteria so that the ultimate goals
of “generality” and “refinability” are attained. By
highlighting the features, strengths and weaknesses of
existing methodologies and method chunks, the proposed
evaluation framework can facilitate the selection of
methodologies, selection and assembly of method chunks,
extension and tailoring of methodologies, and evaluation of
other evaluation frameworks.

The rest of this paper is structured as follows: Section 2
describes the proposed features and the evaluation
framework along with the assumptions and methods used;
Section 3 provides a brief survey on existing evaluation
frameworks for object-oriented, agent-oriented, and aspect-
oriented methodologies along with an assessment on the
generality of the proposed framework; and the final section
presents the conclusions, and provides ideas for furthering
this research.

2010 IEEE 34th Annual Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.69

208

2010 34th Annual IEEE Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.69

208

II. PROPOSED EVALUATION FRAMEWORK
Applying evaluation frameworks to methodologies offers

several advantages. Evaluation can aid in understanding
particular aspects of a methodology. It also acts as a means
of comparing methodologies, and thus helps the user choose
among multiple methodologies according to desired goals.
Moreover, methodology enhancement and improvement can
be accelerated using the results of evaluation [3].

According to [4], an evaluation framework consists of
three components: A list of feature requirements, a method
of scoring the features in the methodologies targeted, and a
set of guidelines for applying the evaluation framework. The
first and most important component is a list of feature
requirements for evaluation. It is essential that this feature
list addresses the various parameters of software
development processes, highlighting the similarities,
differences, features, and application contexts of
methodologies. A common reference is needed to evaluate
and analyze the features belonging to different methodology
types. This reference model will serve as a basis for
assessing the maturity of target methodologies, and their
applicability in a specific software development project. This
model should be a minimized and consistent superset of the
features found in all evaluation frameworks. Such a model is
extensively used in meta-model-based evaluation techniques.
For example, an evaluation meta-model is presented in [5]
that is a superset of features found and expected in object-
oriented methodologies. In order to attain a suitable
reference model, it is first necessary to crisply define what a
Software Development Methodology (SDM) is.

Multiple definitions are proposed for an SDM. The
definition provided by OMG [6] is widely accepted.
According to this definition, a software development
methodology is composed of two main components: A
modeling language which consists of a set of modeling
conventions (syntax and semantics), and a process which
provides a guide as a sequence of software production
activities, describes the artifacts that should be produced by
the modeling language, manages and directs team efforts,
and provides criteria for monitoring and assessing project
activities and outputs. According to this definition, the
process is the dynamic and behavioral component of the
methodology, which handles the technical production and
managerial sub-processes. As a result, the process includes
the stages, procedures, rules, techniques and tools that are
defined by the methodology, and also provides guidelines on
documentation and management [7].

Based on this definition, a software development process
should possess certain features in order to be considered a
methodology. We designate these features as generic
methodology features. Evaluation of these features can lead
to an appraisal of the methodology’s maturity level and its
applicability in a specific context, regardless of the
methodology type. The distinctive concepts which are
specific to a specific type of methodology are addressed as
Type-specific methodology features. We have thus
categorized methodology features according to the following
conceptual hierarchy, based on user viewpoint (Fig. 1):

Figure 1. Main hierarchy of features

• Generic methodology features
o Modeling language features
o Process features
o Applicability features

• Type-specific methodology features
To determine the requirements pertaining to a feature, the

feature is broken down into sub-features. Conceptual
commonalities exist among the sub-features under a super-
feature. These commonalities can be leveraged to discover
the corresponding sub-features. This method prevents the
forming of a complex and large set of requirements, and
supplies semantics for the set of features.

In order to score the features, we define a set of criteria
corresponding to each feature’s requirements. These criteria
cover the proposed requirements of the methodology. To
define each criterion, the viewpoint and the level of detail
should be specified. Maintaining the applicability of the
evaluation requires the criteria to be expressed from the user
viewpoint.

Some of the criteria may have conceptual commonalities
with each other; therefore, they can be inserted under a
common super-criterion. It is permissible for a criterion to be
a sub-criterion of more than one super-criterion. A similar
method is employed in the software product evaluation
standard ISO-9126 [2].

The super-criteria may be directly involved in the
evaluation. However if direct evaluation is impractical and/or
more detail is required, evaluation of a super-criterion can be
delegated to its sub-criteria. In this case, an overall
assessment of the sub-criteria can be used to estimate the
score of the super-criterion. A motivation for this delegation
can be the existence of techniques, procedures, and other
utilities for handling a requirement. Thus, the fulfillment of a
requirement is dependent on employing the corresponding
utilities introduced by the methodology. This hierarchical
structure is a means of regulating a complex and large set of
criteria. A weight can be assigned to each evaluation
criterion, reflecting the relative importance of the criterion.
This weight is resolved based on methodology type and user
decision. A sub-criterion which is common among multiple
super-criteria can have different weights for each of its
instances.

The relationships that exist between a methodology and
its related concepts are shown in Fig. 2. Methodology
features are explained in detail throughout the rest of this
section.

209209

Figure 2. Relationships between methodology and other concepts

A. Modeling language features
A modeling technique is a set of models that depict a

system at different levels of abstraction and describes its
different aspects [8]. In this section, we present the super-and
sub-criteria that are related to modeling languages. Fig. 3
shows the corresponding hierarchy of criteria. The criteria
are briefly described below:

1. Ease of
• Understanding: understandability of a modeling

technique [9].
• Usage: usability of a modeling technique.[9]

2. Preciseness [9]: the syntax and semantics of a
modeling language must be precise enough to avoid
ambiguity.

3. Power of language:
• Formalism: existence of a formalization aspect for

symbolizing the semantics.
• Supported views: Coverage of structural, behavioral

and functional views in the modeling techniques.

• Support for model transformation logic: provision
of logic for transformation between models or
transformation of models to code [9, 10].

4. Model complexity management:
• Modularity: specification of a model in an iterative-

incremental manner; that is, when new requirements
are added, existing specifications can be used but
should not be altered [11].

• Handling model inconsistencies: provision of
techniques for handling inconsistencies [12].

5. Expressiveness:
• Static and dynamic aspects: capability of

expressing both static and dynamics concepts [9].
• Physical architecture of systems: capability of

expressing the system’s architectural design [11].
• Constraints of systems: capability of representing

system constraints [11].
• Defining user interface: capability of representing

the user interface in models [11].

B. Process features
The process has two main roles [10]: It manages and

directs the development from analysis to implementation,
and it enables improvement traceability by defining
deliverables and milestones. We therefore divide the Process
feature into three sub-features: lifecycle, which focuses on
the development lifecycle; management aspects, which refer
to management activities throughout the lifecycle; and the
development context, which focuses on the development
context(s) supported by the methodology (Fig. 4). In the
following subsections, we present the features and the
criteria for each sub-feature.

1) Lifecycle
As observed in Fig. 5, we have analyzed the lifecycle

from a method engineering viewpoint, focusing on its three
types of components: work units, products, and roles.

Figure 3. Modeling language hierarchy

Address *
1

*
* *

1

Super-Feature

Sub-Feature

Evaluate

Leaf
Feature

Non-leaf
Feature

Feature

Methodology

Criterion

Non-leaf
Criterion

Leaf
Criterion

Requirement

Sub-Criterion

Super-Criterion

210210

Figure 4. Process hierarchy

The sub-features and corresponding criteria are listed below:
1. Work Unit:

• Coverage of generic phases: whether the
development process covers the generic phases of
software development (Requirements, Analysis,
Design, Implementation, and Test) [8].

• Transition between phases
i. Smooth transition: whether transition between

phases is smooth [12].
ii. Seamless transition: whether there is any

semantic gap between the artifacts produced by
the phases [12].

• Kind of lifecycle: describing the kind of lifecycle
model that is applied in the development process
(iterative, incremental, cascade, etc.) [8].

• Workflow: constituents of the lifecycle [9].
2. Product [12]:

• Adequacy: whether the development process
produces the products that are related to the phases.

• Consistency: whether the products complement each
other with minimum overlapping.

• Supported view: specifying the generic view that the
products support (structural, behavioral, or
functional).

• Abstraction levels: the granularity/abstraction levels
at which the products are presented (system, package,
component, object, etc. – at analysis, design, or
implementation levels).

• Tangibility/Testability/Visibility: whether products
are tangible, testable, and understandable.

• Appropriate Documentation: support for proper
documentation throughout the development lifecycle.

3. Role:
• User involvement: whether the users are involved in

the process through specially defined roles [12].
• Roles specification: whether development roles are

specified in the process.

Figure 5. Lifecycle hierarchy

211211

2) Management
Management features address the support that a

methodology provides for management [13]. The detailed
features are presented in Fig. 6. In what follows, the sub-
features are briefly described (as adapted from [14]):

1. Risk management: avoidance, monitoring and
management of risk to assist the project team in
developing a strategy for handling risks.

2. People management: practices such as team
formation, training, performance management, etc.

3. Quality management:
• Quality control: practices for ensuring quality in

products, such as reviews and the use of tools.
• Quality assurance: reporting practices for assuring

the effectiveness and completeness of quality control
activities.

4. Configuration management: activities for change
management throughout the development lifecycle.

5. Project scheduling: distribution of the effort estimated
across the planned project duration by allocating the
effort to specific tasks to make the best use of the
available resources, including time.

3) Development context
Development context features focus on features that

specialize the context of the development effort from a user
viewpoint.

This feature is subcategorized as shown in Fig. 7. Brief
descriptions are provided below for the features and the
corresponding criteria:

1. Ease of
• Understanding: understandability of the

development process.
• Usage: usability of the development process in its

intended context.

Figure 6. Management hierarchy

2. Efficiency [2]:
• Time: the balance between the development

throughput, and the time that its process consumes.
• Resources: the amount of resources, including

human and financial, that is used with respect to the
throughput.

3. Precision:
• Traceability: whether the artifacts can be traced to

the requirements or to real world concepts.
• Formalism: at the process level.
• Well-definedness:

i. Expressiveness: the ability to define the process
without ambiguity [12].

ii. Rationality: logical appeal of the process [12].
iii. Completeness: A complete definition must

include rigorous explanations for all aspects of the
methodology, including work units, products, and
people.

4. Maintainability:
• Modularity: the ability to preserve the parts

corresponding to components from side effects [1].
• Reusability: The ability to reuse the process in

multiple applications.
• Testability: possibility and practicality of phase

verification against the outcomes of previous phases,
and product validation against user requirements.

5. Complexity Management:
• Evolvability: the ability to increasingly improve the

system’s functional and nonfunctional aspects.
• Extensibility: the ability to expand the system to a

certain degree [9].
• Promoting complex architectures:

i. Distribution: support for modeling and
implementation of components supporting
distributed functionality.

ii. Integrity: provision of an integrated architecture
that conforms to model semantics .

C. Applicability features
Another important aspect is the evaluation of the

methodology as to its applicability in a software
development project. Applicability of a methodology is an
essential characteristic which is evaluated with the following
super-criteria: pragmatics, marketability, and application
constraints. Evaluation of each of these criteria can be
delegated to lower-levels sub-criteria. The classification
hierarchy is presented in Fig. 8. Brief descriptions of the
criteria are provided below:

212212

Figure 7. Development context hierarchy

1. Pragmatics:
• Adaptability:

i. Size and complexity: determines the size of the
methodology and its complexity.

ii. Criticality: loss due to the impact of defects
[12].

iii. Scalability: adaptability of the methodology to
different project sizes [9].

• Extant resources:
i. Available information: availability of

documents, instructions, etc [9, 10 and 12].
ii. Tools: availability of resources and CASE tools

that support the methodology [9, 10 and 12].
• Required resources:

i. Team skills: adaptability of development team
skills with the methodology.

ii. Platform suitability: adaptability of resources
including extant middleware, libraries, and tools.

2. Marketability:
• User satisfiability: the degree of end-user

satisfaction with respect to the performance and cost
of the delivered product [9].

• Development team satisfiability: satisfaction of
individuals as to their specific roles.

3. Application constraints:
• Legal constraints: such as contract types and

business culture.
• Technical constraints: such as programming

languages and platforms [12].
• Management constraints: such as management

culture and approaches [12].

Figure 8. Applicability hierarchy

213213

• Environment constraints: constraints that are
influenced by the environment, such as physical
layout [12], and location of development teams (also
called geographical constraints [12]).

D. Type-specific methodology features
Fulfilling the requirements and avoiding undesirable

events are the main concerns in a methodology, based on
which the behavior of the methodology is uniquely
identified. From this point of view, each methodology
introduces its own set of identifying concepts. A Concept is
an abstraction or perception derived from a specific case in
the problem domain, which can be a property, capability,
feature, or entity [13]. With the introduction of concepts in a
methodology, it may be required that the evaluation of a
general super-criterion be delegated to other criteria
pertaining to the type of the methodology. In other words,
because of possible emphasis on a general requirement in a
methodology, special procedures, rules, techniques, or roles
may have to be considered. We are therefore forced to define
new sub-criteria for the evaluation of a general criterion, and
delegate the evaluation to these sub-criteria. We refer to
these as philosophy criteria. The special concepts provided
by a methodology type may introduce new requirements, and
should therefore be evaluated separately. For this reason,
new criteria are defined to evaluate the methodology’s type-
specific concepts. We refer to these as concept-specific
criteria. The taxonomy described above is shown in Fig. 9.

In order to exemplify and validate this taxonomy, we
assess agent-oriented methodologies against this
categorization. Agent-oriented methodologies have been
applied to complex systems; promoting complex
architectures is therefore a philosophy of agent-oriented
methodologies. To this end, these methodologies propose
special concepts, most of which can be classified under
general feature requirements. In addition to these concepts,
the main methodology-specific concept proposed in agent-
oriented methodologies is the Agent; this concept should be

Figure 9. Type-specific methodology features hierarchy

independently evaluated based on its feature requirements.
Such criteria have been addressed in most agent-oriented
evaluation frameworks. Fig. 10 shows the relevant hierarchy.

III. EVALUATION FRAMEWORKS FOR SPECIFIC TYPES OF
METHODOLOGIES

In this section, existing evaluation frameworks for
object-oriented, aspect-oriented, and agent-oriented
methodologies are studied and assessed against our proposed
evaluation framework.

A. Evaluation of object-oriented methodologies
Object-oriented software development has gained in

popularity in recent years. Since objects provide a more
logical and natural correspondence with real world concepts,
object-oriented processes are deemed better suited for
conceptual modeling. Inheritance and encapsulation promote
reusability of concepts and components. Moreover, using an
object-oriented model facilitates integration in organizations.

Object-oriented methodologies model the real world with
objects, whereas their predecessors concentrate on functions,
and separate process from data. Therefore, one cannot
simply map all the criteria defined for non-object-oriented
methods to object-oriented concepts. Some of the research
efforts conducted on comparing object-oriented
methodologies focus on the complete methodology, while
others concentrate on only some aspects of the methodology.

Figure 10. Agent-oriented methodology features hierarchy

214214

The popularity and flexibility of feature analysis as a
strong evaluation approach has placed this method among
the most widely employed evaluation techniques. Some
proposals have made an effort to provide an ideal general
object-oriented framework, while others target a specific
context. These frameworks address the main components of
an object-oriented methodology, such as concepts, processes,
tools, and practical features.

An overview of 30 object-oriented methodologies is
provided in [1], based on which a framework has been
proposed for comparing these methodologies. As no specific
context is considered, only general and main features of the
methodologies are compared. This research classifies its
criteria into three classes of static, behavioral, and dynamic
criteria. The static aspect analyzes the permissible states or
structures. The behavioral aspect considers the expected
functionalities of the system, and the dynamic aspect
assesses the behavior or the system during its lifetime.

Packard compares five object-oriented methodologies,
considering a set of criteria which are classified into
concepts, models, process, and pragmatics [10].

Evaluation using a meta-model builds a common
reference for comparing different methodologies. This
reference is usually constructed based on a composition of
various features of the target methodologies. Hong et al. [5]
propose a formal model for comparing object-oriented
methodologies. A formal representation of each
methodology is built using two models; meta-process and
meta-data. This uniform presentation allows for global
comparison, and prevents errors due to wrong interpretations
of the methodology. This research overlooks the comparison
of guidelines and rules provided by different methodologies.
Also, due to the limitations of the entity-relationship model
(used for metamodeling), some object-oriented concepts are
difficult to display, and this can adversely affect comparison
accuracy. In addition, issues such as methodology guidelines
for designing a promoted software system to maximize the
advantages gained from object-oriented technologies (such
as reusability, maintainability, and changeability) are not
considered.

Process output is analyzed and assessed using multiple
criteria. For example, product quality or complexity is
appraised. This is actually a type of quantitative evaluation
[13]. Object-oriented methodologies have the largest amount
of quantitative evaluation criteria among SDMs. According
to [13], this kind of evaluation is of two types: formal
examination and metric-based techniques.

Various sets of metrics are provided for object-oriented
design, and especially for object-oriented programming [15,
16]. Two perpendicular criteria vectors have been proposed
in [17], called granularity and category. The category vector
is introduced in six groups, namely design, size, complexity,
reusability, productivity, quality and general procedures. The
granularity vector contains method, class, and system, and is
perpendicular to the category vector.

In table 1, an assessment of current evaluation
approaches targeting object-oriented methodologies is
presented by comparing them to our proposed framework.

TABLE I. ASSESSMENT OF OBJECT-ORIENTED FRAMEWORKS

Generic features Specific
features

M
od

el
in

g
la

ng
ua

ge
 Process

A
pp

lic
ab

ili
ty

C
on

ce
pt

-s
pe

ci
fic

Li
fe

cy
cl

e

M
an

ag
em

en
t

as
pe

ct
s

D
ev

el
op

m
en

t
co

nt
ex

t

Frank [1] P - P -
Hong [5] - - -

Packard [10] - P P
: acceptable coverage, P: partial coverage, -: no coverage

B. Evaluation of aspect-oriented methodologies
Aspect-oriented software development is a recent but

fast-growing area. Aspect-orientation considers
modularization, encapsulation, and crosscutting concerns as
its main foci. Special concepts, along with the corresponding
terminology, are leveraged in aspect-oriented methodologies,
thus necessitating separate evaluation. Crosscutting concerns
refer to those sets of concerns that cannot be effectively
modularized by object-oriented techniques. These concerns
typically originate from non-functional requirements. The
separation of these concerns in modules means that they
should be later connected with composition mechanisms.
Moreover, a traceability mechanism is required to map the
concerns betweens different phases.

A common architecture reference for aspect-oriented
modeling is presented in [18], which distinguishes main
aspect-oriented subjects from aspect-oriented programming
or aspect-oriented modeling. Among the benefits of this
method are the possibility of creating a framework of
evaluation criteria, mapping different aspect-oriented
methods to each other, and using the architecture as a meta-
model for designing a new integrated modeling language.

The research performed on evaluation of aspect-oriented
methodologies typically focuses on one of the activities in
the system lifecycle [19, 20]. In [20], an attempt is made to
study aspect-oriented design methods, and locate them in the
generic software lifecycle. It introduces evaluation criteria
for assessing aspect-oriented design methods, classifying
them and analyzing their effects on software quality factors.

The artifacts produced during the lifecycle are focused
upon in [21]. It proposes a systematic way of quantitative
evaluation of aspect-oriented artifacts produced during
design and implementation. It introduces a set of criteria, a
set of rules, and an evaluation tool.

Evaluation of aspect-oriented features along system
development phases has also attracted the attention of the
research community. Traceability relations can be used to
define crosscutting concerns, as proposed by the method
introduced in [22]. It constructs a dependency matrix to
capture the relationships among different levels, such as
concerns and their representations. It formalizes the
definition of crosscutting concerns, and detaches it from
other concepts such as scattering and tangling. Although this

215215

method is applicable in different phases of system
development, its scalability and its applicability to different
types of traceability relations should be further analyzed. An
assessment of modularization in aspect-oriented design is
presented in [23].

Object-oriented criteria can be used to compare object-
oriented and aspect-oriented methods, as proposed in [24].
This research concludes that better modularization of the
system does not necessarily improve other features of the
system, such as maintainability and reusability. These
features should therefore be analyzed independently.

Table 2 demonstrates the results of evaluating a number
of evaluation methods and frameworks targeting aspect-
oriented methodologies against our proposed framework.

C. Evaluation of agent-oriented methodologies
The concept of Agent, with properties such as autonomy,

responsiveness, correctness, logicality, and interactivity, is
considered a strong tool for developing distributed systems
[8]. Due to increasing interest in agent-oriented applications,
various agent-oriented methodologies have been proposed
[13]. However, only a handful of them are mature enough to
address the industrial requirements of agent-oriented systems
development. To avoid building methodologies from scratch,
agent-oriented methodologies are constructed by extending
existing methodologies based on agent aspects. These
extensions are commonly applied to two types of
methodologies: object-oriented and knowledge-engineering.

Many of the proposals for evaluating agent-oriented
methodologies use feature analysis. However, some of them
have introduced quantitative and qualitative criteria, and use
novel approaches. For example, criteria are arranged in a
tree-like structure in [25], and they are assigned weights
based on the weights of their children. Other than feature
analysis, descriptive methods are also applied in some
research efforts. For example, the method introduced in [26]
proposes a challenge exampler modeling approach for
evaluation. In this method, to gain a better understanding of
the strong and weak points of different methodologies, an
exampler of standard instances is defined and managed. No
framework has been proposed in this research.

TABLE II. ASSESSMENT OF ASPECT-ORIENTED FRAMEWORKS

Generic features Specific
features

M
od

el
in

g
la

ng
ua

ge
 Process

A
pp

lic
ab

ili
ty

C
on

ce
pt

-s
pe

ci
fic

Li
fe

cy
cl

e

M
an

ag
em

en
t

as
pe

ct
s

D
ev

el
op

m
en

t
co

nt
ex

t

Schauerhuber [19] - - P
Berg [22] - - - - -

Figueiredo [21] - - - P -
Op de beeck [20] P - -

: acceptable coverage, P: partial coverage, -: no coverage

Most agent-oriented evaluation frameworks have used
feature-based evaluation and have chosen a similar set of
criteria. They differ in specific details, such as conceptual
classification of the proposed criteria, and the evaluation
techniques that are applied for criteria assessment. The
criteria are often presented in four general categories:
Concepts, Modeling techniques and symbols, Process, and
Pragmatics. A minority of the frameworks, such as [13],
have considered supporting software engineering and
Marketability categories too. In frameworks that solely
contain these categories, assessing the maturity of
methodologies is not straightforward.

Categorization of criteria into the three general aspects of
methodology, development features, and methodology-
specific features is observed in [8, 11, and 27]. In this regard,
the framework introduced in [8] categorizes the criteria in
five classes: Development Process criteria, which focus on
the general aspects of the methodology and other aspects
relevant to the stages of system construction; Model View
criteria, which evaluate techniques and diagrams for systems
modeling; Agent criteria, which evaluate the features and
characteristics of agents; Additional Features Modeling
criteria, which assess how special features are supported; and
Documentation criteria, which focus on issues related to
documenting the products.

As another example, criteria are classified into two
categories in [28]: Software Engineering Evaluation Criteria
and Agent-Based System Characteristics. However, these
criteria have been adapted with the classification proposed in
[8]. Sudeikat et al. [27], aiming at a flexible framework, have
categorized their proposed criteria as platform-dependent and
platform-independent.

Table 3 demonstrates the results of assessing a number of
evaluation frameworks targeting agent-oriented
methodologies against the proposed framework.

IV. CONCLUSIONS
Methodology evaluation is an important means of

selecting the appropriate methodology in a software project,
or selecting method chunks for constructing a methodology.

TABLE III. ASSESSMENT OF AGENT-ORIENTED FRAMEWORKS

Generic features Specific
features

M
od

el
in

g
la

ng
ua

ge
 Process

A
pp

lic
ab

ili
ty

C
on

ce
pt

-s
pe

ci
fic

Li
fe

cy
cl

e

M
an

ag
em

en
t

as
pe

ct
s

D
ev

el
op

m
en

t
co

nt
ex

t

Cuesta [8] - - P
Dam [13], Akbari [9] P P P

Cernuzzi [25] P P -
Yu [26] - P P P
: acceptable coverage, P: partial coverage, -: no coverage

216216

An evaluation framework acts as an essential guide for
methodology improvement and evolution. The existence of a
general evaluation framework, with criteria that are
adaptable according to the context, can simplify the
evaluation procedure and make the results more accurate and
reliable. The general evaluation framework proposed herein
is composed of features/criteria that fulfill the above
requirements. By assessing different evaluation frameworks
for object-oriented, aspect-oriented, and agent-oriented
methodologies against our proposed framework, it was
observed that the majority of the available evaluation
frameworks lack a general set of criteria for methodology
evaluation, and that the feature/criterion set proposed by our
framework is a minimal and consistent superset of the
features found in the evaluation frameworks studied.

Further research in this regard can focus on enhancing
the quantitative and formal aspects of the proposed
framework, and enriching it with proven evaluation
techniques. Assessing a select set of methodologies against
the framework can improve its reliability and validity. For
verifying the proposed framework, it can be used in method
chunk selection and end-result evaluation in the context of a
realistic method engineering project.

ACKNOWLEDGEMENT
We wish to thank Iran Telecommunications Research

Center (ITRC) for sponsoring this research.

REFERENCES
[1] U. Frank, “A comparison of two outstanding methodologies for

object-oriented design”, Arbeitspapiere der GMD, Nr. 779 Sankt
Augustin, 1993 (Online), Available: www.uni-koblenz.de/
~iwi/publicfiles/PublikationenFrank/RumbaughBooch.pdf [Accessed:
October 2009].

[2] International organization for standardization (ISO), International
Electro technical Commission (IEC), ISO/IEC: 9126 Software
engineering – Product quality; Part 1-4, Geneva, 2004.

[3] K. H. Fung and G. C. Low, “Methodology evaluation framework for
dynamic evolution in composition-based distributed applications,”
Journal of Systems and Software, vol. 82, 2009, pp. 1950-1965,
doi:10.1016/j.jss.2009.06.032.

[4] B. Kitchenham and L. Jones, “Evaluating software engineering
methods and tools. Part 6: identifying and scoring features,” ACM
SIGSOFT Software Engineering Notes, vol. 22, 1997, pp. 16-18,
doi:10.1145/251880.251912.

[5] S. Hong, G. van den Goor, and S. Brinkkemper, “A Formal Approach
to the Comparison of Object Oriented Analysis and Design
Methodologies,” Proc. Twenty-Sixth Hawaii International
Conference on System Sciences (HICSS 93), IEEE press, 1993, pp.
689-698, doi:10.1109/HICSS.1993.284253.

[6] Object Management Group (OMG), "Unified Modeling Language
Specification (v1.5)", 2003.

[7] R. Ramsin and R. F. Paige, “Process-Centered Review of Object-
Oriented Software Development Methodologies,” ACM Computing
Surveys, vol. 40, 2008, pp. 1-89, doi: 10.1145/1322432.1322435.

[8] P. Cuesta, A. Gomez, J. C. Gonzalez, and F. Rodrıguez, “A
Framework for evaluation of agent-oriented methodologies,” Proc.
Fourth Iberoamerican Workshop on Multi-Agent Systems (Iberagents
02), 2002, pp. 60-65.

[9] Z. O. Akbari and A. Faraahi, “Evaluation Framework for Agent-
Oriented Methodologies,” Proc. World Academy of Science,
Engineering and Technology, 2008.

[10] H. Packard, “An Evaluation of Five Object-Oriented Development
Methods,” Software Engineering Department, HP Laboritories,
Bristol, 1991.

[11] A. Strum and O. Shehory, “A Framework for Evaluating Agent-
Oriented Methodologies,” Proc. 5th International Bi-Conference
Workshop (AOIS 03), Springer, Heidelberg, 2003, pp. 94-109,
doi:10.1007/b98189.

[12] M. Taromirad and R. Ramsin, "CEFAM: Comprehensive Evaluation
Framework for Agile Methodologies", Proc. 32nd Annual IEEE
Software Engineering Workshop (SEW 08), IEEE Press, 2008, pp.
195-204, doi:10.1109/SEW.2008.19.

[13] KH. H. Dam, “Evaluating and comparing agent-oriented software
engineering methodologies,” MSc. Thesis, RMIT University,
Australia, 2003.

[14] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
6th ed., McGraw-Hill, 2005.

[15] Ch. Shyam and K. Chris, “A Metrics Suite for Object-Oriented
Design,” IEEE Transactions on Software Engineering, vol. 20, 1994,
pp. 476-492, doi:10.1109/32.295895.

[16] L.H. Rosenberg and L.E. Hyatt, “Software Quality Metrics for
Object-Oriented Environments,” SATC/NASA Technical Report,
SATC-TR-95-1001, 1997.

[17] F. B. Abreu and R. Carapuça, “Candidate Metrics for Object-Oriented
Software within a Taxonomy Framework,” Journal of Systems and
Software, vol. 26, 1994, pp. 87-96, doi: 10.1016/0164-
1212(94)90099-X.

[18] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger,
M. Wimmer, and G. Kappel, “A Survey on Aspect-Oriented
Modeling Approaches,” Technical report, Vienna University of
Technology, 2007.

[19] A. Schauerhuber, W. Schwinger, Retschitzegger, and M. Wimmer.
“Towards a Common Reference Architecture for Aspect-Oriented
Modeling,” Proc. 8th International Workshop on AspectOriented
Modeling (AOM 06), 2006.

[20] S. Op de beeck, E. Truyen, N. Boucke, F. Sanen, M. Bynens, and W.
Joosen, “A Study of Aspect-Oriented Design Approaches,” Report
CW435, Department of Computer Science, K.U.Leuven, 2006.

[21] E. Figueiredo, A. Garcia, C. S. Anna, U. Kulesza, and C. Lucena,
“Assessing Aspect-Oriented Artifacts: Towards a Tool-Supported
Quantitative Method,” Proc. 9th ECOOP Workshop on Quantitative
Approaches in OO Soft. Engineering (QAOOSE 05), 2005,
doi:10.1.1.64.2728.

[22] K. Berg, J. M. Conejero, and J. Hernández, “Analysis of crosscutting
across software development phases based on traceability,” Proc.
International workshop on Early aspects at ICSE, ACM press, 2006,
pp 43-50, doi:10.1145/1137639.1137647.

[23] C. V. Lopes and S. K. Bajracharya, “An Analysis Of Modularity In
Aspect Oriented Design,” Proc. 4th international conference on
Aspect-oriented software development, ACM press, 2005, pp. 15-26,
doi:10.1145/1052898.1052900.

[24] S. L. Tsang, S. Clarke, and E. Baniassad, “Object Metrics for Aspect
Systems: Limiting Empirical Inference Based on Modularity,”
Technical report, Trinity College Dublin, 2000.

[25] L. Cernuzzi and G. Rossi, “On The Evaluation Of Agent Oriented
Modeling Methods,” Proc. Agent Oriented Methodology Workshop,
2002, pp. 21-30.

[26] E. Yu and L. M. Cysneiros, “Agent-Oriented Methodologies -
Towards A Challenge Exemplar,” Proc. CEUR Workshop, 2002.

[27] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, “Evaluation
of Agent–Oriented Software Methodologies – Examination of the
Gap Between Modeling and Platform,” Proc. 5th International
Workshop AOSE 2004, Springer, Heidelberg, 2004, pp. 126-141,
doi:10.1007/b105022.

[28] A. Strum and O. Shehory, “Evaluation of modeling techniques for
agent-based systems,” Proc. 5th International Conference on
Autonomous Agents, ACM Press, 2001, pp. 624-631,
doi:10.1145/375735.376473.

217217

