
Towards Process Lines for Agent-Oriented
Requirements Engineering
Fatemeh Golpayegani, Keyvan Azadbakht, Raman Ramsin

Department of Computer Engineering, Sharif University of Technology
Azadi Avenue, Tehran, Iran

golpayegani@ce.sharif.edu, kazadbakht@ce.sharif.edu, ramsin@sharif.edu

Abstract—Agent-oriented software products are becoming
increasingly complicated, and the competitive market is forcing
the producers to reduce time-to-market and increase the quality
of the software produced. Therefore, developers have come to
realize the need for more reliable and efficient agent-oriented
software development processes (methodologies) which address
the specific needs of each and every project. Software Process
Lines provide a solution to this problem by using Process Line
Engineering concepts for instantiating bespoke software
processes.

This research focuses on developing a software process line for
Requirements Engineering (RE) in the context of agent-oriented
software development. Our proposed Agent-Oriented
Requirements Engineering Process Line (AOREPL) incorporates
a core base which can be directly used for instantiating an Agent-
Oriented Requirements Engineering (AORE) process; it also
defines variation points and variant method chunks to be added
to the core base in order to create variant AORE processes. We
also propose a step-by-step process line engineering method
which enables process engineers to define and instantiate diverse
AORE process lines.
Keywords: Software Development Process; Agent-Oriented
Development; Process Line Engineering; Requirements Engineering

I. INTRODUCTION

Software processes are similar to software products [1];
much like software products, they have requirements which
can be modeled, developed, tested, and reused. Other
similarities include issues regarding reuse; both employ
component-based architectures and have repositories for
storing reusable components [2]. Therefore, software product
reuse techniques can also be used for developing software
process reuse mechanisms. Product Line Engineering has thus
led to Process Line Engineering [3]. A process line can reduce
the time, cost and risk of process development, and increase
its quality, accuracy and predictability.

Typically, developing agent-oriented software requires
agent-oriented software development processes. The context
of agent-oriented software development has evolved over
time, as other software development contexts have; this
context now demands sophisticated agent-oriented
development methodologies, and sophisticated methodologies
require customization to make them applicable in practice,
further complicating their use. Various solutions have been
proposed for this problem, one of which is the assembly of
method chunks according to the specific needs of the target
process. To this end, practitioners and researchers have

extracted method chunks from existing agent-oriented
methodologies, and have organized them in repositories to be
used for constructing bespoke processes. However, this
solution entails certain problems, in that the person
assembling the process must have ample process engineering
and agent-oriented knowledge, should manage the
relationships between unrelated and fragmented method
chunks, and should be able to guarantee the cohesiveness,
accuracy, and clarity of the final process.

The above issues have motivated us to explore the
applicability of Process Line Engineering for producing
bespoke, tailored-to-fit agent-oriented processes. In order to
focus our research, we have narrowed its scope to
Requirements Engineering (RE) in agent-oriented processes.
Requirements engineering is crucial to all software
development processes, as minor shortcomings in
requirements engineering may lead to major losses in the
overall process. Agent-oriented methodologies put special
emphasis on RE activities, and include highly specialized RE
tasks in their processes. However, process line engineering
has not yet been applied to this context, even though Agent-
Oriented Requirements Engineering (AORE) practices are
mature enough for this purpose. We address this issue through
proposing our Agent-Oriented Requirements Engineering
Process Line (AOREPL), which is the result of scrutinizing
the AORE tasks and practices used in agent-oriented
methodologies and frameworks, as well as the important RE
activities prescribed in other relevant contexts. AORE
processes can be directly instantiated from AOREPL’s core
base; AOREPL also defines variation points, as well as variant
method chunks, which can be added to the core base in order
to create variant AORE processes. A further contribution of
this research is the step-by-step process line engineering
method that we have used for obtaining AOREPL; this
method can be reused by process engineers to define and
instantiate custom AORE process lines.

The rest of this paper is organized as follows: Section II
introduces the research background; Section III introduces our
proposed process-line engineering approach, and Section IV
presents the proposed Agent-Oriented Requirements
Engineering Process Line (AOREPL), focusing on Domain
Engineering; Section V introduces the complementary AORE
method fragment repository, while Section VI focuses on
Application Engineering and validates the proposed AOREPL
with a case study; finally, Section VII presents the concluding
remarks and discusses possible directions for further research.

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

550978-1-4673-2232-4/13/$31.00 ©2013 IEEE

II. RESEARCH BACKGROUND

Various software process line engineering approaches exist
(e.g., [2]–[4]). Since they share many features, a general
structure can be defined for them based on their
commonalities. Each process line consists of the following
general parts: Two distinct processes for domain engineering
and application engineering, a repository of reusable method
chunks, a reuse process, and a management process [3]. In
addition to the above, three stages have been proposed in [4]
for software Product Line Engineering (PLE) which can be
adapted for use in software process line engineering; these
stages include: Scoping the Product Line, Product Line
Modeling, and Product Line Architecture. These approaches
first focus on domain analysis of product families, and then
model the domain knowledge in terms of commonalities and
variabilities. Consequently, the common parts are regarded as
the core of each product family member. In order to
instantiate a product, each variation point must be specified by
selecting the most suitable variant. By substituting “product”
with “process” in the above stages and tasks, these approaches
can be applied to software process line engineering as well.

Our proposed method demonstrates the concrete
application of these abstract concepts. None of the extant
approaches include a well-defined and step-by-step process
for domain and application engineering. Therefore, we have
strived to define a clear, concise, and specific method for
process-line domain- and application engineering based on
the concepts of software product-line engineering [5], and
have used the method to design a process line for
requirements engineering in agent-oriented development.

There are various Agent-Oriented Requirements
Engineering (AORE) frameworks which provide RE tasks
specialized for agent-oriented contexts, albeit at an abstract
level (e.g., [6]–[10]). However, there are certain problems
with these frameworks: 1) Their abstract tasks cannot be
directly incorporated into a concrete development
methodology (the Instantiation Problem); 2) they do not fully
cover the RE-related tasks required in generic software
development methodologies; and 3) customization is rarely
possible. We have strived to address these problems in our
proposed agent-oriented requirements engineering process
line.

III. PROPOSED PROCESS LINE ENGINEERING APPROACH

A process line can significantly reduce the time, cost and
risk of process development, and increase its quality, accuracy
and predictability. Thus, designing a process line for a family
of processes can be extremely beneficial. As we aim to design
a process line for Requirements Engineering in Agent-
Oriented methodologies, we first have to define our proposed
method for domain and application engineering, then design
our process line using this method, and finally validate our
process line through a case study.

A. Domain Engineering Process
A domain engineering process focuses on domain

identification, specifying the process family members and

analyzing their commonalities and variabilities, and
constructing a core process which is common for a large
group of family members and which can be reused without
significant change. On the other hand, all the variation points
and variabilities should be defined in this process. We divide
this process into eight steps and specify each step in detail
throughout the rest of this section. Also, we compare the
proposed steps with their counterparts in product line
engineering. The activity diagram of Fig.1 shows this process.

1) Domain Scoping: In this step, recent processes and
methodologies, as well as similar projects and frameworks,
are explored, and their features are extracted and prioritized in
order to scope the domain. In other words, this step deals with
determining an overall view of the processes which can be
categorized as a family. There is a fundamental difference
between Process Line Domain Scoping and Product Line
Scoping. In Process Line Engineering, we have to carefully
explore all the processes which are relevant and similar to the
target family to ensure that nothing is overlooked. This means
that in some cases, we will use method chunks that are not
used in the target family but are known to be necessary for
completing the expected functionality. Whereas in Product
Line Engineering, we have to abide by the family and cannot
deviate from what is defined by family members.

Fig. 1. Proposed Process Line Engineering Approach

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

551978-1-4673-2232-4/13/$31.00 ©2013 IEEE

2) Feature Extraction: In Software Process Lines, features
are the buidling blocks of the processes; in addition, there are
certain properties which contribute to the building blocks.
Process features should be extracted as process method
fragments at all levels of abstraction. Features can be
extracted from various sources:

• Extracting method fragments from methodologies;
• Extracting phases/stages from related frameworks;
• Analyzing market requirements and adding the required

method fragments based on existing and predicted
requirements.

3) Categorization: Extracted method fragments may
overlap, or in some cases differ only in input and output
artefacts; fragments should therefore be structured and
organized through categorization and abstraction. We
therefore use frameworks and generic methodologies as a
baseline to specify the main phases, then classify method
chunks under the phases, and finally add them to a repository.

4) Commonality and Dependency Analysis: There are
various methods for commonality analysis in Product Line
Engineering. But we propose the use of Process/Requirements
Matrix Analysis. In this method, we first prepare a list of
process requirements (e.g. process fragments and features),
and then map these requirements or features to process family
members. Features which are required in all the processes are
considered as common features, and features which are
required in some of them are considered as variable features;
features which are not absolutely necessary are considered as
optional features.

5) Feature Conflicts Analysis: The plurality of the variation
points results in a wide range of variant configurations, which
can lead to complications in configuration management of
process-line variants. Therefore, variation points are divided
into two types; Encapsulated Variation Points (EVP) and Free
Variation Points (FVP). In order to manage variabilities,
certain variation points are considered as Encapsulated
Variation Points, as they do not have a wide-ranging effect on
the process line, and can therefore be encapsulated into their
related stages; on the other hand, there are certain variation
points which contain variants which can affect the whole
process line. In addition, by fragmenting the processes into
method chunks, we will have a repository of fragments which
contains related as well as unrelated chunks. To form a
process line, you have to clearly define the relationships
between the chunks; this is especially important when the
inconsistent method chunks are located in variation points,
and the user can select from among them. Therefore, the
process line should automatically reject inconsistent chunks if
they are selected. To this aim, we propose a conflict analysis
algorithm which uses activity diagrams. This algorithm helps
us in variability management and conflict analysis; the
algorithm is explained below.

6) Feature Conflicts Analysis Algorithm: To analyze the
effects of the variabilities, we use communication diagrams to
determine their interrelationships. We draw a communication

diagram for each stage to analyze the EVPs, and a separate
communication diagram for all the stages to analyze the FVPs.

We use the activity diagram to model task dependencies. In
order to find related tasks, we follow each artifact’s progress,
to identify task inconsistencies. The steps are as follows:

• Specify the artifacts: Artifacts can be considered as pre-
and post-conditions of each phase, Stage, and Task..

• Draw an activity diagram for each stage: In this step, we
aim to analyze the variation points and core tasks to
find their dependencies; we can thus identify the tasks
whose preconditions involve tasks which do not
conform to the current stage, and consequently clarify
their interdependencies.

• Draw an activity diagram containing all stages: We
model the tasks whose preconditions do not conform to
their internal tasks.

• Detect the inconsistencies in method content.

7) Process Line Modeling: There are several methods for
modeling software product lines, but we prefer the feature tree
process line modeling. The feature tree facilitates the
modeling of commonalities and variabilities, as well as the
dependencies among the method chunks.

8) Process Line Validation: In this step, all the method
content and the relationships among the method chunks
should be verified. The validation method can vary based on
the process line construction paradigm. If the process line is
identified as a valid process line, the Domain Engineering
process is considered as complete; otherwise, the domain
engineering process is iterated until the defects are resolved.

B. Application Engineering Process
In order to build specific software processes from the

process line, it is instantiated based on the characteristics of
the project at hand. In this process, all the project- and
process-specific requirements are extracted and mapped to the
predefined method chunks; in some cases, the process
engineer needs to define the method chunks required at
variation points. In this section, we discuss the application
engineering process steps to clarify all the required actions
that should be performed to ensure a successful instantiation.
Process line application engineering steps are as follows:

1) Feasibility Study: The suitability of the process line
members to be applied in the target context should be
investigated. In other words, it should be checked in early
steps whether the process family which is modeled in the
process line is close to the target domain. To this aim, it is
helpful to investigate previous projects that have been
executed by this process line, or to map the requirements to
the members of the process family.

2) Situational Feature Extraction: All the features should
be extracted by studying the available resources.

3) Feature Mapping: In this step, all the features should be
mapped to the predefined process line chunks. Each feature
may lead to one of the following three states:

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

552978-1-4673-2232-4/13/$31.00 ©2013 IEEE

• Core Base Instantiation: The feature is part of the core,
so the core base should be instantiated.

• Variant Selection: The feature is mapped to one of the
variant method chunks; therefore, the variation point
has to be fixed.

• The feature is not mapped to any part of the process
line: In this case, there should be a feedback loop to the
domain engineering process.

4) Process Instantiation: Every configuration of the
process line is an instance of the process. By defining and
mapping the project-specific features of the process, it can be
claimed that the process has been instantiated.

5) Process Validation: Once the process is instantiated, it
should be validated. Validation results should be returned to
domain engineering by a feedback loop.

IV. AGENT-ORIENTED REQUIREMENTS ENGINEERING PROCESS
LINE (AOREPL): DOMAIN ENGINEERING

Using the proposed process line engineering approach, we
hereby develop the Agent-Oriented Requirements Engineering
Process Line (AOREPL). To this aim, the first stage is domain
engineering; therefore, all the steps of domain engineering are
performed, as delineated below:

The first step is domain scoping. In this step, we have
considered most of the Agent-Oriented Requirements
Engineering frameworks available as sources of information.
(e.g., [6]–[10]), the analysis phases of prominent agent-
oriented methodologies (e.g., [11]–[17]), and have also
inspected generic Requirements Engineering frameworks [18].
As a result, all the stages which are important in the AORE
domain have been scrutinized.

The next step is extracting the process features. To this aim,
we have first carefully examined all the methodologies,
frameworks, and method repositories available, and all the

relevant process fragments have been extracted (including
stages, activities and tasks). We have then analyzed the use of
AO methodologies in industry and added additional method
fragments which are related to this domain. Finally, an
investigation has been conducted to predict the future needs of
AO processes, such as agility and formalism, and the method
chunks required to realize these needs have been added. The
process fragments extracted from different sources may have
over lapping in their definitions or in their output artifacts; so
we have to separate them and define them clearly. To this aim,
we have categorized all the related method chunks under their
related framework or methodology steps, and have defined
new abstract categories for method chunks which are similar
to one another but which cannot be easily separated.

Once the method chunks are categorized, it's time to
manage the method chunks and form the process line. We
therefore have to form the core base, and specify the variation
points and the variants for each variation point. To this aim,
we have to analyze the necessity of each method chunk in
every agent-oriented methodology. We use the commonality
matrix for this purpose, with agent-oriented methodologies
listed on the horizontal axis, and the extracted method chunks
on the vertical axis. A cell is marked with a “Yes” if its
corresponding method chunk is used in the intersecting
methodology. The commonality matrix showing the
correspondence of categorized method fragments to the
selected set of agent-oriented methodologies is shown in
Table I.

Following commonality analysis, the core base is formed
with all the mandatory method chunks and variation points,
but the method chunks still need to be analyzed more
precisely. Thus, we follow the conflict analysis algorithm
defined above to identify inconsistent method chunks and
specify preconditions and post-conditions for each and every
method chunk.

TABLE I
COMMONALITY ANALYSIS MATRIX

Selected Set of Agent-Oriented Methodologies
ASPECS
[14]

Prometheus
[16]

Message/uml
[12]

MASE
[15]

ADELFE
[19]

TROPOS
[11]

GAIA
[17]

AORE Tasks and Sub-Tasks AORE Stages

A
ge

nt
-O

ri
en

te
d

R
eq

ui
re

m
en

ts
 E

ng
in

ee
ri

ng

Y Y Y Y Y Y Y Resource Planning Domain
Specification Y Y Y Y Environment Modeling

Y Y Y Y Y Organization Modeling
Y Stakeholder Modeling

Prediction Requirements
Elicitation Y Y Y Y Y Y Y Project-Specific Requirements

Y Y Y Y Y Y Y Organization-Specific Requirements
Y Y Y Y Y Scenario-based Requirements

Modeling Y Y Y Use-Case-based

Y Y Y Y Y Y Goal Identification Agent
Identification

Requirements
Specification Y Y Y Y Role Identification

Y Y Plan Identification
Y Y Y Y Y Y Y Agent Dependency

Modeling
Interaction
Modeling

Y Y Y Y Acquaintance Modeling

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

553978-1-4673-2232-4/13/$31.00 ©2013 IEEE

Fig. 2. Conflict Analysis Algorithm: Activity Diagram

Fig. 2 is a partial depiction of this analysis. In this sample,
we have supposed that the process engineer has decided to
select Role Identification and Plan Identification; Goal
Identification is also instantiated through core base
instantiation, since it is a mandatory method fragment. We
now have to analyze the relationships between these tasks and
their techniques. Therefore, we specify each task’s
precondition and post-condition and define the dependencies
among these tasks according to their precondition artifacts.
After dependency analysis, the process line is modeled in
FeatureIDE, a feature modeling tool which is used for
modeling product lines. Using this tool is not mandatory, but
it has been chosen because of its powerful feature-tree
modeling and product instantiation capabilities. In this tool,
the AO process line feature tree is modeled at four levels: The
zero level is the root, the next level is for the stages observed
in requirements engineering, the second level is for the tasks,
and the last level is where the sub-tasks reside (Fig. 3). In
addition, we have techniques under each task and sub-task
too, but we refrain from modeling these techniques in the
feature tree to avoid excessive complexity.

In order to validate the designed process line, we have
configured the process line for all the methodologies that have
been used for defining it. The results show that nothing has

been left out, and that process coverage has been adequately
observed.

V. AGENT-ORIENTED REQUIREMENTS ENGINEERING METHOD
FRAGMENTS REPOSITORY

As mentioned before, one part of a process line is a
repository of method fragments. In this repository, we have
placed a proposed set of AORE method chunks. This
repository includes AORE stages, tasks, sub-tasks and
techniques. It can also be completed and elaborated in future
research. We have summarized the method chunks of the
repository throughout the rest of this section.

A. Stage: Domain Modeling
 A step in the Requirements Engineering process, in which

the problem domain is identified and modeled. The documents
of this step provide a better view for eliciting and specifying
the requirements.

1) Task: Environment Modeling (EnvModeling): According
to [20], Agents, unlike objects, are situated in an environment,
with which they interact by observing and changing it. So we
should model the environment housing the system, as well as
the interactions between the system and its environment. This
task helps better identify, elicit, and specify the requirements.

Fig. 3. Agent-Oriented Requirements Engineering: Feature Tree

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

554978-1-4673-2232-4/13/$31.00 ©2013 IEEE

Also, when identifying system-level functionalities, it can
help us state the Why, in addition to the What and How, of the
system functionality.

• Technique 1: In this approach, the environment is
modeled as interactive actors in the early steps before
system modeling. Then the system is added as an actor
and its interactions with environmental actors are
modeled [6], [11].
Output artifact(s): Actor Diagrams and Goal Diagrams
at a high level of abstraction
Precondition (input artifact(s)): Preliminary
specification of the system and its environment

• Technique 2: After modeling the agents and presenting
them in class diagrams, environmental actors that
interact with the system are added to this model [13].
Output artifact(s): Multi-agent structure definition
diagram
Precondition (input artifact(s)): Definition of
requirements, roles, agents, and protocols

2) Task: Organization Modeling (OrgModeling): An
organization is a group of Agents (or roles) working together
to a common purpose [12]. At a high level of granularity, we
can consider the system as a set of organizations that interact
with one another. Organizational view to the system and its
environment can provide relatively straightforward mappings
from organizational definitions to the agent structure through
subsequent stages of the development process.

3) Task: Resource Planning: There are usually various types
of resources in every system. Resource modeling and planning
can have an important role in the analysis and design of
systems. Resources cause certain additional dependencies
among the entities existing in the system, or between the
system and its environment. Also, constraints generated by the
resource plan may necessitate applying changes to the
definition of requirements.

• Technique 1: Resource usage can be modeled by
assigning permissions to roles. Roles use the resources
for fulfilling their responsibilities. For information
resources, permissions are of three types: read, change,
and generate [17].
Output artifact(s): Roles Model
Precondition (input artifact(s)): Requirements Statement

• Technique 2: Resources can be modeled as elements in
actor models. By applying this technique, the
dependencies of actors to resources for realizing goals
and plans are modeled. These dependencies can be
modeled at different levels of abstraction [11].
Output artifact(s): Actor Diagrams and Goal Diagrams
at various levels of abstraction
Precondition (input artifact(s)): Appropriate level of
knowledge about system resources

• Technique 3: Resources can be modeled as individual
elements besides organizations and roles. Dependency of
the resources to organizations can be determined in such
a model. In addition to structural models, they can also
be represented in interaction models [12].

Output artifact(s): Structural and Acquaintance
Relationships
Precondition (input artifact(s)): Appropriate level of
knowledge about system resources

B. Stage: Requirements Elicitation
 Any activity that results in the exploration, identification,

and/or determination of the requirements of the system is
included in this stage. Some of these activities are common in
all types of software development processes, and some of them
are particularly agent-oriented.

C. Stage: Requirements Modeling
 In this step, models are produced which refine, specify and

document the initial requirements.

D. Stage: Requirements Specification
In this step, initial requirements, which were characterized

earlier, are refined and modeled in a form that is usable for
agent-oriented design and implementation.

1) Task: Agent Identification: In this step, initial
requirements are transformed and modeled based on agent-
oriented notions. Results of this task help base agents on
correct assumptions. Any activity which helps achieve this
aim is part of this task.

2) Sub-Task: Role Identification: This feature focuses on
determining the roles played by agents. A Role describes the
external characteristics of an Agent in a particular context [12].
Because of the conceptual cohesion of their functionalities, the
roles can help in better structuring of these functionalities.

• Technique 1: After receiving the organizational
specifications defined in earlier steps, the organization’s
overall behavior is decomposed into smaller
collaborative organizations. Every one of these fine-
grained behaviors will be demonstrated through one
role. Regarding the system as an organizational
structure at a high level of abstraction, this technique
defines the roles at lower levels of abstraction [14],
[17].
Output artifact(s): Interactions and Role Identification
diagram
Precondition (input artifact(s)): Organization
Identification Diagram

• Technique 2: After determining the agents by
functionality classification, the agents are placed in
sequence diagrams and role-related scenarios are
applied to them. Thus, agents participate in
collaborations in different roles; the preliminary
structure of the roles is thereby determined, to be
further refined in subsequent stages [13].
Output artifact(s): Role Identification Diagram,
Precondition (input artifact(s)): Agent Identification
Diagram

• Technique 3: In this approach, goals are mapped to
roles. Goal to role mapping is "one to one". But it may

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

555978-1-4673-2232-4/13/$31.00 ©2013 IEEE

be changed to "many to one", due to issues related to
performance or execution platform [15].
Output artifact(s): Role Model
Precondition (input artifact(s)): Goal Hierarchy
Diagram

3) Sub-Task: Goal Identification: A Goal is a different view
of the requirements which is expressed from an Entity’s point
of view. An entity can be an agent, or an actor (at a higher
level of abstraction. The concept of goal is more abstract than
functionality. This feature focuses on goal analysis. This
analysis can consist of determining the dependencies among
functional and/or nonfunctional goals, and also the
dependencies of goals to resources or plans.

• Technique 1: In this approach, an actor goal is analyzed
from the point of view of the actor, through the use of
different reasoning techniques; examples include
means-end analysis, contribution analysis, and
AND/OR decomposition [6], [11].
Output artifact(s): Goal Diagrams
Precondition (input artifact(s)): Preliminary
specification of the system

• Technique 2: In this approach, system goals are defined
and organized. For organizing the goals, a hierarchy of
goals is defined, modeling the goals at different levels
of abstraction and from different points of view [15].
Output artifact(s): Goal Hierarchy Diagram
Precondition (input artifact(s)): Functionality
Descriptor

4) Sub-Task: Plan Identification: The plan, at different
levels of abstraction, presents the procedure for performing a
task. In Agent-Oriented Requirements Engineering, the plan
presents a procedure for realizing a goal. Designing the plan
may necessitate the definition of new goals or the modification
of existing ones based on the defects detected in other elements
with which the plan interacts.

• Technique 1: In this approach, plan modeling is used as
a complementary technique for goal modeling, through
using certain reasoning techniques. This technique uses
plan diagrams, a diagram similar to activity diagrams,
for addressing certain details [11].
Output artifact(s): Goal Hierarchy Diagram
Precondition (input artifact(s)): Functionality
Descriptor

• Technique 2: In this approach, the plan is further
decomposed into finer-grained parts, and is defined at
the intra-agent level. As mentioned before, plans are
procedures for performing tasks; in this technique, they
are triggered by goals and events, and are modeled by
Descriptors [16].
Output artifact(s): Agent Overview Diagram, Plan
Descriptor
Precondition (input artifact(s)): System Overview
Diagram, Agent Descriptor

5) Task: Interaction Modeling: This feature focuses on
determining the interactions recurring among roles or agents.

The interaction protocol can then be defined. Also, the
message structure can be determined through this feature. The
scenarios and interaction patterns thereby extracted can
provide valuable feedback, which can be used for refining and
adjusting the requirements.

6) Sub-Task: Agent Dependency Modeling: This feature
focuses on the dependencies among entities for realizing goals,
performing plans, and furnishing resources.

7) Sub-Task: Acquaintance Modeling: An acquaintance
relationship indicates the existence of at least one interaction
involving the entities concerned. This feature relates to
determining and modeling this type of relationship between
entities.

E. Stage: Requirements Evaluation
 Any activity that the specified requirements are evaluated

by, and whose results can be used to enhance the determination
and specification of requirements, can be counted as part of
this step.

VI. AGENT-ORIENTED REQUIREMENTS ENGINEERING PROCESS
LINE: APPLICATION ENGINEERING CASE STUDY

Application engineering is the process of producing
concrete processes from the process line by defining the exact
process situation and feature. To this aim, we consider PASSI
as our target process and try to instantiate the requirements
engineering part of it using the AORE process line.

PASSI [15] is a well-known AO methodology and covers
the requirements engineering tasks, therefore it is feasible to
instantiate it from the designed process line. The next step is to
extract PASSI's features and map them to the process line
features, and then instantiate the process from the process line
and validate it through comparison with the original PASSI
methodology.

The process instantiated from the process line is shown in
Fig. 4. The instantiated process has all the method chunks that
the RE part of the PASSI methodology has, yet it also has a
number of additional method components, such as use-case-
based validation and plan modeling, as it should be applicable
independently.

The instantiation process was fast and helped us customize
the main process to reach the target process. In addition,
instantiation did not need special knowledge of method
engineering; the person who instantiates the process is not
required to be concerned with method-chunk dependencies and
conflicts. Furthermore, the method chunks were well-defined
in that they delineated the pre- and post-conditions of each
fragment, thus providing the means to attach the constituent
chunks together perfectly.

 On the other hand, due to the lack of mapping procedures,
the process engineer may get confused while mapping the
project requirements to process requirements. In addition,
because the proposed process line does not fully cover the
software development lifecycle, connecting the instantiated
process to the rest of the process lifecycle may prove
problematic at the connection points.

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

556978-1-4673-2232-4/13/$31.00 ©2013 IEEE

Fig. 4. AOREPL configuration for PASSI’s requirements engineering process

VII. CONCLUSIONS AND FUTURE WORK

We have proposed an Agent-Oriented Requirements
Engineering Process Line (AOREPL), which covers all the
method chunks required for successful application in relevant
contexts. We also define variant method chunks to help
process engineers in instantiating bespoke agent-oriented
requirements engineering processes.

The proposed AOREPL leads to facilitated instantiation,
since it has been implemented in the FeatureIDE tool and
allows the process engineer to instantiate his target process
easier, faster, with a higher quality and lower risk.

Furthermore, we use a conflict analysis algorithm to identify
the relationships among method chunks, which results in
knowledge-independent process lines. In other words, the
process engineer or the one who is going to instantiate the
process from the process line will not need to know the details
of method chunk interdependencies, since we encapsulate our
knowledge in every relationship and in the definition of every
method chunk.

Future research in this context can focus on completing the
proposed repository, and extending the proposed process
engineering approach with procedures for facilitating
requirements mapping. A separate strand can concentrate on
extending the proposed process line to provide full coverage of

the generic agent-oriented software development lifecycle,
instead of just the AORE activities.

REFERENCES
[1] L. Osterweil, "Software processes are software too," in Proc. ICSE'87,

1987, pp. 2-13.
[2] H. Washizaki, "Building Software Process Line Architectures from

Bottom Up," in Proc. PROFES’06, 2006, pp. 415-421.
[3] O. Armbrust, M. Katahira, Y. Miyamoto, J. Munch, H., Nakao, A.

Ocampo, "Scoping Software Process Models - Initial Concepts and
Experience from Defining Space Standards," in Proc. ICSP'08, 2008,
pp. 160-172.

[4] D. Rombach, "Integrated Software Process and Product Lines," in
Proc. ISPW’05, 2005, pp. 83-90.

[5] P. Clements, L. Northrop, Software Product Lines, Addison-Wesley,
2002.

[6] S. K. Yu, "Towards modelling and reasoning support for early-phase
requirements engineering," in Proc. ISRE’97, 1997, pp. 226-235.

[7] E. Y. Lesperance, T. G. Kelley, J. Mylopoulos, and E. S. K. Yu,
"Modeling Dynamic Domains with ConGolog," in Proc. CAiSE’99,
1999, pp. 365-380.

[8] X. Wang and Y. Lesperance, "Agent-oriented requirements
engineering using ConGolog and i*," in Proc. AOIS’01, 2001, pp. 59-
78.

[9] P. Donzelli, "A goal-driven and agent-based requirements engineering
framework," Requirements Engineering, vol. 9, pp. 16-39, Feb. 2004.

[10] J. N. Mazon, J. Pardillo, and J. Trujillo, "A Model-Driven Goal-
Oriented Requirement Engineering Approach for Data Warehouses,"
in Proc. ER Workshops, 2007, pp. 255-264.

[11] P. Bresciani, P. Giorgini, F. Giunchigilia, J. Mylopoulos, A. Perini,
"TROPOS: An agent oriented software development methodology,"
Autonomous Agents and Multi-Agent Systems, vol. 8, pp. 203-236,
May 2004.

[12] G. Caire et al., "Agent oriented analysis using Message/UML," in
Proc. AOSE’01, 2001, pp. 119-135.

[13] M. Cossentino, "From requirements to code with the PASSI
methodology," in Agent-oriented Methodologies, B. Henderson-
Sellers, P. Giorgini, Eds. Idea Group Publishing, 2005, pp. 79-106.

[14] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam,
"ASPECS: an agent-oriented software process for engineering
complex systems," Autonomous Agents and MultiAgent Systems, vol.
20, pp. 260-304, Mar. 2010.

[15] S.A. Deloach, M. Wood, C. Sparkman, "MultiAgent Systems
Engineering," Software Engineering and Knowledge Engineering, vol.
11, pp. 231-246, Jun. 2001.

[16] L. Padgham, M. Winikoff, "Prometheus: A Methodology for
Developing Intelligent Agents," in Proc. AOSE’03, 2003, pp. 174-
185.

[17] M. Wooldridge, N.R. Jennings, D. Kinny, "The Gaia Methodology for
Agent-Oriented Analysis and Design," Autonomous Agents and
MultiAgent Systems, vol. 3, pp. 285-312, Sep. 2000.

[18] P. Loucopoulos and V. Karakostas, System Requirements Engineering,
McGraw-Hill, 1995.

[19] C. Bernon, M.p. Gleizes, P. Migeon, G. Serugendo, "ADELFE: A
Methodology for Adaptive Multi-agent Systems Engineering," in Proc.
ESAW’02, 2002, pp. 156-169.

[20] J. Debenham, B. Henderson-Sellers, "Designing agent-based process
systems - extending the OPEN Process Framework," in Intelligent
Agent Software Engineering, V. Plekhanova, Ed. Idea Group
Publishing, 2003, pp. 160-190.

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

557978-1-4673-2232-4/13/$31.00 ©2013 IEEE

