

Methodologies for Model-Driven Development of Adaptive
Web Applications: An Analytical Survey

Mona Fadavi*, Raman Ramsin

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

* Corresponding author. Email: mfadavi@ce.sharif.edu
Manuscript submitted August 15, 2015; accepted October 23, 2015.
doi: 10.17706/jsw.11.1.94-109

Abstract: Due to the rapid expansion of web applications, the information and services provided on the

web have proliferated, leading to ever-increasing complexity. This has not only resulted in the utmost

significance of information quality and accuracy on the web, but has also necessitated that access to

information be improved. Hence, adaptive web systems have emerged, which focus on adapting web

content, presentation, and navigation to meet the needs of the users according to their individual

circumstances and preferences. In this field, focus has gradually shifted from creation of new adaptive

techniques to solving the problems of analysis and design of adaptive applications; in other words, it has

become important to handle the dynamism of the runtime environment and the complexity involved in

developing these applications. Model-Driven Engineering (MDE) is considered a promising approach for

overcoming these problems, mainly due to its modeling features: Models are created at different levels of

abstraction (thus enhancing complexity management), and the process can potentially be automated

through the use of transformation rules. We provide a review of several prominent methodologies that

utilize MDE for developing adaptive web applications, and propose a criteria-based evaluation approach

that highlights their strengths and weaknesses. Evaluation results can be used for comparing and selecting

methodologies for use in web development projects; they can also be used for constructing a new

methodology that exploits the strengths and addresses the shortcomings of existing methodologies.

Key words: Adaptive web application, criteria-based evaluation, model-driven engineering, software

development methodology.

1. Introduction

In companies that advance their businesses by providing web applications and web services, achieving

high quality is of utmost importance, since a desirable return-on-investment is only possible through

increasing the number of returning customers. Due to the diversity of the potential users of web

applications, developers have to cope with the challenges of unknown expectations and behavioural

patterns of the users. On the other hand, the large volume of information on the web has led to difficulties

in finding the desired information in hyperspace. Therefore, in order to keep the customers satisfied, web

applications have turned to observing the users’ actions and then providing them with the appropriate

information by filtering out the irrelevant information and taking into account the users’ preferences. This

has led to the advent of adaptive web applications, which can adapt web content, navigation, and

presentation according to the users’ circumstances and preferences. Adaptive web applications are a subset

94 Volume 11, Number 1, January 2016

Journal of Software

of adaptive hypermedia systems, which “build a model of the goals, preferences and knowledge for each

individual user and apply it throughout the interaction for adaptation to the needs of the users” [1].

Model-Driven Engineering (MDE) is considered as a powerful approach for developing complex software

systems. It promotes the production of models through model transformation, ultimately leading to the

generation of executable code. The main process in MDE includes the definition of a set of models, along

with a set of rules for (semi)automatic transformation of the models into one another. MDE can improve

reusability and portability, and lower development costs.

Due to the growing need for adaptive web applications, an engineering methodology is required for

developing these systems to ensure high quality and also to assist the developers in building these

applications systematically. Generating adaptive responses to user requests is a typically complex process.

In order to manage this complexity, it is necessary to augment the application models with adaptivity

features. Consequently, a description of runtime behaviour is required in order to identify how to use the

information and relationships to achieve adaptation. MDE seems to be an appropriate approach for

overcoming the complexity and runtime dynamism involved in developing these applications, as it supports

complexity management by prescribing separate models at different levels of abstraction, and enables the

developers to (re)produce the models (semi)automatically through the use of transformation rules.

In this paper, we review six prominent model-driven adaptive web development methodologies; these

are the only methodologies that fully cover the three areas targeted (adaptivity, web development, and

MDE) while providing the documentation required for scrutinizing the methodologies. We also propose a

special set of evaluation criteria, which when applied to these methodologies, highlight their strengths and

weaknesses. The evaluation criteria and results can be used by developers to assess, compare and select

their required model-driven adaptive web development methodology. They can also be used by method

engineers to create a new methodology by exploiting the strong features and resolving the shortcomings of

existing methodologies.

The rest of this paper is structured as follows: A brief review of six model-driven adaptive web

development methodologies is presented in Section II; Section III introduces the proposed set of evaluation

criteria; Section IV analyzes the results of applying the criteria to the methodologies; and Section V presents

the conclusions and suggests ways for furthering this research.

2. Model-Driven Adaptive Web Development Methodologies

In this section, we review the high-level process of the six methodologies based on the process-centered

template introduced in [2], particularly focusing on the support provided for adaptivity in each

methodology.

2.1. Extended OOWS Methodology

Rojas [3] has proposed an extension to the Object-Oriented Web Solution (OOWS) methodology in order

to make it applicable to adaptive web development. The model-driven process of OOWS has been extended

by enhancing requirements specification and conceptual modeling to support the modeling of adaptive web

applications (as shown in Fig. 1). It prescribes exhaustive user modeling which captures the various aspects

of users in user diagrams and navigational behaviour diagrams. The main contribution of this methodology

is applying implementation-level adaptive techniques to conceptual-level modeling. This is done by

providing high-level adaptive techniques in terms of conceptual primitives (called adaptive primitives) in

the navigational schema.

Transformation is performed from each possible occurrence of adaptive requirements to the

corresponding navigational descriptions, so that for each adaptive requirement, a set of different modeling

strategies is introduced in terms of adaptive primitives. This idea rises from the observation that every

95 Volume 11, Number 1, January 2016

Journal of Software

adaptation method can be implemented with different techniques, so the implementation variant of the

adaptive primitives is determined by fulfilment of constraints for a given user (based on the user model). In

the OOWS methodology, the development process consists of two major stages: Problem Specification and

Solution Development. In Extended OOWS, only the Problem Specification stage has been enhanced in

order to support adaptivity. This has been done by extending the following two steps:

2.1.1. Requirements specification

In this step, two complementary activities are already prescribed in the OOWS methodology: (1)

functional requirements are specified in a mission statement, a functional refinement tree, and a use-case

diagram; (2) navigational requirements are specified in a task diagram, task specifications, and data

description templates [4]. In Extended OOWS, user stereotype diagrams and user specification templates

have been added in order to model user-related requirements. Also, the task diagram, task specifications,

and data description templates have been enhanced for specifying adaptive requirements. Task

specifications have been enhanced by determining adaptive tasks and augmenting the relevant task

specifications so that for each adaptive task, an activity diagram is defined which depicts the constraints

imposed on accessing the nodes, operations, and links that are included in the adaptive navigational

requirements. The data description has also been extended by introducing constraints on accessing the

attributes of each node.

2.1.2. Conceptual modeling

In this step, the structural schema, dynamic schema, functional schema, navigational schema, and

presentation schema are produced as prescribed in the OOWS methodology [4]. In Extended OOWS, a user

schema is also produced as an augment to the structural schema, thus adding descriptions of users and

their behaviour to the structural model. Also, the existing OOWS navigational schema has been extended

with adaptive primitives that allow the specification of adaptive navigation and presentation. Based on

these primitives, a set of modeling strategies are defined that guide the designers in incorporating adaptive

methods through the use of adaptive techniques.

Requirements

Specification

Solution

Development

Use Case Model

Functional

Refinement Tree
User Stereotype

Diagram

User Specification

Template

Task Diagram

Task Specification

Template

Data Description

Template

Conceptual

Modeling

Structural Schema

Dynamic Schema

Functional Schema

Navigational Schema

Presentation Schema

Service/Business

Components
Web Environment

ConfigurationDatabase Schema

Activity Diagram

Legend
Phase Workflow

Work-Product
Production

Work-Product Related

to Adaptivity

Bi-directional

Work-flow

Mission Statement

Fig. 1. Extended OOWS process.

96 Volume 11, Number 1, January 2016

Journal of Software

2.2. Extended WebML Methodology

Ceri et al. [5] have proposed a methodology for developing context-aware multichannel web applications

by extending the Web Modeling Language (WebML) methodology with adaptive actions that are triggered

by the context. This extension addresses the main concerns in developing such systems by answering three

questions: (1) How should we describe and manage context data during data design? (2) How should we

combine non-adaptive hypermedia with adaptive hypermedia during hypertext design? (3) How should we

attach adaptive actions to the hyperspace in reaction to context changes? The tasks prescribed by Extended

WebML for supporting adaptivity (shown in Fig. 2) are explained below:

Requirements

Specification

Business

Requirements

Architecture

Design

Sensing

Infrastructure

 Software

Architecture

Testing

and Evaluation

Implementation

Maintenance

and Evolution

Application

Data Model

Hypertext

Model

Data Design

Hypertext

Design

Fig. 2. Extended WebML process.

2.2.1. Requirements specification

WebML has prescribed the elicitation of personalization requirements, but Extended WebML has failed

to provide a specific method for extracting the set of adaptive requirements (along with their context

triggering properties) that is required in context-aware web applications.

2.2.2. Data design

 Extended WebML prescribes to enrich the application’s data sources with context properties. To this

aim, it prescribes the addition of user profile data, dynamic user model data, and context data, thus

extending the data schema with three sub-schemas.

2.2.3. Hypertext design

Extended WebML prescribes to: 1) Tag adaptive pages with a ‘C’ label, 2) attach context-clouds to

adaptive pages, which represent the adaptive logic and the set of adaptivity actions associated with the

pages, 3) indicate a polling interval for each adaptive page which shows the querying time on the context

model, 4) identify an adaptation policy for each adaptive page to determine the priority of the users or the

context for triggering adaptive actions, and 5) use new modeling concepts and primitives for adaptive

actions, which allow visual specification of actions for context model management and hypertext

adaptation. In addition, WebML primitives are also used for adaptive actions.

2.2.4. Architecture design

Certain constraints, related to context-model management, must be captured in the architecture. The

97 Volume 11, Number 1, January 2016

Journal of Software

relevant tasks are as follows:

a) Context data acquisition: A client context-sensing infrastructure should be designed to sense the

parameters on the client-side and send them back to the application. Also, a centralized sensing

infrastructure is needed for handling server-side parameters.

b) Context model updating: It is necessary to update the context model at the data level.

c) Context model monitoring: Two methods are proposed: In [5], monitoring is achieved by periodically

refreshing the pages at any user’s request; whereas in [6], a monitoring module is introduced which

refreshes the pages when context variation triggers the adaptive action.

In addition, Extended WebML prescribes a run-time algorithm that supports automatic execution of

adaptive actions; the page computation algorithm of WebML is still used for non-adaptive actions.

2.2.5. Implementation

Two prototypes are prescribed: The first prototype provides a solution for implementing the

context-aware features that can be obtained without altering WebML’s run-time environment; the second

prototype is produced by the WebRatio CASE tool to fully reflect the proposed visual design method. These

prototypes are complementary, and it is possible to design and generate their code from extended design

models.

2.2.6. Testing and evaluation, and maintenance and evolution

Performed as their Webml counterparts. In addition to the above, a method for modeling user

navigational behaviour has been proposed in [7], which allows performing adaptive actions in response to

predefined navigation patterns. It uses a Web Behaviour Model (WBM), consisting of a finite state

automaton and high-level event-condition-action rules. These rules allow the interpretation of events as

user requests, conditions as WBM scripts, and actions as a set of adaptive actions expressed in terms of a

chain of WebML operation units.

2.3. UM-MAIS Methodology

UM-MAIS [8] incorporates a full-lifecycle process for developing multi-channel adaptive web information

systems. It integrates and specializes three prominent methods for requirements engineering, hypertext

design, and service design. Its main aim is to exploit the strengths of these three methods in a way that

supports both model-driven and agile development. The major advantage of this methodology is combining

hypertext, data, and service designs so that their associations and interactions can be utilized when design

problems arise; e.g., when some activities cannot be fully addressed by hypertext design, the developer can

resort to service design (via external operation invocation), or to data design (via inclusion of new data in

the data schema). The phases of UM-MAIS (shown in Fig. 3) are explained below:

2.3.1. Requirements management

UM-MAIS extends the AWARE method [9] for providing goal-oriented requirements modeling to support

adaptivity and web service integration. The following steps are performed:

a) Requirements elicitation: In accordance with the refinement process of AWARE, high-level goals are

refined into sub-goals, and eventually into requirements.

b) Requirements analysis and classification: The requirements are first classified into data, service, and

hypertext requirements. Certain predefined questions are then answered in order to determine the

impact of context factors on the requirements. Based on these answers, the associations among

requirements and context dimensions are discovered; the resulting adaptivity requirements are added

to the requirements set. Moreover, the relationships among the goals, requirements and produced

design artefacts are determined in order to support traceability.

98 Volume 11, Number 1, January 2016

Journal of Software

2.3.2. High-level design

This phase contains two nested sub-phases, which are explained below:

a) Data Design: Performed according to the data design activity prescribed in extended-WebML [5].

b) High-Level Hypertext and Service Design: High-level hypertext design is performed according to steps

1 to 4 of the Extended-WebML’s hypertext design activity [5]. In addition, the hypertext designer must

determine the pages that are needed for service invocations, and should then send the list of

uncovered requirements to the service designer, who requires this list along with a data schema and

the shared knowledge of the application domain as input. Service design is then performed according

to the WSMoD methodology [10], in which the services are designed based on specific

quality-of-service features. Ultimately, the results are sent to the hypertext designer to be used in

low-level hypertext design.

2.3.3. Low-level hypertext and service design

Low-level hypertext design is performed according to step 5 of the hypertext design activity of

Extended-WebML [5]. Low-level service design involves the following steps:

a) Adaptability design: Two activities are performed, through which system models are refined and

enriched with adaptivity-related information: 1) in the data and operation design activity, the class

diagram of the services is enriched, and 2) in the interaction design activity, the interaction diagrams

related to user, channel, and quality-of-service requirements are enriched.

b) Customization: Through the two activities of channel and user customization, service specifications are

validated with respect to actual channel and user profiles.

c) Web service description: The diagrams obtained so far are transformed into web service descriptions

using standard languages such as WSDL and WSOL.

2.3.4. Development and deployment

 UM-MAIS prescribes certain tools for each phase; however, the main development starts by WebML’s

run-time environment which generates XML documents from a WebML schema. UM-MAIS’s rule-engine

takes these documents as input and generates HTML pages adapted to the current context. Deployment is

supported by WebML’s run-time tool and other web service development tools.

Requirements

Management
MAIS Model

Low-Level

Service

Design

High-Level

Hypertext

Design

Data

Design

High-Level

Service

Design

Personalization

Schema

High-Level Design

UML

Diagrams

of

Services

Hypertext

Selecton

Low-Level

Hypertext

Design

User Schema

Context Schema

Front-End

Specification

WSDL

Description

WSOL

Description

UML Class

and

Interaction

Diagrams

Development

and Deployment

Fig. 3. UM-MAIS process.

99 Volume 11, Number 1, January 2016

Journal of Software

2.4. Hera Methodology

Hera [11] aims to address the development of Web Information Systems (WIS). The main feature of WIS

is its focus on gathering information from heterogeneous sources, and semi-automatic generation of the

web presentation in response to user queries. Hera’s process uses the Resource Description Format (RDF)

as the main format for the data used in the transformation process, and adopts XSLT as its transformation

approach. The phases of Hera (shown in Fig. 4) are explained below:

2.4.1. Conceptual design

Domain data is described in a conceptual model based on RDF. It consists of concepts, attributes and

relationships, but no operations.

2.4.2. Integration design

This phase has two main activities, which are explained below:

a) Integration: Responsible for mapping data from different heterogeneous sources to the concepts of

source ontologies, then relating them to the corresponding concepts in the conceptual model of the

target WIS.

b) Data retrieval: Elicits user-formulated queries and translates them into queries on the conceptual

model. In response to the resulting query, the desired data are provided and converted into conceptual

model instances.

c) Application Design: In this phase, navigation views are described in the application model, which

consists of ovals (domain concepts), slices (navigational views on concepts), links, attributes, and

operations.

2.4.3. Adaptation design

 Hera realizes adaptation by attaching inclusion conditions to conceptual, application, and presentation

model elements, but it interprets adaptation as either adaptability, for when the conditions are based on

user/platform profiles, or adaptivity, for when they are based on the user model. These conditions govern

the visibility of the attributes or relationships of the model elements, leading to conditional inclusion of

fragments and execution of link-hiding techniques.

2.4.4. Presentation design

Fig. 4. Hera process.

Based on the data passed from the previous phase, the presentation is generated through the following

100 Volume 11, Number 1, January 2016

Journal of Software

transformation steps:

a) Transformation specification generation: Transformation specifications are generated based on

adaptation and application model elements.

b) Application model instance generation: Based on the resulting transformation specifications, the

conceptual model is converted into an application model.

c) Presentation generation: Presentation is generated as specific to the format of the user platform.

2.5. A-OOH Methodology

Inception

Elaboration

Construction

Transition

Maintenance

Requirements
Goal Model

Use Case

Model

Domain

Analysis and

Design

Analysis and Design

Navigation

Design

Presentation

Design

Adaptation

Design

Domain

Model

Navigation

Model

Design

Presentation

Diagram

User

Model
Personalization

Model

Implementation

Software

Architecture

Code

Test a b

Fig. 5. A-OOH process: a) macro process, b) micro process.

A-OOH [12] is an extension to the OO-H methodology for supporting adaptivity concerns. A-OOH is based

on the Unified Process (UP) methodology, and its lifecycle (macro process) consists of five sequential

phases: Inception, Elaboration, Construction, Transition, and Maintenance. The process incorporates four

workflows, executed iteratively throughout the phases (constituting the micro process): requirements,

analysis and design, implementation, and test (shown in Fig. 5). Adaptation is applied based on a set of

Event-Condition-Action (ECA) rules expressed in a high-level language, called the Personalization Rule

Modeling Language (PRML), which specifies personalization at the design level. Although PRML has been

used in the A-OOH methodology, it is independent of any particular web modeling methodology or

environment; therefore, personalization specifications expressed in PRML are portable across different

development environments. In order to achieve this level of portability, certain prerequisites have been

defined for any web design methodology to which personalization by PRML is to be added, and a special

method has been proposed in order to specify the strategies of PRML-assisted personalization in different

methodologies. Furthermore, due to the conformance of PRML with the MOF metamodel, its portability has

been demonstrated by defining a set of transformation rules from PRML to two well-known methodologies:

UWE and Hera. Thus, the designer can define personalization via PRML, and then either perform

transformation to produce the artifacts of the desired methodology, or use the specifications directly

(which requires a rule engine that supports PRML). The main advantages of A-OOH are its ability to define

the personalization strategies as reusable specifications, and its prototyping tool (AWAC), which fully

101 Volume 11, Number 1, January 2016

Journal of Software

supports the automatic generation and management of adaptive web applications based on the A-OOH

process. The workflows of A-OOH are explained below:

2.5.1. Requirements

Similar to OO-H, a use-case diagram is used for capturing adaptation requirements, although using the i*

framework has also been proposed (in [13]); thus, navigation, service, personalization, and layout

requirements are specified in terms of task stereotypes, and data requirements are defined in terms of

resource stereotypes (resource and task are i* concepts).

2.5.2. Analysis and design

This workflow consists of four nested stages, as explained below:

a) Domain analysis and design: In accordance with OO-H, domain modeling produces a UML class

diagram.

b) Navigation design: A navigation model is produced, which represents navigation nodes in terms of: 1)

navigational classes (views on domain classes), 2) navigational targets (grouped model elements that

collaborate for satisfying the navigation requirements of the user), and 3) navigational collections

(hierarchical structures of navigation classes or targets). Also, two types of navigation links are defined:

1) service link, representing the activation of operations, and 2) traversal link, representing the paths

among navigation nodes.

c) Presentation design: A design presentation diagram is produced which enriches the navigation model

by adding two abstraction levels. At the first level, concepts related to the abstract structure of the

website are defined by grouping navigation nodes into abstract pages; designers can add new static

pages at this level. At the second level, specific presentation details, as to layout and style, are

determined for the abstract pages.

d) Adaptation Design: This stage includes two types of modeling, user modeling and personalization

modeling, the details of which are explained below:

User modeling: The user model can be defined for each individual user or user group, and its data is

classified into four categories: 1) user characteristics, such as disabilities, age, and hobbies, 2) user

requirements, which describe the specific goals of the user’s interaction with the system, 3) user context,

which consists of the information concerning the context of the current session, and 4) user browsing

behaviour. Also, domain-dependent information is elicited and documented.

Personalization modeling: The set of ECA rules that constitute the personalization model are expressed in

PRML. The rules are classified into three types: 1) acquiring personalization data, 2) classifying users based

on their profiles, and 3) performing the desired adaptation.

2.5.3. Implementation

 The software architecture is determined, and external data and web services are specified. This

ultimately leads to automatic generation of the web interface by using the AWAC tool.

2.5.4. Test

 Evaluation activities are performed, including prototyping, verification, and validation.

2.6. Extended UWE Methodology

UWE [14] focuses on systematic development of web applications based on OMG standards,

model-driven principles, and computer-aided tools. This methodology has evolved over time, so that it now

supports contemporary features of web systems such as security, rich internet applications, and adaptivity.

UWE’s MDE approach proposes meta-models for all the models produced. It also defines a full set of

transformation rules, and provides a semi-automatic process for tool-supported model design, model

102 Volume 11, Number 1, January 2016

Journal of Software

transformation, model checking, and automatic generation of web applications. Extended UWE [15], [16]

extends UWE with adaptive features, incorporated as orthogonal concerns into the different web-related

levels (navigation, content, and presentation), methodology phases, and modeling aspects (structural,

functional, and behavioural). Extended UWE follows an aspect-oriented approach, defining model and

run-time aspects to support static/dynamic aspect weaving.

Testing

Risk

Management

Iteration

Planning

Requirements

Capture

Iteration

Evaluation

Action List

for Resolving Risk

List

Risk List

Delivery

Plan

Iteration

Plan

Requirements

Review Report

Model

 Review Report

Architecture

Review Report

Design Class

Review Report

Analysis and

Design Content

Model

Navigation

Model
Process Model User Model

Presentation

Model

Adaptation

Model

Subsystems

and Interfaces

Architectural

Design View

Test

Component

Test Procedure

Test Report

Test Plan

Software

Architecture

Deployment

Model

Integration

Plan

Implemented

Adaptive

Software

Content

Activity Diagram

Use Case Model

Adaptation Rules User Profile Glossary

Content

Description

UI Description

and Prototype

Use Cases of

Architecture

Non-Functional

Requirements Architecture

Review Report

Implementation

Analysis

and

Design

Validation

Verification

Iteration

Report

 Fig. 6. Extended UWE: micro process.

The process of Extended UWE is based on the UP methodology. The macro process consists of five

sequential phases: Inception, Elaboration, Construction, Transition, and Maintenance. In each phase, three

sets of workflows are executed iteratively, thus forming the micro process: development, project

management, and quality management (shown in Fig. 6). The project management set consists of three

workflows: risk management, iteration planning, and iteration evaluation. The quality management set

includes three workflows: validation, verification, and testing. The three workflows of the main set,

development, are explained below:

2.6.1. Requirements capture

Specific techniques are prescribed for requirements elicitation and validation. Moreover, light-weight

versions of UML use-case and activity diagrams are used for requirements specification.

2.6.2. Analysis and design

 Various modeling activities are performed. UML class diagrams are used for structural domain modeling.

User and environment properties are captured in a user model. Navigation is modeled in light-weight class

diagrams, in which the hypertext structure (nodes and links) is depicted. Access primitives are defined for

complex constructs. Process flows are captured in activity diagrams; as they must also be integrated in the

navigation model, process classes are defined and associated with navigation classes. Presentation is

modeled based on the navigation model to depict the UI elements of the web pages. Light-weight class and

interaction diagrams are used for modeling the structure and behavior of the presentation. Adaptation is

modeled in terms of aspects, which are weaved into the models produced. Architectural design is also

performed, and subsystems and their interfaces are defined.

2.6.3. Implementation

This workflow consists of implementation activities, content provision for the web application, and

103 Volume 11, Number 1, January 2016

Journal of Software

subsystems integration.

3. Qualitative Criteria for Evaluation of Model-Driven Adaptive Web Development
Methodologies

We have evaluated the methodologies reviewed in the previous section through applying the feature

analysis approach [17], which is widely used for evaluating software development methodologies. As

this approach is based on qualitative evaluation, the development of a set of Qualitative Criteria (QC) has

been an important objective of our research. It must be demonstrated that the proposed criterion set is

detailed and comprehensive enough to reveal the strengths and weakness of methodologies. Therefore, the

extracted criteria were evaluated by applying the set of meta-criteria proposed in [18]):

comprehensiveness, accuracy, simplicity, consistency, minimal overlap, generality, and balance. To ensure

the satisfaction of these meta-criteria, we have applied an iterative elicitation-evaluation process for

identifying the QC [19]. We can therefore claim that our elicited QC are comprehensive enough to cover the

important features of the target methodologies, accurate enough to discern the shortcomings and strengths

of the methodologies, simple to understand and measure, consistent (as all inconsistencies have been

resolved), minimally overlapped (as each criterion pertains to one independent category), general enough

for application to all relevant methodologies, and properly balanced (as all domain concepts have been

covered in their own right).

Table 1. Criteria for Evaluating Model-Driven Aspects

Criterion Name Type Description of Levels

T
o

o
l-

R
el

at
ed

Q

C

CIM to PIM Transformation
PIM to PSM Transformation

Scale
A: Not provided; B: Provided with tool support; C: Rules are
defined but tool support is not provided.

Automatic Code Generation

Metadata Management

Automatic Test

Traceability between Models

Simple

I (Involved): The methodology explicitly provides the
relevant support;
D (Devolved): The methodology does not provide any
support.

M
o

d
el

-D
ri

v
en

A
rc

h
it

ec
tu

re
-R

el
at

ed
 Q

C
 Tool Selection/Implementation Scale

A: No specific toolset or explicit guidelines provided;
B: Incomplete toolset or general guidelines provided;
C: Complete toolset or precise guidelines provided.

CIM Creation

PIM Creation

PSM Creation

Scale
A: Model production is not supported;
B: General guidelines provided;
C: Precise guidelines provided.

Verification/Validation (V&V)

Extension of Rules

Round-Trip Engineering

Source and Target Models
Synchronization

Scale

A: The activity is not defined and is devolved to developers;
B: The activity is not defined in detail;
C: Explicit and detailed guidelines and techniques are

provided for this activity.

Due to the fact that our target domain is the intersection of three fields (i.e., MDE, Adaptive Systems, and

Web Engineering), our proposed evaluation framework consists of three sets of QC. The proposed QC are

shown in Tables 1, 2, and 3, corresponding to model-driven aspects, web-engineering aspects, and

adaptivity aspects, respectively. The first set, which is related to model-driven aspects, consists of the

tool-related and architecture-related QC proposed in [20]. The second set, which covers web engineering

aspects, has been obtained by refining the general QC proposed for evaluating software development

methodologies proposed in [2] based on the web-critical requirements discussed in [21] and [22]; these QC

are divided into four sets: general, development-related, management-related, and artifact-related. In order

to define the third set, which pertains to adaptivity aspects, we have examined and adapted the sets of QC

proposed in [23], [24], and [25].

In order to enhance the measurability of the QC, they have been defined in two possible forms: (1) Scale

104 Volume 11, Number 1, January 2016

Journal of Software

form (multilevel), for which the evaluation results are selected from among predefined discrete levels, each

representing the degree of fulfilment of the criterion, and (2) Simple form, for which the results are of the

“Yes/No” type, denoting the fulfilment or non-fulfilment of the criterion.

Table 2. Criteria for Evaluating Web Engineering Aspects

Criterion Name Type Description of Levels

Technological Properties Consideration
Support of Short Development Cycles
Coverage of User Requirements Variation
Concurrency Support
Organization of Multidisciplinary Teams
Basis in Architecture

Simple

I (Involved): The methodology explicitly provides the
relevant support;
D (Devolved): The methodology does not provide any
support.

Existence of Necessary Models for Web Development Scale
A: Fully supported; B: Some models are supported;
C: None supported.

Support of Exclusive Modeling Language Scale
A: Exclusive modeling language is provided;
B: Extended version of an existing language is used;
C: No modeling language is prescribed.

Support of Exclusive Content Provision Activities

Support of Exclusive Test Activities
Scale

A: Exclusive web activities prescribed; B: General
activities prescribed; C: No activities prescribed.

Coverage of
General Life Cycle

Requirements Engineering

Analysis

Design

Implementation

Test

Deployment

Maintenance

Scale
A: Not supported;
B: Supported with general guidelines;
C: Supported with detailed directives.

Coverage of
Umbrella Activities

Project Management

Risk Management

Quality Management

Scale
A: Not supported;
B: Supported with general guidelines;
C: Supported with detailed directives.

Clarity of Development Process Definition

Scale

A: Work-products, actors and activities are completely

supported and precisely described; B: Work-products,

actors and activities are incompletely supported or just

mentioned; C: Work-products, actors, and activities are

weakly supported.

Seamlessness and Smoothness of Transition between

Phases
Scale

A: Only seamlessness provided; B: Only smoothness
provided; C: Both provided; D: None provided.

Basis in Functional and Non-Functional Requirements Scale
A: Both supported; B: Non-functional requirements
supported; C: No support.

Product Dependencies Specification Scale

A: Product dependencies are not specified;
B: Few products are evolved or reused in other phases;
C: Most products are evolved or reused in other phases;
D: Products are not interdependent.

Traceability to Requirements

Encouragement of Active User Involvement

Complexity Management

Practicability & Practicality

Scalability

Flexibility

Configurability & Extensibility

Support of Formal Modeling Facilities

Simple

I (Involved): The methodology explicitly provides the
relevant support;
D (Devolved): The methodology does not provide any
support.

Tangibility of Artifacts Scale
A: Artifacts are tangible for both users and developers;
B: Artifacts are tangible for users only; C: Artifacts are
tangible for developers only; D: Artifacts are not tangible.

Covering Various Aspects of Modeling Scale
A: All aspects supported; B: Most aspects strongly
supported; C: Most aspects weakly supported.

4. Analysis of the Evaluation Results

As the model-driven evaluation results show (Table 4), only the A-OOH, Extended OOWS, Extended UWE,

105 Volume 11, Number 1, January 2016

Journal of Software

and Hera methodologies support transformation from CIM to PIM. As for tool support, Extended WebML

and UM-MAIS use an extension of the WebML run-time environment, UM-MAIS proposes detailed

guidelines for selection of tools for each of its phases, and A-OOH and Hera provide exclusive tools (the

AWAC prototype, and the XSLT dedicated processor and engine). Most of the methodologies are weak in

supporting round-trip engineering, extension of rules, V&V, metadata management, traceability, and

automatic testing.

Table 3. Criteria for Evaluating Adaptivity Aspects

Criterion Name Type Description of Levels

Decoupling Context from Business Logic
General Scope of Adaptive Systems Support
Reusability of Adaptation Rules

Simple
I (Involved): The methodology explicitly provides the relevant
support;
D (Devolved): The methodology does not provide any support.

Context Modeling Scale
A: All the main properties of the context (user, environment and
browsing history) are modeled; B: Some properties of the context
are modeled; C: Not supported.

Adaptivity-Level Support Scale A: Fully supported; B: Some aspects supported; C: Not supported.

Adaptation Methods and Techniques
Support

Scale A: Mainly supported; B: Partially supported; C: Not supported.

Adaptation Considerations in Development
Process

Scale

A: Work-products, actors and activities are completely supported
and precisely described; B: Work-products, actors and activities
are incompletely supported or just mentioned; C: Work-products,
actors, and activities are weakly supported.

Support of Various Adaptation Triggers Scale

A: Only interests and preferences of users are considered for
triggering adaptive actions;
B: In addition to A, environmental properties are also considered;
C: In addition to B, navigation styles, user groups and other

factors are also considered.

As the web-engineering evaluation results show (Table 5), Extended WebML, Extended UWE and A-OOH

support full-lifecycle development. Nevertheless, only Extended UWE supports umbrella activities. A-OOH,

Extended WebML and Extended UWE incorporate iterative-incremental processes, so they can successfully

cope with requirements mutability. However, none of the methodologies supports short development

cycles. As for the modeling language used, A-OOH uses PRML as its exclusive language, but others use

existing languages.

As the adaptivity evaluation results show (Table 6), Hera is the only methodology that does not support

the general scope of adaptive systems, as it is only intended for WIS development. Extended OOWS is the

only methodology that strongly supports context modeling; it is also the only methodology that strongly

supports adaptation methods and techniques, so much so that adaptive primitives are defined for each

method and technique. In Extended WebML, methods are just mentioned for adaptive requirements

extraction, but in Extended OOWS, A-OOH, Extended UWE, and UM-MAIS, adaptivity-related activities are

precisely defined; in contrast, Hera does not properly cover these activities, and just prescribes a few

modeling activities. Since A-OOH uses PRML for specifying adaptive rules, it is the only methodology in

which the rules can be reused.

Overall, it can be observed that:

1) Most of these methodologies produce the CIM and PIM. PSM, however, is mostly neglected.

2) Most of these methodologies do not explicitly define a set of transformation rules based on

metamodels; their transformation approaches are therefore vague and excessively tool-dependent.

3) Most of these methodologies do not support the whole spectrum of adaptation methods and

techniques; adaptivity suffers as a result.

4) Critical requirements such as support for short development cycles and requirements mutability are

106 Volume 11, Number 1, January 2016

Journal of Software

not addressed in most methodologies.

Table 4. Results of Applying Model-Driven QC

Criterion

Methodology

C
IM

 C
re

at
io

n

P
IM

 C
re

at
io

n

P
SM

 C
re

at
io

n

V
&

V

T
o

o
l

Se
le

ct
io

n
/

Im
p

le
m

en
ta

ti
o

n

E
xt

en
si

o
n

 o
f

R

u
le

s

So
u

rc
e

an
d

T
ar

ge
t

M
o

d
el

s
Sy

n
ch

ro
n

iz
at

io
n

R
o

u
n

d
-t

ri
p

E

n
gi

n
ee

ri
n

g

C
IM

 t
o

 P
IM

T

ra
n

sf
o

rm
at

io
n

P
IM

 t
o

 P
S

M

T
ra

n
sf

o
rm

at
io

n

A
u

to
m

at
ic

 C
o

d
e

G
en

er
at

io
n

A
u

to
m

at
ic

 T
es

t

M
et

ad
at

a
M

an
ag

em
en

t

T
ra

ce
ab

il
it

y

b
et

w
ee

n
 M

o
d

el
s

Extended OOWS C C A A A A A A C A D D D D
Extended WebML B C A A C A A A A A I I D D
UM-MAIS C C A A C A A A A A I I D D
Hera A C C A C A A A B B I D D D
A-OOH C C A A B A A A C A I D D D
Extended UWE C C C C C A C A B B I I D D

Table 5. Results of Applying Web Engineering QC
Criterion

Methodology

Coverage of
General

Life Cycle

Coverage of
Umbrella
Activities

C
la

ri
ty

 o
f

D
ev

el
o

p
m

en
t

P
ro

ce
ss

 D
ef

in
it

io
n

Se

am
le

ss
n

es
s

an
d

 S
m

o
o

th
n

es
s

o
f

T
ra

n
si

ti
o

n
 b

et
w

ee
n

 P
h

as
es

B

as
is

 in
 F

u
n

ct
io

n
al

 a
n

d

N
o

n
-F

u
n

ct
io

n
al

 R
eq

u
ir

em
en

ts

P
ro

d
u

ct
 D

ep
en

d
en

ci
es

 S
p

ec
if

ic
at

io
n

T
ra

ce
ab

il
it

y
 t

o
 R

eq
u

ir
em

en
ts

E
n

co
u

ra
ge

m
en

t
o

f
A

ct
iv

e
U

se
r

In
v

o
lv

em
en

t
C

o
m

p
le

xi
ty

 M
an

ag
em

en
t

P
ra

ct
ic

ab
il

it
y

&
 P

ra
ct

ic
al

it
y

F
le

xi
b

il
it

y

Sc
al

ab
il

it
y

E

xt
en

si
b

il
it

y
 &

 C
o

n
fi

gu
ra

b
il

it
y

Su
p

p
o

rt
 o

f
F

o
rm

al
 M

o
d

el
in

g
F

ac
il

it
ie

s
T

an
gi

b
il

it
y

 o
f

A
rt

if
ac

ts

C
o

v
er

in
g

V
ar

io
u

s
A

sp
ec

ts

o
f

M
o

d
el

in
g

Su
p

p
o

rt
 o

f
E

xc
lu

si
v

e
C

o
n

te
n

t
P

ro
v

is
io

n
 A

ct
iv

it
ie

s

Su
p

p
o

rt
 o

f
E

xc
lu

si
v

e
T

es
t

A
ct

iv
it

ie
s

Su
p

p
o

rt
 o

f
Sh

o
rt

D

ev
el

o
p

m
en

t
C

yc
le

s
C

o
v

er
ag

e
o

f
U

se
r

R
eq

u
ir

em
en

ts
 V

ar
ia

ti
o

n

B
as

is
 in

 A
rc

h
it

ec
tu

re

C
o

n
cu

rr
en

cy
 S

u
p

p
o

rt

O
rg

an
iz

at
io

n
 o

f
M

u
lt

id
is

ci
p

li
n

ar
y

T

ea
m

s

E
xi

st
en

ce
 o

f
N

ec
es

sa
ry

 M
o

d
el

s
fo

r
W

eb
 D

ev
el

o
p

m
en

t
Su

p
p

o
rt

 o
f

E
xc

lu
si

v
e

M
o

d
el

in
g

L
an

gu
ag

e

T
ec

h
n

o
lo

gi
ca

l P
ro

p
er

ti
es

C

o
n

si
d

er
at

io
n

R
eq

. E
n

gi
n

ee
ri

n
g

A
n

al
y

si
s

D
es

ig
n

Im

p
le

m
en

ta
ti

o
n

T

es
t

D
ep

lo
y

m
en

t
M

ai
n

te
n

an
ce

P
ro

je
ct

 M
an

ag
em

en
t

R
is

k
 M

an
ag

em
en

t

Q
u

al
it

y
 M

an
ag

em
en

t

Extended OOWS C C C C A A A A A A B B A B I D D I D D D D A A C C D D D I D A B D
Extended WebML B C C C B B B A A A B B B A I D I I D I D D C B C B D I I D D A B D
UM-MAIS C C C C A B A A A A B B A B I D I I D I D D C A C C D D D I D A B D
Hera A A C C A A A A A A C D C B D D I I D I D D C C C C D D D I D A B D
A-OOH C C C C B B B A A A B B A B I D I I D I D D C B C B D I I D D A A D
Extended UWE C C C C C B C B B B A B A C I D I I D I D I A A B B D I I D I A B D

Table 6. Results of Applying Adaptivity QC
 Criterion

Methodology

Decoupling
Context from

Business
Logic

Reusability
of

Adaptation
Rules

General Scope
of Adaptive

Systems
Support

Context
Modeling

Adaptation-
Level

Support

Adaptation
Methods and
Techniques

Support

Support of
Various

Adaptation
Triggers

Adaptation
Considerations
in Development

Process
Extended OOWS I D I A A A A B
Extended WebML I D I B A B C B
UM-MAIS I D I B A B A A
Hera D D D B B C B C
A-OOH I I I B A B A B
Extended UWE I D I B A B A A

5. Conclusion and Future Work

We have reviewed six prominent model-driven adaptive web methodologies and have evaluated them

through criteria-based assessment, thus highlighting their strengths and weaknesses. We aim to further

this research by proposing a methodology which clearly defines comprehensive modeling levels (based on

metamodels) and the corresponding transformation rules. It should also properly resolve the deficiencies

of existing methodologies, as identified in this research.

References

[1] Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and

User-Adapted Interaction, 6(2-3), 87-129.

[2] Ramsin, R., & Paige, R. F. (2008). Process-centered review of object-oriented software development

methodologies. ACM Computing Surveys, 40(1), 1-89.

107 Volume 11, Number 1, January 2016

Journal of Software

[3] Rojas, D. G. E. (2006). Modeling adaptive web applications in OOWS. PhD dissertation, University of

Valencia, Spain.

[4] Pastor, O., Fones, J., & Pelechano, V. (2003). OOWS: A method to develop web applications from

web-oriented conceptual models. Proceedings of the International Workshop on Web Oriented Software

Technology (pp. 65-70).

[5] Ceri, S., Daniel, F., Matera, M., & Facca, F. M. (2007). Model-driven development of context-aware web

applications. ACM Transactions on Internet Technology, 7(1), 1-33.

[6] Ceri, S., Daniel, F., Facca, F. M., & Matera, M. (2007). Model-driven engineering of active

context-awareness. World Wide Web, 10(4), 387-413.

[7] Ceri, S., Daniel, F., Demaldé, V., & Facca, F. M. (2005). An approach to user-behavior-aware web

applications. Proceedings of the International Conference on Web Engineering (pp. 417-428).

[8] Batini, C., Bolchini, D., Ceri, S., Matera, M., Maurino, A., & Paolin, P. (2007). The UM-MAIS methodology

for multi-channel adaptive web information systems. World Wide Web, 10(4), 349-385.

[9] Bolchinie, D., & Paolini, P. (2004). Goal-driven requirements analysis for hypermedia-intensive web

applications. Requirements Engineering, 9(2), 85-103.

[10] Comerio, M., De Paoli, F., Grega, S., Maurino, A., & Batini, C. (2007). WSMoD: A methodology for

QoS-based web service design. International Journal of Web Services Research, 4(2), 33-60.

[11] Vdovjak, R., Frasincar, F., Houben, G. J., & Barna, P. (2003). Engineering semantic web information

systems in Hera. Journal of Web Engineering, 2(1-2), 3-26.

[12] Garrigós Fernández, I. (2008). A-OOH: Extending web application design with dynamic personalization.

PhD dissertation, University of Alicante, Spain.

[13] Garrigós, I., Mazón, J. N., & Trujillo, J. (2009). A requirements analysis approach for using i* in web

engineering. Proceedings of the International Conference on Web Engineering (pp. 151-165).

[14] de Koch, N. P., Knapp, A., Zhang, G., & Baumeister, H. (2007). UML-based web engineering: An approach

based on standards. In G. Rossi, O. Pastor, D. Schwabe, & L. Olsina (Eds.), Web Engineering: Modelling

and Implementing Web Applications (pp. 157-191). London, UK: Springer.

[15] de Koch, N. P. (2001). software engineering for adaptive hypermedia systems. PhD dissertation,

Ludwig Maximilian University of Munich.

[16] Baumeister, H., Knapp, A., de Koch, N. P., & Zhang, G. (2005). Modelling adaptivity with aspects.

Proceedings of the International Conference on Web Engineering (pp. 406-416).

[17] Kitchenham, B., Linkman, S., & Law, D. (1997). DESMET: A methodology for evaluating software

engineering methods and tools. Computing and Contrological Engineering Journal, 8, 120-126.

[18] Taromirad, M., & Ramsin, R. (2008). An appraisal of existing evaluation frameworks for agile

methodologies. Proceedings of the International IEEE Conference and Workshop on the Engineering of

Computer Based Systems (pp. 418-427).

[19] Ramsin, R., & Paige, R. F. (2010). Iterative criteria-based approach to engineering the requirements of

software development methodologies. IET Software, 4(2), 91-104.

[20] Asadi, M., & Ramsin, R. (2008). MDA-based methodologies: An analytical survey. Proceedings of the

European Conference on Model Driven Architecture: Foundations and Applications (pp. 419-431).

[21] Sadat, H., & Ghorbani, A. A. (2004). On the evaluation of adaptive web systems. Proceedings of the

Workshop on Web-Based Support Systems (pp. 127-136).

[22] Boudaa, B., Camp, O., Hammoudi, S., & Chikh, M. A. (2012). Model-driven development of context-aware

services: Issues, techniques and review. Proceedings of the International IEEE Conference on

Information Technology and e-Services (pp. 1-8).

[23] Hussein, M., Han, J., & Colman, A. (2011). An approach to model-based development of context-aware

108 Volume 11, Number 1, January 2016

Journal of Software

http://www.pst.ifi.lmu.de/veroeffentlichungen/uwe.pdf
http://www.pst.ifi.lmu.de/veroeffentlichungen/uwe.pdf
http://www.springer.com/computer/hci/book/978-1-84628-922-4
http://www.springer.com/computer/hci/book/978-1-84628-922-4
http://www.pst.informatik.uni-muenchen.de/personen/kochn/PhDThesisNoraKoch.pdf
http://www.pst.ifi.lmu.de/veroeffentlichungen/baumeister-et-al:icwe:05.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5440851&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5440851&tag=1

adaptive systems. Proceedings of the IEEE Computer Software and Applications Conference (pp.

205-214).

[24] Taylor, M. J., McWilliam, J., Forsyth, H., & Wade, S. (2002). Methodologies and website development: A

survey of practice. Information and Software Technology, 44(6), 381-391.

[25] McDonald, A., & Welland, R. (2004). Evaluation of commercial web engineering processes. Proceedings

of the International Conference on Web Engineering (pp. 167-170).

Mona Fadavi earned her BSc in computer engineering (software) from Khajeh Nasir

Toosi University of Technology, Iran, in 2013. She is now a MSc student of computer

engineering (software) at Sharif University of Technology. Her research project focuses

on designing a model-driven approach for developing adaptive web systems.

Raman Ramsin earned his PhD in computer science from the University of York, UK, in

2006. He is an assistant professor at the Department of Computer Engineering, Sharif

University of Technology. Dr. Ramsin is a professional member of ACM and IEEE, and

his research focuses on object-oriented software engineering, situational method

engineering, software patterns, and pattern-oriented development.

Author’s formal
photo

Author’s formal
photo

109 Volume 11, Number 1, January 2016

Journal of Software

