
Methodology Support for the Model Driven Architecture

Fatemeh Chitforoush, Maryam Yazdandoost, Raman Ramsin
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

[chitforoush,yazdandoost]@ce.sharif.edu, ramsin@sharif.edu

Abstract

Model-driven approaches to software engineering
have expanded their influence in recent years, with Object
Management Group's Model-Driven Architecture (MDA)
being the major force behind this boost. However, despite
its merits, MDA remains insufficient for software system
development, in the sense that it does not provide a
concrete and comprehensive process for governing
software development activities. There is therefore a
strongly felt need for new model-driven software
development methodologies. In this paper we review a
number of existing model-driven methodologies, and
propose a general framework for Model-Driven
Development (MDD) based on MDA. The framework can
be used for assessing and comparing methodologies,
engineering new methodologies, and adapting existing
ones so that they meet the special requirements of the
model-driven approach. We have used the framework
herein to show how agile methodologies fare in this
model-driven development context.

1. Introduction

New technologies and platforms are emerging in
software development on a continuous basis, resulting in
a higher degree of effort needed for making use of the
new capabilities that they offer, as well as satisfying the
constraints that they impose. This situation has resulted in
various problems as to portability, integration and
interoperability. OMG's Model-Driven Architecture
(MDA) initiative [15] aims at a global approach to
software development that addresses these problems. In
this approach, the bulk of the development effort will be
dedicated to modeling the business concerns through
elaborating a specification for the system which abstracts
away from technical details, resulting in a so-called
Platform-Independent Model (PIM). The transformation
of a PIM into a Platform-Specific Model (PSM) is then
achieved through introducing into the PIM the technical
considerations depending on the chosen platform.

As a matter of necessity, MDA has had to remain
general and abstract. As a consequence, MDA does not

prescribe any specific development process for enacting
model transformations in the context of a software
development effort; that is, MDA offers no guidance as to
the process (phases, activities and roles) to be used.
Furthermore, MDA technologies and standards are not
explicitly related to any activities within existing software
development processes, since these technologies are being
developed to be generally applicable in combination with
all development processes. Since MDA does not prescribe
a specific development methodology, each MDA-based
development project has to define its own process, or
select a process from the extremely sparse set of MDA-
based methodologies available.

In this paper, we review a number of existing
methodologies for MDA-based development of systems.
Some of these methodologies incorporate precise
processes, some just introduce an approach for system
development loosely based on MDA concepts of
modeling, while others strictly adhere and make extensive
use of MDA standards. Based on this review, an MDA-
based software development methodology framework is
proposed, which can be used
a. as a yardstick for assessing and comparing

methodologies,
b. as a generic MDA-based development process, based

on which new methodologies can be engineered, and
c. as a template, into which existing methodologies can

be fused, and thereby acquire MDA-based model-
driven capabilities.
We have used the framework to show how agile

methodologies fare in this model-driven development
context. Agile methodologies [23] have been chosen for
this purpose because of their widespread use, and also to
challenge the common perception that agile
methodologies cannot contend well in this context
because of their inherent model-phobic nature.

This paper is organized as follows: Section 2 provides
an overview of the Model Driven Architecture. Section 3
contains a brief survey of five prominent MDA-based
methodologies. In section 4 we present the proposed
MDA-based methodology framework, and show how an
existing (agile) methodology can be augmented and
adapted into an MDA-based methodology through fusion

14th Asia-Pacific Software Engineering Conference

1530-1362/07 $25.00 © 2007 IEEE
DOI 10.1109/ASPEC.2007.58

454

into the proposed framework. A criteria-based analysis of
the methodologies surveyed and our proposed framework
has been presented in section 5. Conclusions are reported
in section 6, along with opportunities for furthering this
work.

2. Model Driven Architecture (MDA)

The MDA approach proposed by OMG [15] views
system development as a sequence of model
transformations and refinements. Through these
sequential steps, abstract models are gradually
transformed into more concrete ones by adding technical
details until an executable system is ultimately produced.
OMG has put forward the following as the elements and
principles governing MDA:

Model: Models are an important means for specifying
large-scale solutions, and must be expressed by means
of well-defined notations. There are four types of
models introduced in MDA, namely: 1) the
Computational Independent Model (CIM), which as
the problem domain (business) model, is independent
from the use of the system as a computer system, and
excludes any implementation details; 2) the Platform
Independent Model (PIM) which describes the system
from various perspectives regardless of its operating
platform; 3) the Platform Specific Model (PSM) which
provides a platform-dependent description of the same
system specified by the PIM, and is constructed by
transforming the PIM according to a Platform Model
through adding details which are dependent on the
operating platform; and 4) the Implementation Specific
Model (ISM), which specifies all implementation
details.
Model Transformation: System development is
implemented through a series of sequential
transformations between models of various predefined
types.
Meta-model: Models are themselves expressed by
meta-models, which enable meaningful integration and
transformation between models, specifically via tools.
MDA is based on a four layer meta-modeling
architecture: 1) Meta-meta-modeling layer, including
the Meta-Object Facility (MOF) [18], which defines an
abstract language for specifying meta-models, 2) Meta-
model layer which consists of meta-models defined in
MOF (e.g. UML meta-model), 3) Model layer
including models of the real world, and 4) Real world
layer which includes things from the real world.
In the MDA development approach, modeling and

model transformations are the main activities during
system development. Models and model transformation
specifications can be reused extensively across different
solutions, organizations, and domains, as well as any
specific platform. MDA tools may support automatic or

semi-automatic transformations from model to model, and
ultimately to the executable code.

OMG also provides a number of supporting standards
for MDA including the Unified Modeling Language
(UML) [19], the Meta-Object Facility (MOF) [18] as a
modeling language for model definition, and the XML
Metadata Interchange (XMI) [20] which facilitates
automatic generation of an XML-based document for a
model according to its MOF definition.

3. MDA-Based Methodologies

The following sections contain a brief overview of a
number of prominent MDA-based software development
methodologies.

3.1. MODA-TEL

MODA-TEL is proposed as a software development
process based on MDA principles and concepts [8,9,16].
It is specialized for distributed applications, but is general
enough to be applicable to other domains and situations as
well. The MODA-TEL process is defined in accordance
with OMG's Software Process Engineering Meta-model
(SPEM) [17].

MODA-TEL separates preparation activities from
execution activities in distinct phases. The following
phases are identified by this methodology:
1. Project Management: During this phase the software

development process is selected and described in terms
of its activities; identified activities are then allocated
to roles, and procedures for quality assurance are put
into place.

2. Preliminary Preparation: The objective of this phase
is to identify modeling and transformation needs. The
final execution platform of the system is also identified
and expressed as an abstract platform. The notion of
the abstract platform is discussed in detail in [1]. The
appropriate modeling language for the project and its
specific needs are also identified. Required
transformations between models are specified based on
the selected modeling languages. The traceability
support strategy is implemented via traces, which are
used to track requirements and changes.

3. Detailed Preparation: Models and model
transformations are specified in this phase. The
specifications of modeling languages and model
transformations are prepared according to the needs
identified in the previous phase.

4. Infrastructure Setup: In this phase, tools are selected
for supporting MDA-based development activities. For
example, tools for automatic/semi-automatic code
generation may be selected. The metadata management
facility is also defined in this phase.

455

5. Project Execution: This phase spans the main
software development activities. Activities of this
phase depend on the software development process
selected in the project management phase. The
methodology proposed in [8, 9, 16] specifies seven
activities in this phase: requirements analysis,
modeling, verification and validation, transformation,
coding and testing, integration and deployment, and
operation and maintenance.
Phases of this methodology are performed in an

iterative-incremental fashion.

3.2. MASTER

MASTER is a European IST project during which a
MDA-based methodology with the same name has been
proposed [14]. The process consists of eight main phases,
each of which includes various activities. The phases are:

Capture User Requirements: The objective of this
phase is to elicit and document customer requirements.
Products which are produced during this phase are: an
Application Model in which customer requirements are
formalized, an initial Application PIM, and an initial
functional requirements specification.
PIM Context Definition: The system goals as well as
the scope of the system are defined in this phase. Other
activities of this phase are: identifying the external
actors of the system, specifying the main services
offered by the system, and identifying the business
objects exchanged between actors and the system.
PIM Requirements Specification: The main activity
in this phase is refining the PIM Context produced in
previous phase, as well as specifying use cases, and
identifying non-functional requirements as well as
modeling their relationship with functional
requirements.
PIM Analysis: In this phase, system functionalities
and QoS aspects are described with a view to the
interior of the system. Traceability to the Requirements
PIM is also verified in this phase.
Design: In this phase, a platform-independent design is
first performed for all the requirements. The design is
then refined in order to denote the platform-specific
solution.
Coding and Integration: According to the ideal MDA
approach, the code is to be produced automatically
from the PSM through transformation engines.
Testing: Test cases are to be generated automatically
from the test model (which is a refinement of the PIM)
through transformation engines.
Deployment: In this phase, the developed system is
delivered to the customer.

3.3. MIDAS

MIDAS is a model driven methodology framework for
agile development of Web Information Systems (WIS) [4,
5]. UML is used for representing the different PIMs and
PSMs which are proposed in this framework. It also
defines mapping rules for transforming the models.
Instead of introducing a specific process, MIDAS focuses
on three dimensions of modeling a WIS: 1) levels, which
refer to the hypertext content and the presentation levels,
2) phases, which refer to the phases of the software
lifecycle, and 3) aspects, which refer to the structural and
behavioral modeling viewpoints. Platform Independent
Models, Platform Specific Models, and Computation
Independent Models as well as the relevant mapping rules
are defined according to these dimensions.

3.4. C3

C3 is a software development process which is
embedded into a concurrent, collaborative and
component-based methodology enriched with MDD
techniques [12]. The main feature of the C3 architecture is
its domain repository which contains domain-specific
metadata and components. Its process consists of two
main phases:

Standardization Phase: In this phase, domain
software assets which are archived in a repository are
accessed and downloaded onto the project repository,
which is specific to the project in hand. Component
models and domain-specific model elements can also
be uploaded for future reuse.
Software Development Phase: This phase includes
three main steps which are common in most
methodologies, namely: 1) Model Design, in which
component developers select a business application
architecture from the project repository to work on.
Consistency checks against the architecture are also
performed for each and every component, 2) Code
Generation, which is performed after modeling the
business application with UML or XMI on a platform-
independent level. Code generation tools transform the
models into platform-specific software components,
and 3) Application Deployment, in which components
are deployed into the user environment based on the
architectural framework designed.

3.5. ODAC

ODAC is a methodology based on the Reference
Model of Open Distributed Processing (RM-ODP) [13]
with the potential to be a MDA-oriented methodology
[10]. The ODAC process consists of three main phases: 1)
Analysis, in which the Behavioral Specification – a PIM

456

describing the system according to its objective and its
role in the business – is produced; 2) Design, in which the
Engineering Specification – a PDM that is the description
of the execution environment – is produced; and 3)
Implementation, in which the Operational Specification –
a PSM that is the result of the transformation of the PIM
as configured according to the PDM – is produced.

ODAC prescribes steps for each phase as well as a
number of guidelines for producing the relevant artifacts.

4. Proposed Methodology Framework

Since MDA has its roots in object-orientation and
component-based development, it can be merged with
many existing software development processes. It has
been conceived to allow existing development processes
in organizations and projects to be reused. MDA's
general, abstract and flexible nature facilitates integration
with existing methodologies. Based on the insight gained
through our survey of MDA-based methodologies, we
propose a methodology framework that can be used for
augmenting established software development processes
with MDA concepts, principles and technologies. The
framework can also be used for engineering new
methodologies and comparing existing ones.

The proposed methodology framework is divided into
four main phases, each of which consists of a number of
stages and their constituent activities. The following
sections contain descriptions of these phases, as well as
the project-wide umbrella activities complementing them.

4.1. Project Initiation Phase

The project’s objectives are identified, and its size and
scope are estimated. All constraints and risks involved in
the project are explored and important people,
organizations, and external systems which interact with
the system are identified. Team members are also
assigned at this stage; typical roles involved include
domain experts, MDA experts, methodology engineers
and architects.

4.2. Software Development Process Analysis and
Selection Phase

The requirements of the software development process
needed for the specific project and domain at hand will be
analyzed in this phase. The requirements specified are
used as a basis for selecting or engineering a software
development process (SDP) to be used in the SDP
Execution phase. If an existing SDP is selected, it
typically requires adaptation to satisfy the requirements;
all the necessary modifications are applied in this phase
and the next, and will result in the production of a precise
description for the process in terms of the activities that

should be followed. Producers typically involved in this
phase are methodology experts, MDA experts and domain
experts.

4.3. MDA Support Phase

This phase can be performed in parallel with the
previous phase. This is where decisions about model-
driven development of the system and its high-level
architecture are made. Roles for performing these
activities include domain experts, system architects, and
MDA experts. Activities performed in this phase are as
follows:

Platform Identification and Specification: The target
platform upon which the system will be implemented
and ultimately deployed is identified by system
architects. The notion of platform here includes all the
hardware, software and technological aspects of the
target system environment. After the identification of
the target platform – which is a major architectural
decision made by system architects – it should be
specified concretely as a Platform Model (PM). The
PM developed here will be used when applying model
transformations (PIM to PSM). Architects may also
decide to reuse a platform model from a previous
project, or from a repository of platform models.
Modeling Language Identification and
Specification: Different perspectives of the system to
be modeled are identified, and a set of models is
selected accordingly. This activity typically involves
domain experts and MDA experts. As a typical
example, experts may decide to model the system’s
functionality, behavior and structure in use case
models, statecharts, and class diagrams respectively. In
accordance with these models, a modeling language
that is expressive enough for the domain and the
project situation will be selected. This language will be
used to model the PIMs and PSMs of the different
perspectives of the system. The experts may decide to
modify or extend the metamodel of the selected
modeling language in accordance with the specific
needs of the project.
Transformations Identification and Specification:
Possible or necessary transformations between models
are identified; the main focus is on transformations
from PIMs to PSMs, but if necessary, transformations
between different PIMs or different PSMs are also
included. Transformations have to take into account
the particulars of the modeling languages selected in
the previous activity. Transformation identification can
in turn influence the modeling language identification
and specification activity. After deciding on what
transformations are needed, they must be specified in
detail, with transformation rules and annotations
properly described. Transformation specifications may

457

also be selected from a standard repository, or defined
based on previous experience on similar domains or
project situations; UML-to-J2EE transformations, for
instance, have become pretty standard, and can be used
to great effect where relevant.
Tool Selection: Tools play an important role in MDA-
based development. A number of activities have to be
handled by tools, such as the specification of modeling
languages and models themselves, model
transformation and model-based code generation, and
the definition of transformation rules and annotations.
In this activity, the necessary tools will be selected to
be used in the next phase.
In model-driven development, modeling languages,

platform models and transformation specifications are all
elements of reuse. Therefore, activities of this phase –
such as selecting a platform or deciding on the usage of
modeling languages and transformation specifications –
are key factors in enabling effective reuse in the next
phase.

4.4. SDP Execution Phase

This is the main phase of the project, where all the
final products of the project, including the software
system, are produced. The specific activities of this phase
depend on the methodology selected/engineered in the
Software Development Methodology Analysis and
Selection phase. As a result of the model-driven nature of
this framework, models are the major products of the
development process and are refined in iterative and
incremental cycles, from PIMs to code. Since models are
supposed to drive the whole execution phase, in case
failures, defects or other problems are discovered in any
of the activities, the process should facilitate the
resolution of the issue at the modeling level. All activities
in the SDP execution phase can generate feedback used
for refining and improving the development process, and
can thereby influence the results of previous phases. It is
also possible to send feedback to the MDA support phase;
in case any changes have to be made to the modeling
language or the PM.

This phase is where existing methodologies can be
fused into the framework, and thereby be enriched with
MDA-based process components. In order to examine
how agile methodologies fare in this context, we have
reviewed seven agile methodologies: namely DSDM [7],
Scrum [22], XP [2], ASD [11], dX [3], Crystal Clear [6],
and FDD [21]. In trying to integrate these methodologies
into our proposed framework, we have observed that agile
methodologies incorporating a modeling process fit well
in this framework. Crystal Clear, FDD, and ASD are
examples of agile methodologies that can be integrated
into this framework with some relatively minor
modifications to their processes. On the other hand,

methodologies that lack or ignore modeling activities
cannot be easily fitted into the framework in their original
forms; a possible solution is to first extend and enhance
such methodologies through applying complementary
methods that add modeling to agile methodologies; Agile
Modeling (AM) is a prominent example of such methods
[24].

As an example of how the integration can be done, we
have fused the ASD process into the SDP Execution
Phase of our proposed framework. Most of the
modifications on the process will be made to the iterative
development engine; i.e. the Component Development
stage of the ASD process is modified and made
compatible with the MDA approach. Consequently, all
activities in the modified stage are based on modeling and
model transformations. The resulting ASD process is as
described below:

SDP Execution Initiation: In this activity, all the team
members prescribed in ASD and not already selected
during the project initiation phase are recruited and
organized in teams. High-level requirements of the
system are identified, as well as an overall architecture.
Important technological decisions have already been
made in previous phases and the target platform has
been selected. At this stage, architectural details are
specified so that the actual development may begin.
The architecture thus elaborated is modeled as PIMs
along with the high level requirements. These PIMs
will be iteratively completed and refined in upcoming
development cycles.
Component Identification and Overall Planning:
Crucial product components are specified and assigned
to development cycles according to the risks involved
in their implementation, with consideration given to
their interdependencies. An initial development plan is
then prepared accordingly.
Iterative Development Cycles:
o Cycle Planning: In this activity, the development

plan will be revised and recalibrated according to
the experience gained in previous cycles. New
components may also be introduced and planned for
development in later cycles. Tasks of the current
cycle are also determined and assigned to team
members.

o Component Development: In this stage, the
component(s) assigned to the current cycle are
designed and implemented via gradual model
refinement. This stage contains the following
activities:

Modeling: The PIMs of the component to be
implemented are produced according to models
selected in previous stages. Platform-
independent models of the existing (legacy)
systems may also be developed herein by
applying reverse engineering.

458

Verification: This activity is mainly concerned
with performing correctness and consistency
checks on the models.
Model Transformation: Models produced for
the component at hand will be refined to an
equivalent PSM by means of the pre-specified
transformation specifications based on the PM.
This stage may influence the Modeling
Language Identification and Specification or
Transformations Identification and Specification
phases through modifying the PM or the
transformation rules. The resulting PSM is then
refined into code. Automatic/semi-automatic
code generation tools are used extensively.
Coding/Testing: The code which cannot or
should not be produced by code generators is
produced and added manually by the developers.
Testing is then performed on the produced
component.
Integration and Deployment: The produced
builds are fed into an integration process which
may also deploy the system into the user
environment.

o Process and Quality Review: In this activity,
group reviews of the components produced are held

where the problems confronted are discussed and
resolved. The process itself is also reviewed and
adjusted, possibly affecting the Software
Development Process Analysis and Selection phase.

Final Release: The final release of the software into
the user environment will be done in this activity. All
other support deliverables of the system, e.g.
documents and manuals, are also produced and
delivered to the customer.

4.5. Umbrella Activities

There is a need for a number of monitoring and
management activities to be applied in parallel with all
the above phases. These include project management,
quality control, risk management and training. The most
important activity in this category is reuse management,
which is one of the most important issues in model driven
development of software systems. Since MDA is based on
extensive reuse of models, modeling languages, and
model transformation specifications, the careful
management of reuse is critical to the success of MDA-
based projects.

Figure 1. Proposed Methodology Framework: ASD has been fused into the framework as an example

459

5. Criteria-Based Analysis

In order to gain a better understanding as to the merits
of the methodology framework proposed herein, we have
conducted a criteria-based analysis of the reviewed
methodologies and our proposed framework, the results of
which are summarized in Table 1.

The analysis has been made according to the following
criteria:

MDA Support: The extent to which MDA concepts
and practices are supported by the methodology; all the
methodologies reviewed herein claim to be MDA-
based, but they use different MDA concepts,
principles, and techniques. For example, C3 uses MDA
standards (UML and XMI) as well as model
transformation in its proposed process, but does not
incorporate model types, i.e. PIM, PSM, and PM.
Process Inclusion: Whether the methodology
incorporates a specific and concrete process or not;
many methodologies claiming to be MDA-based do
not prescribe a concrete process, claiming that MDA
satisfies their process needs.
Coverage of the Generic Lifecycle: The extent to
which a methodology covers the phases and activities
of the generic Software Development Life-Cycle
(SDLC).
Process Precision: Whether the process is detailed and
precise enough to be followed effectively and
efficiently by the people involved in the development;
some MDA-based methodologies do incorporate a
process, but it is not precise enough. For example,
MIDAS and MASTER do not propose exact activities
in their proposed processes.
Application Scope: The scope of projects and domains
to which the methodology is applicable; some
proposed methodologies are not general-purpose
enough to be applicable to all projects. MIDAS, for

instance, is targeted at web information systems, while
MODA-TEL is mainly focused on distributed
applications.

6. Conclusions and Future Work

While much has been invested in MDA, methodology
support for model-driven development has been largely
overlooked. There are very few MDA-based software
development methodologies available, and those with
precise processes are even fewer. In this paper, we have
surveyed a number of prominent MDA-based
methodologies with special attention to their processes.
We have also proposed a MDA-based methodology
framework to be used for engineering MDA-based
software development methodologies. Existing
methodologies can be fused into this framework, and
thereby augmented and adapted into MDA-based
methodologies. This will allow organizations to continue
using their current methodologies, augmenting them with
MDA-based capabilities when necessary.

This work can be extended through further refinement
and elaboration of the framework, focusing on the stages
and their constituent activities, as well as the roles
involved. Further investigation can also be directed at
exploring the types of methodologies that lend themselves
better to fusion into the proposed framework. It would
also be worthwhile to devise concrete procedures for
engineering and/or adapting software development
methodologies based on the proposed framework.

7. Acknowledgments

We wish to thank the Research Vice-Presidency of
Sharif University of Technology for sponsoring this
research.

Table 1. Analysis Results

MDA Support Process
Inclusion

Coverage of the
Generic Lifecycle

Process
Precision

Application Scope

MODA-TEL Full Yes Yes High Yes

MASTER Full Yes Yes Low Yes

MIDAS Full Partial No Very low No (Web Information Systems)

C3 Partial (Model
Transformation, MDA
standards)

Partial Partial Low No (Business application software
and domain-specific software
assets)

ODAC Full Yes Partial Low Yes

Our Proposed
Framework

Full Yes Yes High Yes

460

8. References

[1] J.P.A. Almeida, Model Driven Design of Distributed
Applications, CTIT Ph.D.-Thesis Series, No. 06-85, Telematica
Instituut Fundamental Research Series, No. 018, 2006.
[2] K. Beck and C. Andres, Extreme Programming
Explained: Embrace Change, 2nd ed. Addison-Wesley,
2004.
[3] G. Booch, R.C. Martin, and J. Newkirk, Object Oriented
Analysis and Design with Applications, 2nd ed. (Unpublished).
Addison Wesley, 1998. Available on the Web at:
http://www.objectmentor.com/resources/articles/RUPvsXP.pdf.
[4] P. Cáceres, E. Marcos, and B. Vela, “A MDA-Based
Approach for Web Information System Development”,
Workshop in Software Model Engineering (WiSME), 2003.
[5] P. Cáceres, E. Marcos, and V. Castro, “Integrating Agile and
Model-Driven Practices in a Methodological Framework for the
Web Information Systems Development”, International
Conference on Enterprise Information Systems (ICEIS), 2004,
523-526.
[6] A. Cockburn, Crystal Clear: A Human-Powered
Methodology for Small Teams, Addison-Wesley, 2004.
[7] DSDM Consortium, DSDM: Business Focused
Development, 2ndEd., J. Stapleton (Editor), Addison-Wesley,
2003.
[8] A. Gavras, M. Belaunde, L. Ferreira Pires, and J.P.A.
Almeida, “Towards an MDA-based development methodology
for distributed applications”, In Proceedings of the 1st European
Workshop on Model-Driven Architecture with Emphasis on
Industrial Applications (MDAIA), University of Twente,
Enschede, The Netherlands, March 2004, pp. 43–51.
[9] A. Gavras, M. Belaunde, L. Ferreira Pires, and J.P.A.
Almeida, "Towards an MDA-Based Development
Methodology", EWSA, 2004.
[10] M.P. Gervais, "Towards an MDA-Oriented Methodology",
Proceedings of the 26th Annual International Computer
Software and Applications Conference (COMPSAC'02), IEEE
(Ed), Oxford, England, August 2002, pp. 265-270.
[11] J. Highsmith, Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems, Dorset
House, 2000.
[12] T. Hildenbrand, and A. Korthaus, "A Model-Driven
Approach to Business Software Engineering", Proceedings of
the 8th World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI), Volume IV Information Systems,
Technologies and Applications: I, IIIS, Orlando, Florida, USA,
July 18-21, 2004.
[13] ISO, IS 10746-x, ODP Reference Model Part x, 1995.
[14] X. Larrucea, A.B.G. Diez, and J.X. Mansell, Practical
Model Driven Development Process, Technical Report, NUMB
17, University of Kent, 2004, pp. 99-108.
[15] J. Miller and J. Mukerji, MDA Guide Version 1.0.1, OMG
Document, June 2003, see: http://www.omg.org/docs/omg/03-
06-01.pdf.
[16] MODA-TEL project. Deliverable D3.2, Guidelines for the
application of MDA and the technologies covered by it, 2003.
see: http://www.modatel.org/public/deliverables/D3.2.htm.
[17] Object Management Group, Software Process Engineering
Metamodel Version 1.1 (SPEM), see: http://www.omg.org/cgi-
bin/doc?formal/2005-01-06.

[18] Object Management Group, Meta Object Facility Version
2.0, see: http://www.omg.org/cgi-bin/doc?formal/2006-01-01.
[19] Object Management Group, Unified Modeling Language
Specification Version 2.1.1, see: http://www.omg.org/cgi-
bin/doc?formal/07-02-05.
[20] Object Management Group, XML Metadata Interchange
Specification Version 2.1, see: http://www.omg.org/cgi-
bin/doc?formal/2005-09-01.
[21] S.R. Palmer, and J.M. Felsing, A Practical Guide to
Feature-Driven Development, Prentice-Hall, 2002.
[22] K. Schwaber, M. Beedle, Agile Software Development with
Scrum, Prentice-Hall, 2001.
[23] J. Highsmith, Agile Software Development Ecosystems.
Addison-Wesley, 2002.
[24] S. W. Ambler, Agile Modeling: Effective practices for
eXtreme Programming and the Unified Process, Wiley, 2002.

461

