New Trendys in Software Methodilogies, Tools and Technignes 73
H. Fujita and B, Revetria (Eds |

10§ Press, 2002

& 20002 The authars gnd 08 Press, Al rights reserved.

doi: 10323 307R-1-6]499- 1 25-0-7

Generic Process Framework for
Developing High-Integrity Software

Binazir BIGLARI' and Raman RAMSIN
Department of Computer Engineering, Sharif University of Technalogy, Tehran, Iran

Abstract. In high-integrity systems, certain quality requirements have pained
utmest significance in such a way that failing to satisfy them at a panticular level
may result in the loss of the entire system, endangerment of human life, peril to the
organization’s existence, or serious damage to the environment. High-integrity
compuler systems should incorporate top-quality sofiware in order to adequately
adidress their stringent quality requirements. The methodologies wsed Tor
developing high-integrity seftware must possess special charncteristics in order to
ensure successful realization of the requirements.

Software Process pattemns represent empineally proven methods of software
development that can be cxplotted as reusable chunks to produce bespoke
methodologics, tailored w fit specific project situations and requirements, The
authors provide a sel of process patterns extracted from methodologies and
standards which are specifically intended for developing high-integrity systems,
The methodologies and standards which were used as resources for extracting
these patterns were selected based on their history of successful application. The
patterns have been organized into a penerie High Integrity Sofiware Development
IMrocess (HISDP) this process lramework can be instantiated by method engineers
o produce tatlored-to-fit methodologies for developing high-integrity sofiware,

Kevwords. high-integrity system, process pattern, software development
methodology, process framework

Introduction

Software is used for governing a wide variety of systems, including medical equipment,
air traffic control systems, and nuclear plants; the failure of these systems may have
different outcomes, thus indicating their level of criticality. High-integrity computer
systems are critical systems in which addressing certain quality requirements is of
utmost importance, as their failure may have dire consequences. Therefore, the
development of high-integrity systems requires the application of stringent quality-
assurance measures. Software is an integral part of high-integrity computer systems,
and is closely linked to other parts; it should therefore be adaptable, so that it maintains
its integrity at a desirable level when other parts have to be changed due 10
deterioration or the emergence of new technologies. The identification of system and
software requirements is an important factor in quality assurance; other factors, such as
the need for new technologies, the importance of the system’s mission, and project size,
can also affect the required level of quality assurance, albeit to a lesser degree [1].

: Corresponding Author: Binaer Biglan, Department ol Computer Engineering, Sharil Universily of
Technology, Aradi Ave., Tehran, Iran: E-mail: biglariia ce.sharif edu.

T4 B, Biglari and R, Ramsin / Generic Process Framework for Developing High-Integreity Software

High integrity systems are divided into three main categories, according to the
classification proposed in [2]: safety-critical, mission-critical, and business-critical. The
highest level of criticality is attributed 1o cases where human life is at stake, thus
requiring the strictest of standards and activities. Other levels of severity are taken into
account depending on the degree of seriousness of the errors made when implementing
system functions, and the consequences of breakdown in terms of the damage inflicted.

There are numerous methodologies for developing high-integnity software, and
they have been in use for a long time. Because of the importance of nonfunctional
requirements in these systems. the dependency of software on non-software
components, and the severe consequences of software failures, the software
development processes used for constructing these systems must possess certain
characteristics such as reliability, traceability to requirements, consistency, and
production of special intermediate products. In most cases, compliance with specific
standards (military standards such as MIL-STD-498, or domain-specific standards such
as DO 278B) is required [1, 3].

Due to the diversity of the methods involved, there exists no general methodology
for developing high-integrity systems. However, there are frameworks for this purpose,
such as those presented in [4], which deal with the essentials and can be used as
standards. Although the development of these systems is possible with conventional
methodologies, it is highly preferable to use specialized software development
processes which ensure that the final product is of acceptable quality.

Successful sofutions to recurring problems i a given confexi have long been
captured as “patterns”. A software pattern is an abstraction of a proven solution for a
common problem in the context of software development. Sofiware process patterns
have emerged through the abstraction of recurring software development process
solutions. They were first introduced by Coplien [5], who focused on organizational
and managerial processes. The notion was later refined by Ambler, who provided a
more precise definition aiming at software development processes [6]. A process
pattern can be employed in all aspects of software development: From a high-level
viewpoint which accentuates the general approach to software development and the
lifecycle employed, to a specific view of a particular part of the software development
process. In addition, different levels of granularity have been defined for process
patterns; according to Ambler, process patterns are of three types, in descending order
of granularity: phase, stage, and task [6, 7]. Tasks are the key components, whereas
phases and stages are important for organizing and using the tasks effectively. Phase
process patterns refer to the high-level activities in a software development project,
usually exccuted scquentially. Stage process patterns include the tasks related to a
particular stage of the software development process, and can in turn consist of finer-
grained stages. Stages are usually performed iteratively. Task process patterns refer 1o
the details of the steps that should be performed in a fine-grained stage.

Process patterns can constitute software development methodologies, especially in
the context of Situational Method Engineering (SME), where a methodology is
produced from scratch in accordance with situational requirements, or a preexisting
methodology is extended by adding process chunks based on past defects and new
requirements [8, 9]. Process patterns can thus be used as method chunks. An example is
the OPEN Process Framework (OPF), which is based on a library of reusable
components, many of which are process patterns [10, 11]. Two other examples are the
sets of process patterns suggested in [12] and [13] for Web engincering and
component-based software development, respectively.

B Bighari and K. Bamsin 7/ Generic Process Framework for Developing High-Integrity Software 75

In this paper, the authors propose a set of process patterns for developing high-
integrity software systems, extracted from the methodologies and standards related 10
this domain,. The patterns have been organized into a generic process framework for
producing high-integrity software systems (called herein as: High-Integrity Software
Development Process—HISDP). This framework and its constituent patterns can be
employed to produce and evaluate processes for developing high-integrity software.

The rest of this paper is organized as follows: Section 1 provides a brief review of
ten methodologies and two standards which have been used as sources for extracting
process patterns; Section 2 contains the general framework proposed (HISDP); the
proposed process patterns are briefly described in Section 3; Section 4 deals with the
validation of the patterns by showing how they are mapped to the source processes; and
Section 5 contains the conclusions as well as recommendations for future research.

1. Pattern Sources: High-integrity Software Development Methodologies and
Standards

From the multitude of methodologies and standards that were studied, ten
methodologies and two standards (NIST and MIL-STD-498) were used for extracting
the relevant process patterns. The selected methodologies include: ASPECS, Extended
MaSE, HOOD, PBSE, XFun, AOM, MASTER, BUCS, AUP, and Agile+. These
methodologies were selecied from among those studied based on the following criteria:

e Availability of adequate resources on the specifications of the methodology;

¢ Existence of reports on the practical usage of the methodology;

e Support for different paradigms, including agile, agent-oriented, object-

oriented, aspect-oriented, and model-driven development;

e Adequate coverage of the generic software development lifecyele; and

« Relevance to the high-integrity domain and adequate support for its three

criticality levels (safety, mission, and business).

A briel overview of these methodologies and standards will be provided
throughout the rest of this section.

ASPECS is an agent-oriented methodology which relies on holonic organizational
metamodels and which is based on the PASSI methodology [14]. All stages are carried
out seamlessly and smoothly by focusing on agents. The process includes four phases:
system requirements analysis, agent society design, implementation, and deployment.

The onginal version of MaSE was a gencral purpose methodology for developing
homogenous multiagent systems [15]. In order to adapt this methodology to embedded
and real-time contexts, an extended version was provided which supports requirements
engineering, system environment analysis, and time-dimensional modeling of the
agents’ behavior [16]. This method covers three phases: requirements engineecring,
analysis, and design.

The HOOD methodology was developed by the European Space Agency to
support architectural and detailed design of high-integrity, real-time systems [8.3]. It is
an iterative top-down design method [17], suitable for developing large systems with a
long lifespan in which reusability, reliability, and maintainability are essential [18].

The PBSE methodology aims to help develop embedded systems, or their building
blocks, by using formal methods [19]. PBSE was employed in project ASSERT, also
conducted by the European Space Agency [20]. By giving precedence to requirements

T B, Biglari and R, Ramsin / Generic Process Framework for Developing High-Integreity Software

elicitation, PBSE provides a formal and appropriate description of the problem which
can be used as a reliable basis for quality assurance,

Due to the need for higher levels of accuracy and reliability on the one hand, and
the mutability of user requirements on the other, formal variants of Agile development
methodologies have emerged. XFun is a prominent example: XFun is the result of
adapting UP and combining it with the X-Machine formal method [21].

Based on aspect-oriented modeling (AOM) technigques, Georg et al. have proposed
an aspect-oriented design method for developing high-integrity applications with strict
security requirements [22].

The MASTER methodology 15 a model-driven approach developed as part of a
European mformation project of the same name. This methodology includes a process
and a set of systems engineering methods to adapt the process to customer
requirements [23, 24]. The process consists of eight phases, spanning requirements
capture to deployment, and provides prescribed model transformation methods.

BUCS was a rescarch project initiated by the Norwegian Rescarch Council and
Norwegian University of Science and Technology in order to study the methods of
component-based development and also the development, support, and maintenance of
business-critical software. The important characteristics and cases specific to this field
were extracted in order to extend existing methodologies to make them suitable for
developing business-critical software [25]. A special variant of RUP was produced for
this purpose which incorporates specialized hazard analysis methods [26].

The AUP methodology was introduced as a simplified agile version of RUP. AUP
has been successfully used for developing high-integrity software, such as banking
systems [27] and online reservation systems [28].

Agle+ 1s an agile methodology inspired by XP which has been used by various
companies for developing large high-integrity systems [29, 30]. The Agile+ process
provides support for dynamic and variable requirements [31].

The American National Institute of Standards and Technology (NIST) has
provided certain quality assurance guidelines for the safety systems used in nuclear
plants [1]. It has also proposed a framework for developing and assuring the quality of
critical software [4], in which the requirements and characteristics of a high-integrity
system are defined and guidelines are provided for developers. testers, and researchers.

The military standard MIL-STD-498 is an American military standard which
outlines the prerequisites to software development and documentation for high-
integrity systems. This standard provides general and detailed requirements for the
processes utilized and the documents produced [32].

2. Proposed Process Framework for High Integrity Software Development

On the basis of the processes and standards studied, a generic process framework has
been proposed for developing high-integrity software, a detailed description of which
will be provided in this section. This framework, which we have chosen to call High-
Integrity Software Development Process (HISDP), provides a high-level organization
for finer-grained process patterns and highlights the position of soffware development
in the overall systems development process (as shown in Figure 1). HISDP helps
method engineers choose from among the process patterns and combine them based on
the project requirements. HISDP consists of seven phase process patterns: initiation,
requirements, design, coding and integration, installation, maintenance. and death. The

B Biglari anid R, Ramsin ¢ Generic Process Framework for Developing Higle-Integrity Software 77

seven phases are performed sequemtially, but their constituent stages are typically
performed iteratively.

The process begins with the Initiation phase which provides the necessary
infrastructure for developing software successfully by performing feasibility study,
determining preliminary estimates of time and cost, and producing an overall plan. In
the Requirements phase, software requirements are identified and documented with
special attention to traceability, In the Design phase, the design of the software is
produced at different levels of detail on the basis of the requirements. The Coding and
Integration phase incorporates development activities such as coding, testing. and
integrating sotiware increments. In the Installation phase, the soltware produced is
deployed in the user environment and integrated with non-software components of the
system; software tuning is typically necessary at this stage. In the Maintenance phase,
previous phases are iterated to make corrections, or 1o address the changes occurred in
user requirements or in non-software components. In the Death phase, reusable items
are extracted and the lessons leamed from the project are documented for use in future
projects.

Management activities are extremely important in the development of high-
integrity systems; hence, the umbrella activities emphasized in methodologies and
standards have been explicitly considered in HISDP. Vital management activitics are
tvpically captured in stage- or task process patterns of the tramework: nevertheless. the
arrow below Figure 1 lists them individually.

3. Proposed HISDP Process Patterns

This section provides detailed descriptions for HISDP's constituent process patterns (as
shown in Figure 2). Only the stages that are necessary in high-integrity software
development (shown as dark boxes in Figure 2) have been deseribed in detail, each in a
separate subsection.

System System Sysiem Syatem
Requirements Design Integration Maintenance

Q-

Sﬂﬁwnrr Develapment Life Cyele

Infliation [Feguireimens DL"\I]_.I!I][E""‘““'—"'?“d I Installation][hlaintenance I Treath]
Ik gration

MMMMM

Umbrella Activities: Verilication & Validation, Safery Analysis, Conligurstion Managemen,
Cuaality Assurance, Project Management, Risk & Hazurd Mansge et

Lepend Soflware D Systens D Umhrella
Developnwent Phase Developraent Miase Avtivitles

Figure 1. High-Intceriy Software Developmenti Process (HISDPY and = position in the svsicims
development process

T8 B, Biglari and R, Ramsin £ Generic Process Framework for Developing High-Integeity Software

Iltiation A

I Planning Organizing I

I Haznrd Analvsis Esiablish Infrastrnetin i

Y

Reqguirements

I Identify Requirements l |"l-’h-|a'ddll: Reguirciments I

I Beview ' Revise |

ﬂ <
Design

Aralysis Review

I Dclmi::IDr:mL,n Mhﬂcchlmlbmp |

["-’mﬂ-' & Valudiate and Revise D-:mnl

Coding an tegration

I Implementation Integration and Test I

l Venfy & Volwdote Code Hazard Analysis and Beview

4

Deploy Tisst i the Lorge I

I Amalyes and Recond Test Resufia I

Installation

BONRPITA X UONENIUS A JUAUASIUT AL LONTINE Lo)
HsAleny A faourmssy Anend usmadeuepy pEEnH 3 sy uswaieungy 10alogg

l

[Interfzce. Hazand Analysis Hemove Defects I

Maintenanee

Supporl II Hazard Analysis I

I Remove Defects ond Enlance I

Death
I Asseasmen iq—.-l Terminale Praject

T
Legend I I I I I I

Stage Critacal Stage Phase Umbrella Activitics

Figure 2, HISDP and itz constituent Staoe process pattems
3.1, Establish Infrastructure (Initiation Phase)

In this stage, individuals are recruited according to organizational positions, and project
teams are formed (Figure 3). Decisions on employment, including staffing plans and
training policies, are documented. Feasibility study is also performed, along with
analyzing and providing different approaches to guiding the project, predicting project
scope and possible undesirable incidents, ascertaining assumptions, making plans, and
foreseeing the results of possible solutions for cach action. A software development

. Biglori and R, Ramsin S Generic Process Framework for Developing High-Integrity Software 9

process is selected and the relevant standards are determined. Process selection
includes the selection of methods, tools, and techniques for developing and testing the
output products, as well as the provision of project management support. Decisions on
how to reuse preexisting infrastructures are also made in this stage.

Inpui;
Goals I Ducusmestation Feasibility Study |
Orinizational Simectune
Strtlepies ! Employiment Process Sclection I
Cutpat:
Lagiied Feasibility Documents
Selected Process
el | T
Reguired Standards
Critical Filled Organlzational Positions
Task

Figure 3. Establish Infrastructure (stage process pattem)
3.2, Hazard Analysis (Initiation Phase)

In this stage (Figure 4), software criticality requirements (such as safety) are identified
and the critical components — as well as failure outcomes — are determined, based on
which appropriate plans and methods are determined in the direction of eliminating or
acceptably reducing the identified hazards. This stage delivers the software safety plan,
test plans, and a system description in which hazards are taken into account.

Input:
Organizational Structure Risk Assessment | | Update Plans
Preliminary Hazard Analvsis
System Hoeard Anolysis
Swstem Reguircments
Preliminary Hazard List

I Identify Cntical Scotions I

Cinals
Strategies Churput:
¥ Sofiware Safety Plan
| | | | System Diescription
Legend Test PMlan
- Task Critical Task

Figure 4. Hazord Analvsis — Intiation (stage process pattorm)
3.3. Validate Requirements (Requirements Phase)

It is essential to specify explicit measures in order 10 assess the degree 1o which
software requirements and system goals can be relied upon. This is performed by the
Validate Requirements stage (Figure 5), which determines the system requirements that
are delegated 10 software. Software requirements are then checked for
understandability, accuracy, testability, consistency, completeness, and all other
qualitative properties that have been defined according to requirements standards and
testing strategies. It is essential to make sure that critical requirements are well-defined.

&0 B, Biglari and R, Ramsin £ Generic Process Framework for Developing High-Integeity Software

Lnigiail: Hazard Evaluate
Requiremenis Standards Analysis Fequirements
Requirements Docimentation
Testing Stratcgies

I Dhocumentatiom

Chutput:
Risk Reports
Updated Requireinents Doc.

Tosk Criticad Task

Figure 5. Validate Requirements (stage process puiterm |
3.4, Analysis (Design Phase)

The aim of this stage is to analyze, understand, and model the problem domain based
on the requirements (Figure 6). The boundaries of the software part are determined, and
its interfaces with non-software parts are evaluated for precision, completeness,
consistency, and accuracy. Software requirements are assigned to the interfaces,
including interfaces to other systems, other software, and human users. Requirements
are also assigned to architectural components. Software requirements undergo hazard
analysis as well; if hazards are not at an acceptable level, the above activities are
repeated. The user manual 1s updated on the basis of detailed requirements.

Inpui: ll_r.-l:ml
Rq.'l;uirumr:n[s Model Reguirements
Documentation _

Hazard Anabyvsis Al !'“"H'“ It 'n:':il-'h':mﬂl“-"r_
Desien Standands Requiremints Hazard Analysis
System Design

Evaluate Software Interface

Output;
Detailed Requiremicnts

Reguirements Hezard Analysis
Software Architecture
Liser Manual

Legend

ok [
T

Figure 6. Analysis (stage process pattern)

3.5, Architectural Desien (Desien Phase)

This stage includes architectural design activitics in which non-functional requirements
and constraints are applied on the design while preserving traceability (Figure 7). Since
high-integrity software is usually a part of a larger system. a logical architecture is first
defined. which is then followed by determining the physical architecture considering
the constraints, preexisting components, and relationships with the system design.
Therefore, one important activity in this stage is the selection and use of preexisting
architectural components.

. Biglori and R, Ramsin S Generic Process Framework for Developing High-Integrity Software 31

Input: Define Logical Drefine Physical

System Desigu Architecture Architcctune

Rﬁqq ircmenls Documeintation

Rl.‘q!Jil;":llEﬂh T ampd .-\II.;'l'l':,?‘.'rh Trace to 5}.5“:'“ -'!"FP'I}' Critical

Design Standards Architecture Cn_nsu'ninl‘s
Legend I Seclect Reusable Components I

o]
Critical Task D

Figure 7. Architectural Design (stage process pallerm)

Dutput:
selware Archileclure
Selected Uomponams

3.6, Detailed Desien (Design Phase)

This stage uses the analysis models and architectural design to develop the detailed
design (Figure 8). Each component is decomposed into fincr-grained constituents in
order to develop the detailed design of the code components. For each component,
external and internal interfaces are described and modeled, and general and domain-
specific design patterns are applied. Components related to safety, security, or other
criticality requirements are determined with special attention to software-hardware co-
design. Formal methods are used for determining how accurately the design meets the
requirements, with the results carefully recorded. Tracking mechanisms are
implemented by establishing the relationships among requirements, design, and
documentation. An integration test plan is produced according to the standards and
goals, and test cases, test procedures, and test data are prepared.

A
Input: Decompose and Implement Tracking
System Design [Design Components Mechamisms
Software Architecture -
Requirements Documentation i Dezcnibe and Trave “'“"! Docmaent
Design Standards Generute Imerfaces Diesign Comeciness
User Manual -

Y Cienerate Test Cases Design Timing

Constraints
Legend Output:

Software Archifeciure

Task E Integration Test Cases

Detailed Design
Crifical Task D Diecisions Jusufication Doec.

Figure 8. Detailed Design (slage process pallern)

3.7, Verify & Validate and Revise Design (Desien Phase)

In this stage, design documents are verified and validated (Figure 9). If the identified
hazards and risks are not at a desirable level, the design must be changed along with the
integration test plan. Software design 1s evaluated and analyzed for understandability,
accuracy, testability, consistency, completeness, and other properties defined in the
requirements process, In addition, solution accuracy is verified by considering
feasibility conditions, analysis results, and decision justifications. The traceability of

a8l B, Biglari and R, Ramsin £ Generic Process Framework for Developing High-Integeity Software

the sofiware design to software requirements is verified. Certain measures are applied
to assess whether the requirements and qualitative properties have been realized in the
software design. Risks are identified and mitigated by performing static analysis and
hazard analysis. The critical software components and the test program are also
scrutinized for problems. Interfaces are analyzed for precision, completeness,
consistency. and accuracy of design. Changes are made to the design in order to resolve
the problems and address the hazards that have not been properly mitigated or
controlled. Changes are accordingly made to the software integration test plan.

A Identefy and Coordinaie with
I_“"“: Mirigate Risks Integration Test
Softwire Archileciure
Requirements Documentation - - -
Diecisions Joustification Doc. Analyze Design Analyre Design
Detailed Dasion Interfaces Traceahility
b
Design Standards - . — -
Verily Design Validate Design
Crutput:
Legend Sofiware Archileciure
Detailed Design
Task E Hazard Analvsis Heport
Decisions Justifieation Doe,
A

Figure 9. Venfy & Validate, and Revise Design (stage process pattem)
3.8, Review (Design Phase)

Considering the results of the previous stage, project plans are reviewed in this stage;
also, methods and standards are improved on the basis of the problems reported (Figure
10). Based on the results of quality assurance, software verification and validation, and
software hazard analysis, the necessary changes are applied to the software
development process and its outputs. Unit tests are also planned. The standards of
coding and design are selected or improved, as well as the activities, methods, and tools.
Major problems are reported and fed back to the design process, If necessary, the
requirements descriptions, user manual, and sofiware development plan are modified.

Input: Record Important Updae
Sufiware Development Plan Problems Drevelopmient Plan
it If":'liﬂ_'r‘ni.h —_— Plan Unit Tests Analyze Problems |
Rieguirement Documeintatso

Liser Manual Improve Standards and Methods

Output:
Problems Report
Development Plan
Regquirements Document
User Manual
Standards
Test Flan

Legend

oo [
Cribcal Task |:[

Figure 1. Review (stage process patlem)

. Biglori and R, Ramsin S Generic Process Framework for Developing High-Integrity Software 23

3.9, Analyze and Record Test Results (Coding and Integration Phase)

In this stage, analysis 1s performed on the basis of the results of the Venify and Validate
Code stage, based on which a part of the Verify and Validate Code stage may be re-
executed (Figure 11), The aim of this stage is to raise the code to the quality level
indicated in the quality assurance plan. Code 15 evaluated based on qualitative
properties, and the relevant documentation (such as the user manual and the comments
added to the code) 1s evaluated to assess completeness, consistency, and correctness.
Code interface analysis (including evaluation based on hardware-, user-, and software
interfaces) is conducted to ensure the precision, completeness. consistency, and
correctness of the code produced. Coverage of unit tests is assessed as part of the
analysis of test results. Completed test cases are reviewed, and if necessary, re-
executed; this trend continues until quality reaches the level indicated in the software
quality assurance plan and test plan. The results obtained are rigorously recorded.

Input: L Measure Test Cose
Code Dircumentation Coverape
Code Stundands Y

Unit/ mtegration Ti_.'si Hesuls $ [

Code Documeniation Analyze Timing Réview Exceute
i Constrants Test

Output:
Analysis Documents
Develogment Plan

Gosall_]

Task Crilical Task

Figure 11, Analyvee and Record Test Results (stage process pattem)
3.10. Hazard Analysis and Review (Coding and Integration Phase)

In this stage, hazard analysis is carried out on the basis of the results of unit and
integration tests, resulting in modifications to the process or products. This analysis
includes code hazard analysis and software safety tests (Figure 12). To perform code-
level software hazard analysis, the code, system interfaces, and software
documentations are analyzed in order to ensure that they meet the requirements; also,
recommendations are offered 10 make changes to the design, code, and tests. For
software safely testing, components which are critical in terms ol salety are tested
under normal and abnormal conditions of inputs and environment. Testing will be
iterated under the same conditions after applying corrective measures.

lopui: Amalyre Propose Changes
Lmt/Integration Test Resulis

Code Venficatron™Validotion Results
Diocumendation

System Interfices

Record Activities and Change
Allvsis Resulis

Umtput:
Muodified Process/Produci

Modification' Analysis Repod
esl Faealitics

| [

Task Critical Toak

Figure 12. Hazard Aralysis and Review (stage process pattern)

4 B, Biglari and R, Ramsin £ Generic Process Framework for Developing High-Integeity Software

Based on the results of quality assurance, software verification and validation and
software hazard analysis, necessary changes are applied to the software development
process and its products, Results are fed back to the design process.

3.11. Deploy (Installation Phase)

In this stage, the integrated software is deployed after the required infrastructures have
been prepared (Figure 13). To install the software, it is necessary to first prepare the
destination environment. The deployment method should be specified and described in
a diagram. If a deployment plan does not already exist, it will also be developed, and
the feasibility of software mstallation 1s evalvated. The deployment plan will be
reviewed and revised to ensure correctness and completeness. A plan regarding the
maintenance activities is developed after the system has been installed. Manuals are
produced/updated for all users and operators (in particular, the end users and the
maintenance and support teams), and. The software support and maintenance manuals
are completed, with special attention to maintenance standards. Training of users and
maintenance/support personnel is also conducted at this stage.

Input: Procumentilion raining
Exgcutzble Software

Software Installaton Plan Dreployment .ww
System Dhesign Environmeni
kst Hacna Frepare and Dieliver Manuals

Chutput:
Soltware Installaton Keport
User Manual
SuppontMaintenance Manual
Mlamntenance Smndards

Figure 13. Deploy (stage process pattern)
3.2, Interface Hazavd Analysis (Installation Phase)

In this stage, software hazards are reevaluated and mitigated based on the overall
interface of the software (Figure 14). The software interface is tested along with non-
software parts, in line with the general testing strategies. Interface hazard analysis
manages hazards that have not been eliminated or controlled in the design phase.

Input:

Osgnnzzational Stregtioe
System Reguirementy
Prelimingry Hazwrd Analvsis

I Test Interface | I Update Test Plan I

Preliminmry Hozard List Produce Software] | Update System
Systern Hazard Analysis Galiety Plan Documents
Sirslegics o
Cigals Ot pui:

lnterface Hazard Analysis
Software Safety Plan
Test Plan

Systein Description

Legend
| | task | | C;'““'

Fizure 14, Interface Harard Analvsis (slage process pattermn)

B Biglari and K. Bamsin 7/ Generic Process Framework for Developing High-Integrity Saftware 25

Testing activities encompass developing and recording test cases, test procedures,
and test data, as well as test execution and analysis of test results. By applying
modifications to the design, which help identify hazards, methods are suggested for
recovering from the situations caused by hazards. The software safety plan is adapted,
test plans are updated, and system documentation and design are modified based on the
results of interface evaluations.

3.13. Hazard Analysis { Maintenance Phase)

This stage evaluates the modifications made during maintenance along with their
effects, and analyzes and manages the hazards caused by these modifications (Figure
15); in addition, quality assurance processes are specified, and new quality assurance
plans are produced accordingly. All the changes applied to the software should be
analyzed in order to determine their effects on safety and other critical properties. For
each change, hazards and test results are analyzed to ensure that modification have
created no new hazards and have had no exacerbating effect on existing hazards.
Changes to software requirements are also analyzed. If hazard management is required,
quality assurance activities are planned and executed accordingly.

1 i

;_Il-ﬂ: Analyze Change Update V&V Plan
Mamusls -

Requirements Dlocuments ldentify Affected Muke Change and
Diesign Documents Parts Re-1es1

Muamtenance Standards
Huozard Analysis Reports
Software Safery Plan
Systern Docoments
Change Requests
Test Reporis

Assess Mext Change

Ouiput:
Change Hazard Analysis
Updated Plans

Lpdaied Documents

Legend

1 [

Task Critical Task

Figure 15. Hazard Analysis - Maintenance (stage process pattern)
3.14. Assessment (Death Phase)

This stage reviews the project plans and management documentation on project
progress and measurement of the quality of processes and products, in order to collect
and record the significant cases as the lessons learned, to be used in future projects
(Figure 16). All project entities are studied, including test reports, hazard analysis
reports, standards, change documents, manuals, software, methods, tools, and the
personnel/roles involved. Management documents such as the project management
plan, configuration management plan, quality assurance plan, and organizational
documents are also important resources, Successful/unsuccessful experiences and any
reusable assets are extracted and documented. The following can be mentioned as
examples of sigmificant quality assurance cases that should be considered for
documentation: project control deviations, significant user feedback, reports on the
capabilities of software vendors, and reports on the compliance of the process and
products with standards and plans. It should be noted that inefficient methods and
techniques must be recorded as unsuccessful experiences that should be avoided in the
future. The management methods applied and the strategic decisions made are also

i B, Biglari and R, Ramsin / Generic Process Framework for Developing High-Integreity Software

significant in this context; examples include communication/coordination mechanisms,
and decisions on recruitment, including employment plans and training policies.

Tonpust:
Test Reports AL Documentation

Managerial Documents Lo Log
Hazord Analvsis Reports

Software Crcality Froduce and Colle
Manuals) Information Legend

Standands
Software

Quiput:
Swccessful Unsuceesstul Expenences
{Lessons Learned)

Methods Assessment Document

Critical Task]:I

Figure 16, Asscssment (stage process patterm)

4. Mapping of Proposed Process Patterns to Source Methodologices

Completeness and proper coverage of the proposed process patterns needs to be
evaluated in order to show that these process patterns adequately cover the phases of
the source methodologies. Correspondence of the proposed process patterns to the main
methodologies used as pattern sources is shown in Table 1. Comparison suggests that
the proposed framework and patterns do indeed cover the activities of high-integrity
software development; in other words, it demonstrates that these methodologies can be
engineered by using the proposed process patterns and framework. Moreover, it shows
how the phases of these methodologies have been used as sources for eliciting the
proposed process patterns. Thus, it can be deduced that the proposed framework is
valid, although new patterns can be added to further enrich it.

5. Conclusions and Future Work

We propose a generic process framework along with a set of process patterns to
develop high integrity software systems. To produce these patierns, we have selected
prominent methodologies from the most commonly used processes of this domain, and
have extracted their common sub-processes as process patterns. These patterns have
been organized inte a generic process framework which can be instanuated to yield
specialized processes for developing high-integrity software.

This research can be further specialized for each of the three types of high-integrity
systems, Task process patterns can be defined so that the use of the framework in SME
projects 1s facilitated. Also, essential patterns can be mapped to critical contexts so that
the selection of method chunks is further enhanced. Research can also focus on
providing an expansion framework to tailor existing patterns for use in critical contexts.

ACKNOWLEDGMENT

We wish to thank the Iranian Research Institute for Information and Communication
Technology for sponsoring this research,

B Bigluri and R, Ramsin 7 Generic Process Framework for Developing High-Integrity Software

a7

Table 1. Mapping ol Proposed Process Pattemns 1o Source Methodoelogies

Correspunding Process Patterns

Methodology | Methodology Plisse
Plrase Siages
System Requirements | 2 [Requiremenis [dentification, Requirements Validation, Bevigw/Revise
Anabvsis 3 |Analysis
Ageni Society Design 3 Eﬁ;ﬁ:‘:ﬂ“]p. Detmaled Design, Venify & Valwdate ind Revise
AR eplementathon 4 [mplementstion, Verily and Validate Code, Integration ond Test, Analyze
and Recond Test Resulis
4 [Imegration and Test, Analyves and Record Test Results
Deployment .
5 [Deploy, Test in the Large, Interface Hozanl Analysis
RF?;T;::T:E 2 |Requirements demilicanion, Requirements Validanion, Review/Revise
MaSE Analvsis 3 |Analysis
o (Archiectural Design, Detaled Design, Venify & Validate and Revise
Desagn e Design, Review
5 |Deploy
Requirements Amalysis | 3 [Analvsis
Design 3 Architectural Design, Detailed Design, Verify & Validate and Revise
HOOD Detign, Review
Implementation 4 |lmplementotion. Hozard Anolyses and Review. Intepration and Test
Test 4 |Werily and Valiklate Code, Ims:ﬂutiﬂn amd Test
Risciircarsats Cani 1 |Requirements Identification, Requirements Validation
e e 3 [Analvais
Sysiem Design and 3 Architeciural Design, Detailed Design, Vernify & Validate and Revise
PBSE Walidt hoo Diesipn
Feasibality amd 3 |Werify & Validate and Revise Diesign
Dimens ioning 4 [Hazard Analyvsis and Beview
Inh-gratim Testing 4 [Integrabion and Test, Amlyee and Becord Tesi Resulis
Planninge 1 [Plunoimge. Hoeard Analvsis
Reguirements 2 [Requirements Identilication, Requirements Validation, Review/Revise
Dresizi 3 |Archbectural Design, Detailed Design, Venfv& Validate and Bevise Deslan
XFUN tioplementation & Test| |4 Implementation, Yerily and Validate Code, Hazard Analysis mnd Beview,
Integration and Tesi, Amalvze and Record Test Resulis
) 5 |[Dephoy
Deplaymes & |Remove Defects and Enhance
i Architectural Design, Analysis, Detailed Design, Yenly & Validate and
AOM Design 3 Revise Desdign, R:tiw. ’ ‘ ,
ﬁm 2 |Requirements [dentification
P'IM Contexl Definition| 2 |Requirements Validation, Review/Revise
PIM Requirements -
Spe:iqr'mlinn 3 jAnalysis
PIM Amalyses 3 |Architectural Design, Analysiz, Detmled Desipn
Design 3 [Architectural Design, Defailed Design, Verify& Validae and Revise Design |
MASTER Ciodica & Inieitu 4 Implemention, YVerilv and Validate Code, Hozard Analysi und Review,
M, II1E_ i) ﬂbrlll.lﬂll r " . I. % d. TE!I
nlggration an
3 |Werily & Validate and Revize Desizn
Tenting 4 Verify and Validate Code, Hazand Analysis and Review, Integration and
Test, Amalvze and Hecond Test Resulis
5 |Testin Large, Remove Defects
5 |Deploy, Test in the Laree
[kpll]}Tl‘.F.‘]‘.lt & RI‘:TM’L [kﬁ,'q.'l.u ij|1|,]. Eﬁhinrﬂ;
| [Plinning, Creanizing, Fxtablish Infrastructire
Inception 2 |Reguirements Identification. Reguirements Validation, Review/Revise
3 |Architectural Design
[Elaboration 3 |Architectural Desipm, Verify & Valudote and Revise Desipn, Review
3 |Detailed Desipn, Verify & Yalidate und Revise Desien, Review
ALP e 4 Implementation Verily and Validate Code, Huznd Analysid pnd Review,
5
5
[3]
7

Integration and Test, Amalyvee and Record Test Results

Deploy, Test i the Lanze

Trangitom

Deploy, Test in the Larpe, Remove Diefects

Support, Remove Defects and Enhorce

Asscssment

BE B, Bighori and R Ramsin £ Generic Procesa Franework for Developing High-Integeity Software

REFERENCES

[1] D. Wallace, L. Ippolito, and D. Kuhn, High Integrity Saftware Standards and Guidelines, National
Institute of Standards and Technology (NIST Special Publication 500-2043, 1992,

[2] 1. Rushby. Critical System Properties: Survey and Taxonomy, Reliahiline Eng. and Svsiem Safetv 43
(1994}, [89-219,

[3] D Swidm, Prrpeses of Soffware dechitecture Design and How They Are Snpported b Software
Architecture Dyesign Methods, Master's Thesis, Blekinge Institute of Technology, Sweden, 2005,

[4] D. Wallnee, L. Ippolito, and D. Kuln, High Ineprity Software Stondords and Guidefines, National
Institute of Standards and Technology (NIST Special Publication 500-223), 1994,

[3] J. Coplien, A Generative Development Process Pattern Language. In: Patters Languages of Program
Dexizn, ACM Press/ Addison-Wesley, 1995, 1871960,

[6] 5. Ambler, Process Patterns: Boifling Lovge-Scale Svstems Ustng Objeet Teelnofogy, Cambridge
University Press, 1998,

[T] 5. Ambler, More Process Patterns: Delivering Large-Scale Syatems Using hjeer Technolosy,
Cambridee University Press, 904,

[8] 1. Ralyté, 5. Brnkkemper, and B. Henderson-Sellers (Eds.), Sirwrionol Method Enginecrving:
Fundamentals and Experiences, Springer, 2007,

[4]). Ralyte, R. Deneckerne, and C, Rolland, Towands a genene model for situational method engineening, In:
Proe CAISENT (2003), 95-110,

[10] B. Henderson-5ellers, Method Engincering for OO0 Systems Development, CACAH 46 (2003), 73-T78.

[11] [Firesmith and B, Henderson-Sellers, Tie OFPEN Process Framework: An Imeoducsion, Addison-
Wesley, 200H.

[12] R. Bubanezhad and R, Ramsin, Process Patterns for Web Engineering, Tn: Proe, COMPSAC IR, 2010,
477486,

[13] L. Kouroshfar, H. Yaghoub Shohie, and R, Ramsin, Process Patterns for Component-Based Software
Development. In: Proc. CBSE 09, 2009, 54-68.

[14] M. Cossentine, N, Gaud, V. Hilaire, 5. Galland, and A, Koukam, ASPECS: An agent-oriented sofiware
process for engineering complex systems, J. Adwtonem, Agents and Multiagens Svs. 20 (2010), 260304,

[13] S.A. Delopch, MUF. Wood, ond CH., Sparkman, Mulliapent Systems, At L Software Eng. and
Knowledue Eng. 11 {2001), 231-258.

[16] L Badr, H. Mubarak, and P. Géheer, Extending the MaSE Methodology for the Development of
CEmbedded Real-Time Systems, Lecrure Noves in Compater Scicnce S118 (2008), 106-122.

[17] X, Rosen, e Ao fndusiriol Appeoach fo Softweare Design, HOOD Techmcal Group, 1997,

[18] Software Engincering and Standardisarion- HOOL, European Space Agency, 2006,

[18] F. Heslimg, A. Schyn, R. Sczestre, and LF, Tilman, Enginesring with AADL, 2005, Available onling at;
hotpsYaadlsei.cmueduwaadlinfosite Linked Document=d2_1000_PBSE_with_AADL.pdf,

[20] Soffware Engincering and Ktandardisation- Proven hy ﬂ'f.u'gn: Computer systems for acrospace
applications, European Spoce Agency, 2008,

[21] G. Eleftherakis and A, Cowling, An Agile Formal Development Methodology, Tn: Proc. SEEFM3,
2003, 36-47.

[22] G. Geors, 1. Ray, K. Anostasukis. B, Bordbar, M, Toahchoodee, and 5, Houmb, An Aspect-Oriented
Methodology for Designing Secure Applications, Inferm, and Software Technalogy S12009), 346-864,

[23] X. Larrucea, A. Diez, and J. Mansell, Practical Model Driven Development Process, In: Proc. MO 04,
2004, 991045,

[24] X. Larruces, A. Diez, and A, Belen, Process Engineering and Project Management for the Model
Driven Approach, In: Proc. MOA-LA 04, 2004, 6369,

[253] O. Vindegs, BUCS fmplementing Safetv: An Approach as to How fo Tmplement Safely Concerns,
Master's Thesis, Morwegian University of Science and Technology, 2006,

[26] T. Hermansen, Creaning more Reliahie Business Critical Emerprise Systems Using RUP and Svstem
Safery, Depth Stady, Department of Computer and Information Science, NTNU, 20035,

[27] 1. Christon, 5, Ponis, and E, Palaislogon, Using the Agile Unified Process in Banking, Saffwere 27
{2010y, 72-749,

[28] 5. Finch, M. Bukowy, L. Wilder, and 1. Nunn, Agile Software Development at Sobre Holdings, In;
Softwere Engincering: Evolurion and Emerping Technofogies, [0S Press, 2005, 27-38,

[29] D Opperthauser, Defect Management in an Agile Development Environment, J. Oefense Soffware Eng.
16 (2003, 21-24,

[30] 1, Dateon and B MeCabe, AgifedLean Develaprent and CMWAT, SEPG, 2006,

[31] Developing Buviness-Critical Softwore: Methodology, AptleTek, 2011,

[32] MIL-STO-498: Militare Stardard for Software Dm':.'a'ulrmn:m aned Documentation, US-DoD, 1994,

