
An MDA-based System Development Lifecycle

Mohsen Asadi
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

mohsenasadi@Mehr.sharif.edu

Mahdy Ravakhah
Azad University of Mashhad

Mashhad, Iran
ravakhah@gmail.com

Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

ramsin@sharif.edu

Abstract
OMG’s Model Driven Architecture (MDA) has
deeply influenced modern-day software development,
not only by providing promising means for
automating the software process, but also through
revitalizing the role of modeling in software
development, the importance of which had been
neglected during the recent euphoria over
lightweight development methods. However, MDA’s
need to remain reasonably abstract means that it is
more a software development approach rather than a
standalone methodology, and therefore needs
methodology support to be practically useful. Several
MDA-based methodologies exist today, yet the need
remains for the definition of an instantiable MDA-
based development process.
We propose a generic lifecycle for MDA-based
software development that can be used as a basis for
constructing MDA-based methodologies through a
Method Engineering (ME) process. The phases and
activities of the proposed lifecycle are described
herein, with a number of prominent MDA-based
methodologies assessed as to their degree of
conformance to the proposed lifecycle.

1. Introduction

The Model-Driven Architecture (MDA) defines
an approach to information systems specification that
separates the specification of system functionality
from the specification of the implementation of that
functionality on a specific technology platform. At
the core of MDA there are a number of important
OMG standards: The Unified Modeling Language
(UML), Meta Object Facility (MOF), XML Metadata
Interchange (XMI), and Common Warehouse
Metamodel (CWM). These standards define the core
infrastructure of the MDA, and have greatly
contributed to modern systems modeling and
development [1].

MDA strives to automate software development
through providing an approach for specifying
systems in terms of models, and then enacting the
development process through performing model

transformations. System requirements are specified in
the Computation Independent Model (CIM). The
Platform Independent Model (PIM) is the model that
describes the system design independent of the
implementation platform. The Platform Specific
Model (PSM), on the other hand, describes the
system design in the form of a platform-dependent
model. These three levels of models in MDA raise
the level of abstraction of traditional platform-
dependent design.

Despite its influence on Model-Driven
Development (MDD), MDA does not provide a
concrete methodology for software development. A
Software Development Methodology (SDM) is a
framework for applying software engineering
practices with the specific aim of providing the
necessary means for developing software-intensive
systems [2]. A methodology consists of two main
parts: a set of modeling conventions comprising a
Modeling Language (syntax and semantics), and a
process which provides guidelines about the order of
the activities and specifies the artifacts developed
using the modeling language. According to the above
definition, MDA is not a methodology, but rather an
approach to software development. It has therefore
become imperative for software developers to have
MDA-based methodologies at their disposal for
enacting and realizing MDA practices and standards.
This fact has forced organizations willing to adopt
the MDA for system development to either transform
their software development methodologies into
Model-Driven Development (MDD) methodologies,
or use new methodologies that utilize MDA
principles and tools towards the realization of MDA
standards.

While several MDA-based methodologies have
been introduced in recent years, a Situational Method
Engineering (SME) approach [3] supporting the
construction of a custom MDA-based methodology –
i.e. one that has been tailored to fit the project
situation at hand – has not been suggested yet. The
main reason is that SME approaches require a set of
resources before the method engineering effort can
commence: Assembly-based SME requires a library

Second Asia International Conference on Modelling & Simulation

978-0-7695-3136-6/08 $25.00 © 2008 IEEE
DOI 10.1109/AMS.2008.19

836

of process components; Paradigm-based SME
requires generic instantiable process
metamodels/lifecycles; and the Extension-based
approach relies on extension patterns [4]. None of
these exist in an MDA-compliant context.

We propose a generic MDA-based system
development lifecycle that can be instantiated and
used as the basis for engineering tailored-to-fit MDA-
based methodologies through a Paradigm-based SME
approach. Generic lifecycles with similar usefulness
have previously been proposed for Object-Oriented
methodologies [5] and Agile methods [6]. Our
proposed lifecycle is specifically aimed at
engineering methodologies supporting and
facilitating MDA-based software development, and
can therefore be used as a general framework for
MDD.

This paper is organized as follows: The proposed
MDA-based System Development Lifecycle (MDA-
SDLC) is presented and described in Section 2;
Section 3 contains the results of assessing existing
MDA-based methodologies as to the their degree of
conformance with the proposed MDA-SDLC;
conclusions and areas for furthering this research are
presented in Section 4.

2. Proposed MDA-based System

Development Lifecycle

Our proposed MDA-SDLC has been developed

using ideas from the generic software development
lifecycle and the development approach prescribed
by the MDA. As mentioned before, a software
development methodology consists of two main
parts: a Modeling Language (syntax and semantics)
and a Process. Naturally, MDA-based methodologies
use UML as their modeling language. The generic

lifecycle is therefore mainly focused on the process
part of the methodology.

Our proposed MDA-SDLC is not a concrete
methodology, but a general process that defines the
phases and activities expected to be present in an
MDA-based methodology. It can therefore be
specialized (instantiated) to fit the project situation at
hand. MDA-SDLC consists of five phases (Figure 1):
Project Initiation, PIM Development, PSM & Code
Development, Deployment, and Maintenance. As
shown in Figure 1, returns to previous phases are
usually necessary. The PIM Development phase and
the PSM & Code Development phase are typically
performed in an iterative-incremental fashion. The
phases are described in detail in the following
sections.

2.1. Project Initiation Phase

As with all other methodologies, MDA-based
methodologies require a project initiation phase.
Figure 2 shows the activities performed in this phase
and the artifacts produced. The following activities
are performed in this phase:

CIM definition: the scope of the software system
is clearly defined through problem domain analysis.
At the end of this activity, an unambiguous black-box
definition of the system, its objectives, and its scope
should be produced.

Requirements specification: system requirements
are specified using requirements engineering and
requirements gathering techniques, and a
Requirements Model is produced. The Requirements
Model spans functional requirements (use cases and
activity diagrams), non-functional requirements
(forces), and atomic requirements.

Obtain funding and support: mainly concerning
justifying the project via feasibility analysis, and

Figure 1. Proposed MDA-based SDLC

837

obtaining the necessary resources. Some activities may
have already been achieved via portfolio management
efforts.

Initiate the team: the development team is
organized. According to [7] the users of MDA
technology are classified in three categories:
Knowledge builders, whose responsibility is to build
knowledge repositories, and consist of Architects,
Platform Experts, Quality Engineers, and Methodology
Experts; Knowledge facilitators, who assemble,
combine and deploy knowledge, consisting of Project
Managers and Quality Engineers; and Knowledge
users, who apply knowledge, and consist of Designers
and Software Engineers. The development team is
composed of all the required people from all these
three categories. It is not necessary to have a complete
team from the start, as the team can be reorganized and
completed during the development process.

Define general plan: the development risk of each
of the requirements and the development effort needed
is estimated, based on which the requirements are
prioritized. The general plan is then created. The plan
is revised and completed during the development
process.

Figure 2. Main activities of the Project Initiation phase

Tool selection: the tool typically handles many

activities in an MDA-based methodology, such as the
definition of models and metamodels, model
transformations and code generation performed based
on model information, and the definition of constraints
and rules to verify model compliance [7]. In this
activity, one or more tools are selected to support the
activities in the development process. For the selection
of appropriate tools, tool requirements are identified
from a software engineering perspective and mapped
to the capabilities of tools available on the market.

The outputs of this phase are: CIM, Requirements
Model, project infrastructure, project funding, project
charter and management documents.

2.2. PIM Development Phase

The objective of this phase is to create a complete
and precise model of the structure and behavior of the

system. This model is derived from the Requirements
Model. The model must be platform independent, i.e.
during the creation of this model nothing about the
implementation platform is taken into account. The
model typically contains activity diagrams, sequence
diagrams, state machines, and class diagrams.

Figure 3 shows the activities and products of this
phase. As shown in Figure 3, the inputs of this phase
are from the project initiation, deployment, and
maintenance phases. The activities of this phase are as
follows:

Produce analysis PIM: in this activity, a platform-
independent analysis model is defined through
analyzing the requirements model. System
functionalities are described in the analysis PIM while
maintaining traceability to the requirements model.
Developers may use appropriate model elements stored
in a model repository to produce some parts of this
PIM. This model is not the final PIM, but forms the
foundation for producing the final version.
Conventional OO analysis techniques can be used for
this activity, which is typically executed in an iterative
and incremental fashion.

Architectural design: in this activity, the system
architect designs the system architecture. The general
plan may be reviewed if necessary. The product of this
activity is the main framework of the system.

Produce design PIM: in this activity, the analysis
PIM model is refined to produce the design PIM,
which models the detailed structure and behavior of
the solution (software application). Conventional OO
design techniques can be used in this activity. The
design PIM is derived from the analysis PIM in an
iterative-incremental fashion. Constraints,
preconditions, postconditions, and invariants are
defined using UML and OCL mechanisms. Reusable
domain-dependent design model elements can also be
retrieved from model repositories for composing the
design PIM.

Verification/Validation: in this activity, we check
whether the products of the modeling activity are free
from defects and in compliance with the requirements
established in the requirements modeling activity. We
execute this step mainly to correct design PIM errors
before transforming it into the PSM.

Generalization: it is necessary to execute the
generalization activity after creating the models in the
previous activity. In this activity, tasks are performed
to make models more reusable. Reusable domain-
specific model elements are uploaded and categorized
into repositories for reuse in future projects.

The outputs of this phase are: verified design PIM,
project documents, management documents, and the
requirements allocation matrix.

838

Figure 3. Main activities of the PIM Development phase

2.3. PSM & Code Development Phase

During the activities of this phase, the PIM
produced in the previous phase is transformed into the
PSM model. Most of the activities of this phase are
performed by MDA tools. Figure 4 shows the activities
and products of this phase. As shown in Figure 4, the
inputs of this phase are from the PIM development,
deployment, and maintenance phases. The activities of
this phase are as follows:

Transform PIM to PSM: the PSM is produced
from the PIM using MDA tools. Conventional
guidelines are used to guide the developer in
performing the transformation using the selected tool.
These guidelines are provided by the tool or by the
methodology itself.

Figure 4. Main activities of the PSM & Code Development

phase

Generate code: in this activity, the execution code
is generated from the PSM using MDA tools. Current
MDA tools cannot generate complete code from the
PSM. As with the previous activity, conventional
guidelines are used to guide the developer in
performing the transformation using the selected tool.
The developers then have to manually complete the
generated code. This activity defines the organization

of the code, executes unit tests, and integrates all
components and subsystems.

Testing: this activity includes standard testing tasks
such as: plan tests, prepare test model, prepare test
cases and test scripts, execute tests, correct defects and
document test results. Test cases are defined and
applied on the code. Automatic testing is possible to
some extent, but manual testing is usually necessary in
order to complement the testing activities.

The outputs of this phase are: packaged application,
documents, source code, PSM, management
documents and the requirements allocation matrix.

2.4. Deployment Phase

The objective of this phase is to successfully
deliver the developed system to the final user. Figure 5
shows the activities performed in this phase and the
artifacts produced. As shown in Figure 5, the input of
this phase is from the PSM & code development phase.
The activities of this phase are as follows:

Final testing of the system: in this activity, final
system and acceptance testing are performed. The
developer may choose to pilot/beta-test the system
with a subset of the actual users of the system. We
intend to find and act on defects. To fix the defects, we
may have to return to previous phases.

Finalizing system and user documentation: during
the development cycle, some documentation may have
been written. These should be finalized when the
system is being prepared to be released. User manuals
are also prepared during this activity. We may also
gather and document the experience acquired during
the current project to be used in future development
efforts.

Transition of the system to the user environment:
during this activity, the system is installed in the user
environment, and related tasks (such as data
conversion) are executed.

Figure 5. Main activities of the Deployment phase

The outputs of this phase are: tested application,

project documentation, models (CIM, PIM, PSM), user
documents, and the requirements allocation matrix.

839

2.5. Maintenance Phase

The objective of this phase is to keep the system in

production after delivery to the user community. This
process is continued until system retirement or support
termination. Figure 6 shows the activities performed in
this phase. As shown in Figure 6, the input of this
phase is from the Deployment phase.

Figure 6. Main activities of the Maintenance phase

3. Evaluation Based on Existing MDA-

based Methodologies

 In this section, we evaluate the MDA-SDLC
presented in the previous section through assessing
existing MDA-based methodologies as to their degree
of conformance with the proposed lifecycle. We show
how phases and activities of existing methodologies
correspond with MDA-SDLC phases and activities,
and thereby show that the proposed lifecycle does
indeed cover existing methodologies.

Six prominent MDA-based methodologies were
selected for this purpose: MODA-TEL, MASTER, C3,
ODAC, DREAM, and DRIP-Catalyst. The MODA-
TEL methodology is the MDA-based development
methodology that is being developed and applied in the
MODA-TEL project [7], mainly targeted at distributed
applications. The MASTER methodology was
developed as part of a European information project of
the same name, and prescribes a MDD process
together with a set of system family engineering
methods to adapt the MDD process according to
customer requirements [8]. C3 is a component-based
methodology enhanced with advanced MDD
techniques [9], which adopts and elaborates on many
principles from the Business Object Oriented Software
Technology for Enterprise Reengineering (BOOSTER)
approach. The ODAC methodology is based on RM-
ODP (Reference-Model on Open Distributed
Processing) [10, 11]. DREAM is a product line
engineering methodology, which integrates key
activities of PLE with model transformation features of
MDA [12]. DRIP-Catalyst is a MDA-based
methodology for the development of complex, fault-
tolerant distributed families of software [13].

Table 1 shows the phases and activities of theses
methodologies. Table 2 shows how each phase and
activity of the proposed MDA-SDLC covers the
phases and activities of the selected MDA-based
methodologies.

4. Conclusions

We propose a MDA-based SDLC for developing

software systems using the model-driven approach.
The lifecycle is detailed enough to define a framework
for MDD, and general enough to be instantiated
through a paradigm-based method engineering process,
thereby producing MDA-based methodologies tailored
to fit specific project situations. The lifecycle builds
upon generic software engineering activities as well as
MDA practices and standards for model-driven
development. We have shown that the proposed
lifecycle does indeed cover prominent MDA-based
methodologies.

This research can be furthered by identifying
process patterns recurring in MDA-based
methodologies. These can then be defined as method
chunks and used for assembly-based method
engineering of MDA-based methodologies, ideally in
conjunction with (and as a complement to) the
proposed MDA-SDLC. A strand of research is also
being directed at defining a MDA-based extension
framework that allows existing methodologies to be
extended into MDA-based methodologies [14].

Acknowledgment

We wish to thank the Research Vice-Presidency of
Sharif University of Technology for sponsoring this
research.

References

[1]. I. Mukerji, J. Miller, MDA Guide Version 1.0.1,
OMG, 2003.

[2]. R. Ramsin, R. F. Paige, "Process-Centred Review
of Object-Oriented Software Development
Methodologies", ACM Computing Surveys (to be
published).

[3]. A. F. Harmsen, Situational Method Engineering,
Moret Ernst & Young, 1997.

[4]. J. Ralyté, R. Deneckére, C. Rolland, “Towards a
generic model for situational method engineering”,
Proc. of CAiSE2003, 2003, pp. 95-110.

[5]. S. W. Ambler, Process Patterns: Building Large-
Scale Systems Using Object Technology,
Cambridge University Press, 1998.

[6]. S. W. Ambler, “The agile system development
lifecycle”, published on the web at:
http://www.ambysoft.com/essays/agileLifecycle.ht
ml, 2006.

840

[7]. A. Gavras, M. Belaunde, L. Ferreira Pires, J. P.
Andrade Almeida, "Towards an MDA-based
development methodology", Proc. First
European Workshop on Software Architecture
(EWSA2004), Enschede, Netherlands, 2004, pp.
71-81.

[8]. X. Larrucea, A. B. G. Diez, J. X. Mansell,
"Practical Model Driven Development process",
Proc. Second European Workshop on Model
Driven Architecture (MDA), Canterbury, UK,
2004.

[9]. T. Hildenbrand, and A. Korthaus, "A Model-
Driven Approach to Business Software
Engineering", Proc. 8th World Multi-Conference on
Systemics, Cybernetics and Informatics (SCI
2004), Volume IV Information Systems,
Technologies and Applications, Orlando, Florida,
USA, 2004, pp. 74-79.

[10]. M. Gervais, "ODAC: An Agent-Oriented
Methodology Based on ODP", Journal of

Autonomous Agents and Multi-Agent Systems, 7(3),
2003, pp. 199-228.

[11]. M. Gervais, "Towards an MDA-Oriented
Methodology", Proc. 26th Annual International
Computer Software and applications Conference
(COMPSAC'02), Oxford, England, 2002.

[12]. S. Kim, H. G. Min, J. S. Her, S. H. Chang,
"DREAM: A practical product line engineering
using model driven architecture", Proc. ICITA '05,
Australia, 2005, pp. 70–75.

[13]. N. Guelfi, R. Razavi, A. Romanovsky, S.
Vandenbergh, "DRIP Catalyst: an MDE/MDA
Method for Fault-tolerant Distributed Software
Families Development", Proc. OOPSLA & GPCE
2004 workshop on best practices for Model Driven
Development, 2004.

[14]. F. Chitforoush, M. Yazdandoost, R. Ramsin,
“Methodology support for the Model-Driven
Architecture”, Proc. APSEC’07, Nagoya, Japan,
2007, pp. 454-461.

Table 1. Phases and activities of the selected MDA Based methodologies

MODA-TEL MASTER

C3

ODAC

DREAM

DRIP-Catalyst
Phase Activity in phase
project

management
phase

project
organization,

quality
management

capture user
requirements phase

standardization
phase

application
deployment phase

domain analysis
phase

problem
to solution transition

phase
PIM

context definition
phase

software
development phase

product line
scoping phase

platform-Independent
Architectural Design

phase preliminary
preparation

phase

platform,
transformation,

modeling
language, and

traceability
strategy

identification

PIM requirements
specification phase

model design
phase

design phase

framework
modeling phase

Platform-independent
detailed design phase

application
requirements

formal
verification phase

detailed

preparation
phase

modeling
languages and

transformations
specification

PIM analysis phase

code generation

application-
specific design

phase
design phase

framework

instantiation
phase

PIM to PSM transition
phase

 infrastructure
setup phase

tool support
and metadata
management

coding and
integration phase

application
deployment phase

implementation
phase

model integration
phase

PSM to code
phase

execution phase requirements

analysis,
modeling,

verification,
coding and

testing,
integration and

deployment,
operation and
maintenance

test phase

application
detailed design

completion phase

deployment phase
 application

implementation
phase

deployment phase

841

Table 2. Results of assessing existing MDA-based methodologies

MDA-SDLC MODA-TEL

MASTER

C3

ODAC

DREAM

DRIP Catalyst

Pr
oj

ec
t I

ni
tia

tio
n

Ph
as

e

CIM definition × PIM Context
Definition

× × × ×

Requirements
specification

Requirements
Analysis

Capture User
Requirements

& PIM
Requirements
Specification

× × Domain Analysis,
Product line

scoping

×

Obtain funding
and support

Project
Management &
Tool selection

× × × × ×

Define general
plan

× × × × ×

Tool selection × × × × ×
Initiate the team × × × × ×

PI
M

 d
ev

el
op

m
en

t p
ha

se

Produce
Analysis PIM

Modeling PIM Analysis Standardization Analysis Requirements
Modeling

Problem to Solution
Transition

Architectural
Design

× Software
Development

Framework
modeling

Platform-
independent

Architectural design
Produce Design

PIM
Design Model Design Design Application

specific Design,
Framework

instantiation,
Model Integration

Platform-
independent Detailed

Design

Generalization × × Framework
Modeling

×

Verification/
Validation

Verification
/Validation

× × × × Formal Verification

PS
M

 &
 C

od
e

de
ve

lo
pm

en
t p

ha
se

 Transform PIM
to PSM

Transformation

Design Code
Generation

Design Application
Detailed Design

PIM To PSM
Transition

Generate code Code/Testing

Coding &
Integration

Implementation Application
Implementation

PSM to Code
Transition, Code

Completion
Testing Testing × × × ×

D
ep

lo
ym

en
t

Ph
as

e

Final testing of
the system

× × × ×

Finalizing
system and

users
documentation

× Deployment Application
Deployment

× × Deployment

Transition of
the system to

the user
environment

Integration/
Deployment

× ×

M
ai

nt
en

an
ce

ph

as
e

support Operation/
Maintenance

× × × × ×

maintenance × × × × ×

842

