
R. Lee & N. Ishii (Eds.): Soft. Eng. Research, Manage. & Appli. 2009, SCI 253, pp. 277–291. 
springerlink.com                                                       © Springer-Verlag Berlin Heidelberg 2009 

Patterns of Situational Method Engineering 

Mohsen Asadi and Raman Ramsin 

Department of Computer Engineering, Sharif University of Technology 
Azadi Avenue, Tehran, Iran 
mo_asadi@ce.sharif.edu, ramsin@sharif.edu 

Summary. Situational Method Engineering (SME) addresses the need for custom-built soft-
ware development methodologies that are tailored to fit specific project situations. A process 
pattern is a description of a recurring development process fragment that can be used as a 
generic model or a building block for engineering development processes. Software develop-
ment process patterns are extensively used in SME, mainly as process components assembled 
to form bespoke methodologies; however, the SME field itself has not been scrutinized as to the 
methodology development process fragments frequently encountered. Situational method engi-
neering knowledge captured in the form of SME process patterns is not only useful for building 
and improving SME processes, but can also facilitate knowledge transfer among method engi-
neers. We propose a set of SME process patterns obtained through studying existing method 
engineering approaches. The set of patterns is organized into a generic pattern-based frame-
work for SME. The framework can be used for developing SME processes according to the 
specific requirements of method engineering projects; the resulting SME processes can then be 
enacted to yield custom-built, project-specific methodologies. 

1   Introduction  

A Software Development Methodology (SDM) is a framework for applying software 
engineering practices with the specific aim of producing software-intensive systems 
[1]. SDMs and supporting tools have become key factors in achieving success in 
software development projects. Traditional, rigid SDMs are inadequate for providing 
the necessary support for modern information systems development projects. It has 
therefore become necessary to develop custom-built methodologies. 

Method Engineering (ME) strives to improve the usefulness of SDMs, mainly 
through using adaptive frameworks for constructing and/or adapting SDMs. The most 
well-known subfield of the discipline is Situational Method Engineering (SME), 
which is concerned with the construction or adaptation of a methodology according to 
the characteristics of the project situation at hand [2]. Existing SME approaches are 
classified as: Ad-hoc [3], in which a new methodology is constructed from scratch; 
Paradigm-based [4], in which an existing meta-model is instantiated, abstracted 
and/or adapted in order to produce the target methodology; Method Configuration 
(adaptation/extension) [5], which aims at enhancing a base methodology by add-
ing/removing elements and features; Assembly-based [6], in which method engineers 
construct the target methodology or enhance an existing methodology through reusing 



278 M. Asadi and R. Ramsin 

process components;  Hybrid Methodology Design [1, 3], in which the target method-
ology is built through a top-down iterative-incremental process which combines  
different approaches; and Formal Agile Method Engineering [7], in which a method-
ology is created through applying policies similar to those seen in agile software  
development approaches. 

A Process Pattern defines a general solution to a certain recurring problem in 
software development processes [3, 8]. Process patterns can be considered as reusable 
process components, as seen in certain implementations of assembly-based SME, 
where software engineering processes are constructed through reusing software engi-
neering process patterns [6]. Software engineering has thus benefited much from 
process patterns, and as a result, prominent heavyweight SDMs have been replaced or 
enhanced by assembly-based method engineering frameworks; for instance, OPEN 
has become OPF, and RUP has been fused into RMC [1]. We intend to bring these 
advantages to the situational method engineering domain itself, mainly through defin-
ing a process-pattern-based approach for constructing SME processes.  

We propose a pattern-based framework as a meta-model for defining SME proc-
esses. A generic process model for SME has been created through instantiating this 
framework and populating it with several process patterns that we have extracted 
from existing SME approaches. The generic process model can be specialized to pro-
duce bespoke SME processes, mainly through setting the precise order of the SME 
activities involved. It thus allows combining existing SME approaches – manifest in 
its constituent components – in various lifecycle styles (e.g., iterative-incremental).  

This paper is organized as follows: The pattern-based framework is described in 
Section 2; Section 3 describes the different creation policies and construction blocks 
used in SME approaches; Section 4 defines the Situational Method Engineering Proc-
ess (SMEP) as an instance of the proposed framework; the process patterns compris-
ing the SMEP are described in Section 5; Section 6 provides an example of applying 
SMEP for engineering a real-time systems development methodology; and Section 7 
contains the conclusions and some suggestions for furthering this research. 

2   Proposed Pattern-Based SME Framework 

We define and use the process framework shown in Fig. 1 as a meta-model for pat-
tern-based SME processes; the framework is based on the process-pattern-based ap-
proach proposed in [9]. Process patterns are the core elements of the framework, 
representing strategies for solving certain recurring SME problems. A problem is a 
concrete situation that may arise during methodology development.  In the method 
engineering domain, a variety of problems can exist at different levels of granularity. 
Based on the granularity level of the problem addressed, we can define three different 
types of process patterns; namely, task, stage, and phase. A task process pattern de-
picts detailed steps performed to solve a specific fine-grained problem of the SME 
process. A stage process pattern defines steps that need to be executed in order to 
solve a stage problem of the SME process, and is usually made up of several task 
process patterns. Finally, a phase process pattern represents the interaction of two or 
more stage process patterns to solve the phase problem to which they belong [8, 10].  



 Patterns of Situational Method Engineering 279 

Each process pattern needs an initial context in order to produce a result context. 
The initial context describes a project situation in which we can apply a process  
pattern. The result context describes the situation after applying the pattern. Work 
products are the artifacts created during the development process. Instances of work 
products are method fragments, product models, and process models. Each process 
pattern is applied by one or more roles. A specific role is assigned to a person or tool. 

 

Fig. 1. Pattern-based SME framework 

3   Infrastructures and Creation Policies in SME Approaches  

SME approaches can be differentiated based on two characteristics: Infrastructure 
and Creation Policy. Infrastructure shows the kinds of resources that a SME approach 
uses to create custom methodologies. Four types of infrastructure can be identified: 
(a) base methodology, (b) meta-model, (c) process component (chunk), and (d) con-
figuration package. A base methodology is composed of a product model and a proc-
ess model [4]; the product model defines the set of elements (artifacts) produced, their 
properties, and the relationships that are needed to express the outcome of a process; 
the process model consists of the set of goals, activities and guidelines required to 
support the process’s intent [4]. Meta-models abstract methodology concepts, their 
inter-relationships, and the constraints binding them together, into a coherent frame-
work [11]. A method chunk is an independent and cohesive methodology part, sup-
porting the realization of specific software development activities, and typically 
stored in a repository of reusable process components [6]. A configuration character-
istic defines a problem occurring in a development situation, the solution of which is 
achieved through configuring a base methodology [6]. The configuration of a base 
methodology according to a specific characteristic is called a configuration package 
[5]. According to [12], there are various granularity levels for a methodology, repre-
sented as five layers: Method, Stage, Model, Diagram, and Concept. Each of the in-
frastructures defined above can reside on different granularity layers: method chunks, 
configuration packages, and meta-models can reside on all of the five layers. The base 
methodology, however, can only reside on the method layer.  

A creation policy represents the approach that can be adopted for creating a  
methodology. Main policies include [3, 6]: Assembly, Abstraction, Instantiation, 
Method Configuration, Artifact-Oriented (devising a seamless complementary chain 



280 M. Asadi and R. Ramsin 

of artifacts and building the process around it), and Integration (integrating features 
and techniques taken directly from existing methodologies).  

Every SME approach is based on specific infrastructures and creation policies: For 
instance, the assembly-based approach uses method chunks and adopts the assembly 
policy; the configuration-based approach uses a methodology and a configuration 
package and adopts the configuration policy; the hybrid approach uses meta-models, 
method chunks and a base methodology and adopts the assembly, instantiation, arti-
fact-oriented, and integration policies; and the paradigm-based approach uses a meta-
model or a base methodology and adopts the instantiation or abstraction policy.   

4   Situational Method Engineering Process (SMEP) 

It has been pointed out that software processes are software too [13]; we can therefore 
utilize a software engineering strategy to create SDMs. We can also consider a lifecy-
cle for method engineering that is similar to the generic software development lifecy-
cle, consisting of the generic phases of: requirements engineering, analysis, design, 
implementation, test, deployment, and maintenance [3]. Based on this notion, we have 
instantiated the process-pattern-based framework described in section 2 to define the 
Situational Method Engineering Process (SMEP) as a generic SME process model 
(Fig. 2). SMEP’s constituent process patterns were obtained through studying existing 
SME approaches. SMEP is made up of three serial phases, which in turn consist of 
iterative stages. The first phase initiates the methodology and sets the foundation  
for methodology construction. The methodology is developed and deployed into the 
execution environment in the next two phases. SMEP uses an iterative-incremental 
approach for creating software development methodologies. First, an appropriate infra-
structure and a suitable policy will be chosen to create each part of a methodology. 
This selection is based on the level of granularity at which we are implementing the 
methodology, and the elicited requirements that should be realized during each itera-
tion (analogous to the Hybrid Design approach [3]). For example, during the initial 
iterations, the instantiation and abstraction policies would be selected to create a base 
methodology. Then, the assembly policy will be applied to complete the base method-
ology by putting together existing method chunks. Finally, the configuration-based 
policy will be used to extend or restrict the new methodology. Since SMEP covers all 
existing SME approaches, it can be considered a generic process model for SME.  

 

Fig. 2. The proposed Situational Method Engineering Process (SMEP) 



 Patterns of Situational Method Engineering 281 

5   SMEP Process Patterns 

In this section, we describe the constituent process patterns of the SMEP. We use the 
granularity level, as defined in the pattern-based framework, to categorize the ex-
tracted process patterns.  

5.1   Phase Process Patterns 

SMEP consists of three serial phases: Method Initiation, Method Construction and 
Method Deployment. Phase process patterns reside in the topmost granularity layer of 
the framework. They consist of stage process patterns which interact to achieve the 
objectives of their relevant phase. As seen in section 3, there are various creation 
policies. Since we can use all of these policies in the SME process, we will consider 
each creation policy as a workflow in the methodology construction phase. 

Method Initiation Phase. The main goal of this phase is to provide a foundation for 
the successful construction of the target methodology. The requirements analysis and 
infrastructure setup stages are performed iteratively during this phase, producing the 
requirements model, required infrastructure, and methodology architecture.  

Method Construction Phase. This phase produces the project-specific methodology 
in an iterative-incremental manner; each iteration first selects the appropriate work-
flow, and then determines the tasks and stages in that workflow. Select construction 
blocks, configure construction block, generalization, and develop method are the 
stages of this phase.  

Deployment Phase. The objective of this phase is to successfully put the methodol-
ogy into production. This also means that the method engineer needs to perform over-
all testing on the methodology (as part of the testing in the large stage), mainly to 
verify the completeness of the methodology and validate it against the requirements. 
The methodology is then deployed into the user environment.  

5.2   Stage Process Patterns  

Stage process patterns comprise the bulk of each phase. Most stage patterns are exe-
cuted iteratively. This section explains each stage pattern of the SMEP. The solution, 
tasks performed to realize the stage objective, and initial/result contexts will be ex-
plained for each stage pattern. 

Requirements Analysis Stage. The objective of this stage is to define methodology 
requirements (Fig. 3(a)). It receives specific situation documents as input, which 
should specify three main attributes: Definition, Domain, and Deliverables; Definition 
explains the type of the project at hand; Domain specifies the application domain of 
the target system; and Deliverables describes the artifacts that should be produced 
[14]. Requirements can be seen from two viewpoints. From the first viewpoint, re-
quirements are divided into two categories: General Requirements, such as repeatabil-
ity, understandability, etc.; and Situational Requirements, such as requirements for 
business applications, real-time applications, etc. The second viewpoint divides  
the requirements into two classes: functional requirements, spanning the features that 
the methodology should provide, such as work products and required activities; and 



282 M. Asadi and R. Ramsin 

non-functional requirements, such as smoothness of transition between activities, 
robustness, and scalability. The Capture Requirements task elicits, documents, and 
agrees on methodology requirements (functional and non-functional). The Refine task 
details, decomposes, aggregates, and identifies alternatives for the requirements. The 
Model Requirements task creates a model for requirements which can be shown by  
a special state diagram, in which states represent work-products produced by the 
methodology, whereas transitions show the milestones and required activities. New 
requirements that fill the gaps in the requirements set are defined through the Pro-
gression task. The Requirements Verification task finalizes the requirements analysis 
process by verifying the requirements model’s completeness and coherence [15].  

Infrastructure Setup Stage. This stage aims to provide the necessary resources (in-
frastructure and architecture) for creating a methodology. Inputs to this stage include 
requirements documents, project description, and experiences gained from previous 
projects (Fig. 3(b)). The Tool Selection task identifies the appropriate Computer-
Aided Method Engineering (CAME) environments [2] to be used during methodology 
construction. The Define Architecture task provides the backbone of the methodol-
ogy, defining the main phases of the lifecycle and the main principles that should be 
followed for software development during methodology enactment. The Manage 
Non-Functional Requirements stage analyzes the non-functional requirements and 
identifies the relevant factors/tactics according to the methodology architecture. The 
Select Workflow task selects a workflow for the current iteration of method construc-
tion according to the requirements and architecture.  

a) Requirements Analysis stage process pattern 
 

b) Infrastructure Setup stage process pattern 

Fig. 3. Components of Method Initiation phase process pattern 

Select Construction Blocks Stage. The objective of this stage is to select the con-
struction blocks according to the selected requirements and then perform preliminary 
adaptation on them. The types of construction blocks selected - i.e. method chunks, 
meta-model or methodology – depends on the type of workflow selected in the infra-
structure stage. This stage receives the requirements, method architecture, and infra-
structure as input (Fig. 4).   

Assembly Workflow: The Select Method Chunk task converts the requirements to 
appropriate parameters and uses the matching technique to select the chunk according 
to the requirements. The Chunk Evaluation task validates the retrieved method chunks 
by evaluating the degree of matching between the candidate chunk and the require-
ments. The Chunk Decomposition task selects the relevant sub-chunks and eliminates 
the inadequate/unneeded ones. The Chunk Aggregation task produces an aggregate 
chunk from the candidate chunks, based on the observation that in many cases, an 



 Patterns of Situational Method Engineering 283 

aggregate chunk is functionally larger than the sum of its sub-chunks, and might 
therefore provide a solution for the requirements not addressed by the constituent 
chunks. The Chunk Refinement task refines the candidate chunk by providing an in-
depth definition of the chunk according to the requirements.  

Paradigm Workflow: The objective of this workflow is to create the product model of 
the target methodology, to be used in the next stages for creating the corresponding 
process model. The paradigm model, which can be either a process or a product 
model/meta-model, is specified and modified by the Select Paradigm Model and 
Adapt Paradigm Model tasks. The Analyze Paradigm Model task investigates and 
identifies elements of the paradigm model which should be either abstracted or instan-
tiated. Then, based on the type of the paradigm model (methodology or meta-model), 
the Abstraction or Instantiation task is executed. The instantiation and abstraction 
tasks can be further divided into Process-based or Product-based tasks based on the 
type of the paradigm model. If process-based abstraction or instantiation is performed, 
then the Identify the Corresponding Work Product task identifies and integrates the 
relevant work products, thereby creating the product model.      

 

Fig. 4. Select Construction Blocks stage process pattern 

Configuration workflow: The Select the Base Method task analyzes the requirements 
and selects the relevant base methodology. According to the requirements and the 
selected base methodology, the configuration characteristics of the project are identi-
fied by means of analyzing a repository of development situations and characteristics. 
Configuration templates are then identified and matched to the characteristics. The  
 



284 M. Asadi and R. Ramsin 

 
a) Configure Construction Block stage process pattern 

 

 
c) Generalization stage process pattern 

 
b) Develop Method stage process pattern 

Fig. 5. Method development stage process patterns 

configuration packages corresponding to each configuration template are retrieved 
from the repository of configuration packages. 

Configure Construction Block Stage. This stage performs configuration on the 
result of the previous stage. Inputs of this stage are the requirements, construction 
blocks, and method architecture. It provides enhanced construction blocks for creating 
and/or modifying the target methodology (Fig 5(a)).    

Assembly Workflow: Some of the selected chunks may have similar engineering 
goals while providing different ways to satisfy them. In such cases, the process and 
product models of the chunks overlap; integration is therefore necessitated. The Adapt 
the Product/Process Models task unifies the names of the similar product/process 
concepts and performs the required transformations to create the adapted prod-
uct/process models. After creating the adapted models and removing the inconsisten-
cies, the Merge Process/Product task combines the process models and product  
models into a single process model and product model, respectively. If there exist 
concepts in the product/process models which have the same semantics but different 
structures, or if one concept is a specialization of another concept, then the Refine 
Product/Process Models stage is performed on the models. The need for improving 
and refining the current integrated model is supported by the Remove Elements and 
Add Elements tasks.  

Paradigm Workflow: The objective of this workflow is to adapt the product model 
produced from the paradigm model in the previous stage before creating the corre-
sponding process model in the next stage. To achieve this goal, this workflow pro-
duces refined versions of the product models that are received as input.    

Configuration Workflow: If configuration characteristics are defined or modified  
in the previous stage, it is necessary to Define/Modify the Configuration Package  
in order to satisfy them. We must also be able to handle the lack of Configuration 



 Patterns of Situational Method Engineering 285 

Templates or Configuration Packages; the Define/Modify Configuration Template and 
Define/Modify Configuration Package stages are provided to cope with this problem.  

Develop Method Stage. After selecting and configuring the appropriate construction 
blocks, the next step is to develop the method. This stage uses the input blocks to 
either produce a methodology or a new composite block (Fig. 5(b)). For instance, the 
assembly workflow receives method chunks and assembles them into a new method 
chunk. The Manage Non-Functional Requirements stage is executed in all workflows 
of this stage to ensure the satisfaction of non-functional requirements.   

Assembly Workflow: After producing the method chunks, the next step is to assemble 
them. This process aims at connecting and ordering the method chunks. The Adapt the 
Process task unifies the names of similar process elements and performs the trans-
formations required to create the adapted process models. Similarly, Adapt the Prod-
uct Model performs a similar operation on the product models. After creating the 
adapted process/product models and removing the inconsistencies, the Connect Proc-
ess/Product Models task determines the order in which the process chunks must be 
executed, and provides the links between them. After connecting the chunks, the Re-
move Elements and Add Elements tasks refine and perfect the developed increment.   

Paradigm Workflow: The objective of this workflow is to create the process models 
corresponding to the produced product models. A process model can take various 
forms, i.e. activity-oriented, pattern-based, context-driven, and strategy-based. De-
spite the different forms a process my take, the tasks required for creating process 
models are the same. The creation process forms the types so that they only differ as 
to the details of the tasks. Therefore, we will refer to all of these forms as process 
elements. Identifying the process elements corresponding to products can be done 
through the Situation-based Identification and Goal-based Identification tasks. In the 
former, a typical situation method is considered as the policy for finding the process 
elements, while in the latter, the generic goal in the context of the method is consid-
ered as the policy. After finding the process elements, refinement is performed on the 
process elements identified through the Refine Process/Product Models stage. The 
Precedence task examines the set of process elements to find the precedence depend-
encies among them. After identifying the set of process elements, the main process 
model of the methodology must be created through connecting these process elements 
according to the product models. We may also have to address seamlessness, typically 
through creating new process elements to fill the seams. This activity is performed 
during the Product-driven Process Element Definition and Goal-driven Process Ele-
ments Definition tasks. 

Configuration Workflow: Once the base method is found, and the configuration 
packages/templates needed are retrieved or created, we apply the packages/templates 
to the base method in order to create the target methodology. Minor adjustments are 
then applied. If major/recurring adjustments are required, this might be an indication 
that a configuration template is missing, and hence, we do not have a sufficiently 
good match between the project situation and the existing configuration templates. 

Generalization Stage. The aim of this stage is to make the produced construction 
blocks reusable (Fig. 5(c)). Reusable blocks are identified, made reusable through 
abstraction and generalization, and documented and stored for future use.  



286 M. Asadi and R. Ramsin 

Test in the Large Stage. The objective of this stage is to perform the final tests on 
the method in order to find inconsistencies and deficiencies. The requirements and the 
generated methodology are received as input (Fig. 6(a)). The scope of evaluation is 
the whole methodology. We may need to send back the defects found to the previous 
phase to be fixed. The Verification/Validation task is first executed to check whether 
the generated methodology is free from defects and inconsistencies and whether it is 
in compliance with the requirements established in the requirements stage. The Com-
pleteness task checks whether the produced method is complete. This stage produces 
the tested method and test documents (including the test suite) as output. 

Deployment Stage. During this stage, the project-specific method is introduced into 
the user environment. It receives the method produced and the requirements, and 
produces method documents and the deployed method (Fig. 6(b)). Prepare Method 
Documents, Train Developers, and Support Staff are the main tasks of this stage. 

a) Test in the Large stage process pattern b) Deployment stage process pattern 

Fig. 6. Components of Deployment phase process pattern 

Refine Product/Process Models Stage. The inputs of this stage are the prod-
uct/process models, requirements, and method architecture (Fig. 7). The refined prod-
uct/ process models are delivered as output. Sometimes, there are concepts in the 
product/process models which have the same semantics but different structures; the 
Product/Process Generalization task generalizes such concepts into a new one. The 
Product/Process Specialization task is performed when one concept represents a 
specialization of another. The Product/Process Aggregation task strives to aggregate 
product/process elements based on the assumption that the aggregate element might 
satisfy the requirements not addressed by the individual constituents. The Prod-
uct/Process Decomposition task selects the relevant product/process sub-elements and 
eliminates the inadequate/unwanted ones. The Product/Process Linking task connects 
the different elements through applying generalization/specialization. 

Define/Adapt the Configuration Template Stage. The objective of this stage is to 
define a configuration template as an aggregate of configuration packages (Fig. 8). It  
 

 

Fig. 7. Refine Product/Process Models stage process pattern 



 Patterns of Situational Method Engineering 287 

 

Fig. 8. Define/Adapt the Configuration Template stage process pattern 

receives configuration characteristics and produces configuration templates. The  
Selecting Configuration Packages task elicits relevant configuration packages for a 
configuration template based on a development situation’s characteristics.  The Com-
bining Configuration Packages task combines the configuration packages and re-
solves their classification conflicts. The configuration template’s Consistency is then 
evaluated, with the result stored in the repository of configuration templates. 

Manage Non-Functional Requirements Stage. This stage aims at applying the non-
functional requirements to the method under construction (Fig. 9). We use the ap-
proach proposed in [16], which uses a concept called Method Tactic: A technique for 
method engineering aimed at achieving specific method qualities. For each non-
functional requirement, the factors which affect it are identified through the Analyze 
Non-Functional Requirements task. For instance, information flow efficiency (speed, 
responsiveness and leanness) and task interdependency are factors that affect the 
agility and scalability requirements. At the end of this task, we attain a set of factors 
that can affect the non-functional requirements. The preliminary list of method tactics 
is identified through inventing techniques for manipulating these factors to obtain the 
desired effect. As expected, most tactics affect different method qualities in conflict-
ing directions. Tactics are ultimately applied to the method or part of it in order to 
satisfy the non-functional requirements.  

 

Fig. 9. Manage Non-Functional Requirements stage process pattern 

Table 1. Essential requirements of a real-time methodology [17, 18] 

Type Requirements No. 
Specification at high abstraction level, possibly in a single environment  1 
General activities of software development (requirements engineering, analysis, 
design, implementation, test, deployment) 

2 

Reuse of earlier designs 3 
Traceability to requirements 4 

G
eneral  

R
equirem

ents 

Manage and monitor methodology 5 
Formal Verification (rather than test) at each abstraction level   6 
(Semi-) Automatic refinement between abstraction levels 7 
Concurrency  8 
Clear separation of concerns 9 

Situational 
R

equirem
ents Configuration of software and hardware 10 



288 M. Asadi and R. Ramsin 

6   Example: Engineering a Real-Time SDM  

In this section, we demonstrate the enactment of SMEP through an example. In  
this example, the objective is to develop a general methodology for real-time systems 
development. This domain was chosen because of its relative maturity, thus yielding 
 

 

Fig. 10. Requirements model for a real-time methodology 

 

Fig. 11. Real-time methodology produced through enacting the SMEP 



 Patterns of Situational Method Engineering 289 

Table 2. Results of the third iteration: configuration of the produced methodology 

Process 
Fragment  

Sub-process Fragments Keep? Requirements 
Targeted  

Process 
Fragment 

Sub-process Fragments Keep? Requirements 
Targeted 

Model the Problem Domain √ 1 Select Requirements for Iteration √ 4 
Prioritize Requirements  √ 1, 5 Understand the Model √ 4, 10 
Software Requirement Engi-
neering 

√ All except 6 Use Tool √ 9, 10 

Validate Intangible Artifacts   √ 3, 6 Instantiate and map to physical 
Hardware 

√ 7 

Split Requirements  √ 1,  9, 10 Generate Code from Models √ 4, 7 

D
efine and Split  
R

equirem
ents 

System Requirement Engineer-
ing 

√ All except 6 

Program
 and C

ode 
G

eneration 

Refine Models √ 2 

Create Project Plan √ 2, 5 Develop Test Plan √ 2 
Quality Assurance Plan √ 5 Develop Test Case √ 2 
Initial Risk Assessment  √ 2 Execute Test  √ 2 

Planning Define Initial Management 
Documents 

√ 2, 5 

T
est  in the 
S

m
all Document and Analyze Results √ 2 

Select Platform √ 3, 7 Recognize Reusable Artifacts  √ 3 

Select Tool √ 7 Generalize Artifacts √ 3, 4 

D
efine 

Infrastructure 

Define team × - Document Reusable Artifact √ 3 

Domain Analysis and Object 
Identification  

√ 2 

G
eneralization Use of Pattern √ 3 

Object-Oriented Analysis and 
Design 

√ 2, 3, 4, 7, 8 Transfer Knowledge Deploy 
System  

× - 

Validate Intangible Artifact  √ 3, 6, 7 Train User √ 2 
Concurrency Modeling  √ 4, 7, 8 Assemble Hardware √ 9, 10 

M
odel and V

alidate Architectural Design  √ 3, 4, 7, 8, 9, 10 Prepare User Documentation √ 2, 4, 11,  

Develop Plan Test √ 2 

R
elease and 

D
eploym

ent 

Change UI Them × - 
Use Tool × - Verify Compatibility  √ 2 
System Test √ 2 Integrated Related Parts of 

Subsystem 
√ 2 

User Acceptance Test √ 2 Create Software Package  √ 2 
Integrate Hardware Wrapper √ 9, 10 

Map software to physical 
Hardware 

√ 9, 10 

Validate hardware Specifications √ 9, 10 

T
est in the L

arge 

Acceptance Test  2, 9 

Integration 

Check Hardware Capability √ 9, 10 

better-defined requirements. Since real-time software tends to be closely intertwined 
with hardware elements, the constraints involved are profoundly different from those 
typically seen in data-intensive information systems. We will use an unabridged (un-
customized) version of SMEP, enacted phase by phase in order to show the efficacy of 
the process. The deployment phase, however, is beyond the context of this example. 

Method initiation phase: As mentioned earlier, this phase produces the methodology 
requirements and architecture. The requirements expected to be satisfied by a real 
time systems development methodology are shown in table 1 [17, 18], with the corre-
sponding requirements model illustrated in Fig. 10. As shown in Fig. 11(a), the ge-
neric software development process [1] is taken as the base methodology. 

Method construction phase: This phase aims at creating a methodology which satis-
fies the requirements model as well as any non-functional requirements. It can be 
achieved by performing one or more SMEP workflows. Firstly, the paradigm work-
flow is selected according to the requirements. This workflow selects one of the meta-
models available – including OPF [19] or SPEM-2 [20] – or generic object oriented 
models such as OOSP[8] and RTSP [17], and then instantiates it to produce the prod-
uct model and its corresponding process model. The process model is created in the 
form of a pattern-based process in which patterns are at a high level of granularity. 



290 M. Asadi and R. Ramsin 

The result of this iteration is shown in Fig. 11(b). The second iteration uses the as-
sembly workflow to enrich the pattern-based process created in the previous iteration. 
Based on the requirements and the patterns used, process fragments are retrieved  
from the method base and connected to each other to realize the context of their rele-
vant patterns. Fig. 11(c) shows the result of the second iteration. Each process frag-
ment selected in this iteration consists of sub-process fragments at finer levels of  
granularity. In the third iteration, the configuration workflow is applied to each proc-
ess fragment, pruning and fine-tuning the process so that the requirements are fully 
satisfied. Table 2 shows which parts of each process fragment are kept and which 
parts are deleted as a result of the third iteration.    

7   Conclusions 
We have proposed a pattern-based framework for Situational Method Engineering. 
Also proposed are a set of method-engineering-specific process patterns that can be 
used for constructing method engineering approaches. Pattern extraction was based on 
the detailed inspection of prominent method engineering approaches. The patterns 
have been organized into an instantiated version of the proposed pattern-based SME 
framework, thus yielding a generic Situational Method Engineering Process (SMEP). 
This work can be further extended to investigate the full details of the task process 
patterns. Future work can then be directed towards developing a Computer-Aided 
Method Engineering (CAME) environment [2], to be used during methodology con-
struction/adaptation for pattern-based methodology development. 

References 

1. Ramsin, R., Paige, R.F.: Process-Centered Review of Object-Oriented Software Develop-
ment Methodologies. ACM Computing Surveys 40(1), 1–89 (2008) 

2. Ralyté, J., Deneckére, R., Rolland, C.: Towards a generic model for situational method en-
gineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110. 
Springer, Heidelberg (2003) 

3. Ramsin, R.: The Engineering of an Object-Oriented Software Engineering Methodology. 
Ph.D. Thesis, University of York, York, UK (2006),  
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2006-12.pdf 

4. Ralyte, J., Rolland, C., Ayed, M.B.: An Approach for Evolution Driven Method Engineer-
ing. In: Krogstie, J., Halpin, T., Siau, K. (eds.) Information Modeling Methods and Meth-
odologies. Idea Group Inc, USA (2003) 

5. Karlsson, F., Gerfalk, P.J.: Method configuration: adapting to situational characteristics 
while creating reusable assets. Information and Software Technology 46(9), 619–633 
(2004) 

6. Ralyte, J., Rolland, C.: An assembly process model for method engineering. In: Dittrich, 
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283. 
Springer, Heidelberg (2001) 

7. Paige, R.F., Brook, P.J.: Formal Agile Method Engineering. In: Romijn, J.M.T., Smith, 
G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 109–128. Springer, Heidelberg 
(2005) 



 Patterns of Situational Method Engineering 291 

8. Ambler., S.W.: Process Patterns: Building Large-Scale Systems Using Object Technology. 
Cambridge University Press, Cambridge (1998) 

9. Gnatz, M., Marschall, F., Popp, G., Rausch, A., Schwerin, W.: Modular Process Patterns 
supporting an Evolutionary Software Development Process. In: Bomarius, F., Komi-
Sirviö, S. (eds.) PROFES 2001. LNCS, vol. 2188, p. 326. Springer, Heidelberg (2001) 

10. Tasharofi, S., Ramsin, R.: Process Patterns for Agile Methodologies. In: Advanced Pro-
gramming Environments. IFIP, vol. 244. Springer, Heidelberg (2007) 

11. Prakash, N., Bhatia., M.S.P.: Generic models for engineering methods of diverse domains. 
In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, 
vol. 2348, pp. 612–625. Springer, Heidelberg (2002) 

12. Brinkkemper, S.: Formalisation of information systems modeling. Ph.D. thesis, University 
of Nijmegen. Thesis Publishers, Amsterdam (1990) 

13. Osterweil., L.J.: Software processes are software too. In: 9th international Conference on 
Software Engineering, pp. 2–13. IEEE Computer Society Press, Los Alamitos (1987) 

14. Coulin, C., Zowghi, D., Sahraoui, A.-E.-K.: A Lightweight Workshop- Centric Situational 
Approach for the Early Stages of Requirements Elicitation in Software Systems Devel-
opme. In: Proceedings of the International Workshop on Situational Requirements Engi-
neering Processes (SREP 2005), France (2005) 

15. Ralyte, J.: Requirements definition for the situational method engineering. In: Proceedings 
of the IFIP WG8.1 working conference on engineering information systems in the internet 
context (EISIC 2002), pp. 127–152 (2002) 

16. Zhu, L., Staples, M.: Situational Method Quality. In: IFIP WG8.1 Working Conference on 
Situational Method Engineering: Fundamentals and Experiences (ME 2007) LNCS, 
vol. 244, pp. 193–206. Springer, Heidelberg (2007) 

17. Esfahani, N.: Introducing a set of process patterns for real-time software, MSc Thesis (in 
Persian), Department of Computer Engineering, Sharif University of Technology, Tehran, 
Iran (2008) 

18. Cuccuru, A., De Simone, R., Saunier, T., Siegel, G., Sorel, Y.: P2I: An Innovative MDA 
Methodology for Embedded Real-Time System. In: Proceedings of the 8th Euromicro 
Conference on Digital System Design, pp. 26–33 (2005) 

19. Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Introduction. 
Addison-Wesley, Reading (2001) 

20. Object Management Group, Systems and Software Process Engineering Metamodel v2.0 
(SPEM), OMG (2007) 


	Patterns of Situational Method Engineering
	Introduction
	Proposed Pattern-Based SME Framework
	Infrastructures and Creation Policies in SME Approaches
	Situational Method Engineering Process (SMEP)
	SMEP Process Patterns
	Phase Process Patterns
	Stage Process Patterns

	Example: Engineering a Real-Time SDM
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




