
I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 419–431, 2008.
© Springer-Verlag Berlin Heidelberg 2008

MDA-Based Methodologies: An Analytical Survey

Mohsen Asadi and Raman Ramsin

Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

mohsenasadi@mehr.sharif.edu, ramsin@sharif.edu

Abstract. Model-Driven Development (MDD) has become a familiar software
engineering term in recent years, thanks to the profound influence of the Model
Driven Architecture (MDA). Yet MDD, like MDA itself, defines a general
framework, and as such is a generic approach rather than a concrete
development methodology. Methodology support for MDA has been rather
slow in coming, yet even though several MDA-based methodologies have
emerged, they have not been objectively analyzed yet. The need remains for a
critical appraisal of these methodologies, mainly aimed at identifying their
achievements, and the shortcomings that should be addressed. We provide a
review of several prominent MDA-based methodologies, and present a criteria-
based evaluation which highlights their strengths and weaknesses. The results
can be used for assessing, comparing, selecting, and adapting MDA-based
methodologies.

Keywords: Model Driven Architecture, Software Development Methodology,
Evaluation Criteria.

1 Introduction

The Model-Driven Architecture (MDA) proposed by the Object Management Group
(OMG) defines an approach to information systems specification that separates the
specification of system functionality from the specification of the implementation of
that functionality on a specific technology platform. The primary goals of MDA are
portability, interoperability, and reusability of software. To achieve these goals, MDA
raises the level of abstraction and strives to automate the software generation process.

There are a number of important OMG standards at the core of MDA: The Unified
Modeling Language (UML), Meta Object Facility (MOF), XML Metadata
Interchange (XMI), and Common Warehouse Metamodel (CWM) [1]. These
standards define the core infrastructure of the MDA, and have greatly contributed to
modern systems modeling. The core standards of the MDA (UML, MOF, XMI, and
CWM) form the basis for building coherent schemes for authoring, publishing, and
managing models within a model-driven architecture.

MDA provides an approach for specifying systems in terms of models; system
requirements are specified in the Computation-Independent Model (CIM); the
Platform-Independent Model (PIM) is the model that describes the system design
independent of the implementation platform; the Platform-Specific Model (PSM), on

420 M. Asadi and R. Ramsin

the other hand, describes the system design in the form of a platform-dependent
model. Through its multi-layered modeling approach, MDA raises the abstraction
level of traditional platform-dependent design approaches.

A Software Development Methodology (SDM) is a framework for applying
software engineering practices with the specific aim of providing the necessary means
for developing software-intensive systems [2]. A methodology consists of two main
parts: a set of modeling conventions comprising a modeling language (syntax and
semantics), and a process which provides guidelines as to the order of the activities
and specifies the artifacts developed using the modeling language. According to the
above definition, MDA is not a methodology, but rather an approach to software
development. This fact forces organizations willing to adopt the MDA to either
transform their software development methodologies into Model-Driven
Development (MDD) methodologies, or use new methodologies that utilize MDA
principles and tools towards the realization of MDA standards.

This research presents an analytical review and evaluation of a select set of existing
MDA-based methodologies. The research has been performed in three main steps:
information gathering and methodology selection, development of Evaluation Criteria
(EC), and criteria-based evaluation of the selected MDA-based methodologies – with
results and observations presented in tabular form. The results can be used by
software developers to select the MDA-based methodology best suited to their needs,
and by method engineers to create MDA-based methodologies through making use of
the strengths identified and addressing the deficiencies observed.

The information gathering step involves studying relevant MDA literature and
identifying prominent MDA-based methodologies. An initial set of evaluation criteria
is then defined; this initial set is refined and completed to satisfy a predefined set of
suitability Meta-Criteria (criteria to evaluate evaluation criteria). The last step
involves performing the evaluation based on the set of criteria, and tabulating and
analyzing the results.

The rest of the paper is organized as follows: Section 2 provides a review of
existing MDA-based methodologies; we present our evaluation results in section 3,
and provide an analysis of the results in Section 4; conclusions and areas for
furthering this research are presented in section 5.

2 Review of MDA-Based Methodologies

In this section, we present a review on MDA-Based methodologies using the process-
centered template introduced in [2], which accentuates the processes of the metho-
dologies. The main factor influencing the selection of these particular methodologies
was the availability of proper resources and documentation on their processes.

2.1 ODAC Methodology

ODAC is an MDA based methodology specifically targeted at distributed systems. It
provides a set of concepts and structure rules to create systems. The "viewpoint" is the
main concept used in this methodology. A viewpoint is a subdivision of the complex
specification of the system [3], used for organizing the modeling activities. ODAC

 MDA-Based Methodologies: An Analytical Survey 421

considers five viewpoints: enterprise, information, computational, engineering, and
technology. It uses these concepts to define development steps by identifying the
correspondences between analysis, design, and implementation activities and the
viewpoints. ODAC identifies three categories of specifications for each system:
behavioral, engineering, and operational [4]. ODAC phases are as follows (Fig. 1):

• Analysis: produces the behavioral specifications (PIM) of the system.
• Design: establishes the engineering specifications (analogous to MDA’s Platform

Description Model–PDM) and uses it to produce the operational specifications
(PSM) via projection of the PIM onto a target environment.

• Implementation: generates the execution code from the PSM.

Analysis phase

Design phase

Implementation
phase

Requirements

Behavioral

Specification
(PIM)

Engineering

Specification
(PDM)

Execution
Enviroment

Operational

specification
(PSM)

Code
Legend

Work-Product

Phase

Production/Revision

Control Flow

Fig. 1. The ODAC Process

2.2 MASTER Methodology

MASTER was developed as part of a European information project of the same name.
The methodology includes an MDD process and a set of system family engineering
methods to adapt the MDD process according to customer requirements [5]. The
activities and roles of this methodology are defined based on the Software Process
Engineering Metamodel (SPEM) [6]. MASTER phases are as follows (Figure 2):

• Capture User Requirements: covers requirements elicitation and documentation.
• PIM Context Definition: describes the domain scope of the software system to be

developed. The output of this phase is a clear definition of the system, its goals,
and its domain.

• PIM Requirements Specification: develops a clear and complete requirements
model. The main activity of this phase includes specifying capabilities (use
cases) and enforcers (nonfunctional requirements) of the system.

• PIM Analysis: models the internal view of the system regardless of the
technological constraints.

• Design: models the detailed structure and behavior of the system.
• Coding and Integration: develops and verifies the execution code. The code can

be generated from the platform-specific model by means of MDA tools.
• Test: verifies and validates the final system.
• Deployment: transitions the system to the user environment.

422 M. Asadi and R. Ramsin

Deployment phase

Testing phase

Coding & Integration

phase

Design phase

PIM Analysis phase

PIM Requirement
Specification phase

PIM Context Definition
phase

Capture User

Requirement phase

Final

Product

PSM

Analysis
PIM

Software

Architecture
(Initial)

Design PIM

Deployment

Products

Final Code

Application

PIM (Final)

Software
Architecture

(Final)

Test Model

Requirements
PIM

Context PIM

Requirement

Specifications

Application

PIM

Fig. 2. The MASTER Process

2.3 C3 Methodology

The C3 methodology uses principles of Business Object Oriented Software Techn-
ology for Enterprise Reengineering (BOOSTER) to develop business applications [7].
The name C3 is derived from the three concepts of inter-organization Collaboration,
Concurrent software engineering and Component development. Concurrent software
engineering for both system architectural design and component design is realized
through Model-Driven Development and XMI-based techniques.

The phases of this methodology are as follows (Figure 3):

• Standardization: downloads the required model elements needed to develop the
target business software from the project repository.

• Software Development: defines the application’s overall architecture.

Code Generation phase

Model Design phase

Application Deployment
phase

Software Development

phase

Standardization phase

Code

Business

Architecture

Requirement

Component
Model

PSM
PIM

Deployment
Products

Fig. 3. The C3 Process

 MDA-Based Methodologies: An Analytical Survey 423

Model Integration phase

Framework Instantiation

phase

Application Detailed
Design

Application-Specific
Design phase

Application
Requirements Analysis

phase

Application
Code

Instantiated

PIM
(Framework)

Application

Analysis
Model

Application
Specific PIM

Application
PIM

Application

PSM

Application
Implementation phase

Domain Analysis phase

Product Line Scoping

phase

Framework Modeling
phase

Common

Features and
Varieties

Specification

Product Line

Scop

Generic
Framework

(Generic

PIM)

Decision

Model

Fig. 4. The DREAM Process

• Model Design: refines the business application architecture. The PIM is the
output of this phase.

• Code Generation: transforms the PIM to PSM and deployable components.
• Application Deployment: prepares the software for deployment into the

operational environment based on the architectural framework.

2.4 DREAM Methodology

The DRamatically Effective Application development Methodology (DREAM)
combines the key activities of Product Line Engineering (PLE) with the model
transformation features of MDA [8]. DREAM phases are as follows (Fig. 4):

• Domain Analysis: captures the features of several organizations in the same
domain, and analyzes the Commonality and Variability (C&V). The output is the
specification of common features and differences between organizations.

• Product Line Scoping: determines the scope of the target product line.
• Framework Modeling: realizes the C&V in a framework, presented as a PIM. The

framework defines the general architecture for the desired members of the
product line, together with the relationships and constraints.

• Application Requirements Analysis: analyzes the application requirements and
identifies the features related to the application at hand. The output of this phase
is the application analysis model.

• Application-Specific Design: realizes the application analysis model as a
platform-independent design model. The output is the application-specific PIM.

• Framework Instantiation: instantiates the framework for the specific application
by setting the variants accordingly. The output of this phase is the instantiated
framework PIM.

• Model Integration: integrates the specific application PIM and the instantiated
framework PIM into one model.

424 M. Asadi and R. Ramsin

• Application Detailed Design: refines the integrated model by considering
platform-specific issues, thereby producing the PSM.

• Application Implementation: generates the execution code and its related
implementation complements – such as the database – from the PSM.

2.5 MODA-TEL Methodology

The MODA-TEL methodology is mainly targeted at distributed applications [9]. The
activities and roles of this methodology are defined based on SPEM [6].

Fig. 5. The MODA-TEL Process

As shown in Fig. 5, the MODA-TEL process consists of five phases:

• Project Management: manages and monitors the project.
• Preliminary Preparation: identifies modeling and transformation requirements.
• Detailed Preparation: determines modeling and transformation specifications.
• Infrastructure Setup: provides the tool support and metadata management

facilities to be used in the execution phase.
• Execution: aims at developing the software artifacts and executable code. The

activities include: Requirement Analysis, Modeling (producing the PIM),
Verification/Validation, Transformation (PIM to PSM), Coding/Testing,
Integration/Deployment, and Operation/Maintenance.

2.6 DRIP-Catalyst Methodology

DRIP-Catalyst is an MDA-based methodology for developing complex, fault-tolerant
distributed families of software [10]. DRIP stands for Dependable Remote Interacting
Processes. The methodology makes use of the notion of “Atomic Action” as a
recovery technique that permits programmers to apply backward and forward error

 MDA-Based Methodologies: An Analytical Survey 425

recovery. A Coordinated Atomic Action (CAA) consists of distributed transactions
and an atomic action. The DRIP framework embodies the CAAs in terms of a set of
java classes. It builds on the notion of Dependable Multiparty Interaction (DMI).
DRIP Catalyst includes a process, a UML profile and a set of transformations, all of
which have been integrated into a tool. DRIP-Catalyst phases are as follows (Fig. 6):

• Problem to Solution Transition: maps the requirements to the solution through
sketching nested CAA diagrams.

• Platform-Independent Architectural Design: categorizes the CAAs generated in
the previous phase in a coherent package of UML class diagrams.

• Platform-Independent Detailed Design: details the modeling elements related to
each CAA identified in the previous phase, using UML activity diagrams.

• Formal Verification: automatically checks dependability properties using formal
methods, and verifies that the models satisfy the requirements, thus producing a
verified Platform-Independent Detailed Design Model (PIM2DM).

• PIM to PSM Transition: maps the PIM2DM to a platform-specific model through
transformation provided by MDA tools, producing the PSM.

• PSM to Code: maps the PSM to execution code.
• Completion: produces code that can be compiled.
• Deployment: defines a configuration set that realizes the deployment of the

application, through producing deployment guides and configuration files.

Fig. 6. The DRIP-Catalyst Process

3 Evaluation of MDA-Based Methodologies

We have evaluated the MDA-based methodologies reviewed in the previous section
using a method similar to the Feature Analysis approach [11]. The Feature Analysis
approach was developed in 1996 under a collaborative project between academia and
industry. The outcome of this project was a method to evaluate software engineering

426 M. Asadi and R. Ramsin

methods and tools. Feature Analysis provides two ways for evaluating any product in
terms of results: a simple form and a scale form. In its simple form, the approach
presents a list of “yes/no” responses against the existence of some feature in a
product. In the scale form, instead of “yes/no” responses, a number between -1 to 5 is
used which represents the degree of conformance of the product to a feature.

Since the selected MDA-based methodologies are evaluated with a set of
Evaluation Criteria (EC), the development of the criterion set is an important feature
of our research. The collected criteria are of two types: (a) Scale type, where a scale
represents the degree of presence of a criterion in the methodology (we use scales
with three levels for each such criterion); and (b) Narrative type, where the degree of
the implementation of the criterion in the methodology is described in narrative form.

The criterion set used for evaluation was developed through gradual refinement: an
initial set of general criteria – addressing software development processes and MDD-
related issues – was compiled through studying relevant resources, such as official
MDA specifications and survey/analysis reports on software development
methodologies [2]; the set was then refined, using a set of meta-criteria (criteria to
evaluate the EC set) to guide the refinement process towards a reasonably complete
and precise set of criteria. The following meta-criteria were defined for this purpose:

(I) Existence of tool-related criteria: used to ensure that the EC set provides tool
evaluation, as most MDA practices are enacted through specialized tools. This
meta-criterion ensures the existence of criteria that measure how much of a
task is governed by tools and how much by the methodology itself; that is,
whether the methodology participates in such activities or leaves them to tools.

(II) Existence of MDA-related criteria: used to evaluate the completeness of the EC
set as pertinent to MDA aspects. This meta-criterion ensures that the EC set
covers the MDA aspects of methodologies. MDA-related criteria are applied to
the methodologies only in an MDA-related context.

(III) Existence of general criteria: used to evaluate the completeness of the EC set
from general aspects. This meta-criterion ensures that the EC set covers the
general aspects of the methodologies; general criteria can be applied to all
methodology types: plan-driven, agile and MDA-based methodologies alike.

The refinement process proceeded by categorizing the initial set of criteria into
tool-related, MDA-related, and general criteria (according to the above meta-criteria).
For each category, relevant resources were then searched iteratively for new criteria
and ideas for refining the existing ones. For instance, in striving to complete the
criteria belonging to the general category, general software engineering resources and
existing documentation on methodologies (such as plan-driven, agile and component-
based) were consulted; as an example, since most methodologies (especially agile
methods) include activities for customizing and adapting their processes, adaptability
was added as a criterion in order to cover this need in MDA-based methodologies;
Reusability was also added, based on the observation that MDA and most component-
based methodologies consider it as essential. Tables 1, 2 and 3 show the resulting
evaluation criteria; the three tables correspond to meta-criteria I, II and III
respectively. We have strived to produce a useful, relevant, and meaningful criterion
set, while keeping it small and practical. We have therefore focused on addressing
features that are particularly important and significant in MDA and MDD.

 MDA-Based Methodologies: An Analytical Survey 427

As a basic requirement, evaluation criteria targeted at software development
processes are expected to satisfy certain validity meta-criteria; one such set has been
defined in [12]. Our evaluation criteria satisfy the four validity meta-criteria of [12],
in that they are: 1) general enough to be applicable to all MDA-based methodologies;
2) precise enough to help discern the similarities and differences among MDA-based
methodologies; 3) comprehensive enough to cover all significant features of MDA-
based methodologies; and 4) balanced, i.e. adequate attention has been given to all
three major types of features in a methodology: technical, managerial and usage [12].

Table 1. Tool-related evaluation criteria (satisfying meta-criterion I)

Table 2. MDA-related evaluation criteria (satisfying meta-criterion II)

Criterion Name Criterion Type Description of Levels

Tool Selection/Implementation Scale Form

A: The methodology does not provide a specific tool and there are no
explicit guidelines as to how to select an appropriate alternative tool.
B: The methodology does not provide a complete toolset, or only
general guidelines are provided for selecting alternative tools.
C: The methodology provides a complete toolset, or provides precise
guidelines for selecting appropriate alternative tools.

CIM Creation Scale Form

PIM Creation Scale Form

PSM Creation Scale Form

A: Production of the model is not addressed by the methodology.
B: The methodology provides general guidelines for creating the
model; creation steps are not determined precisely.
C: The methodology explicitly describes steps and techniques for
creating the model.

Verification/ Validation Scale Form
Extension of Rules Scale Form
Round-trip Engineering Scale Form
Source Model and Target Model Synchronization Scale Form

A: The activity is not defined and is devolved to the developers.
B: The activity is defined by the methodology, but not in detail.
C: The methodology provides explicit and detailed guidelines and
techniques for performing the activity.

Use of UML Profiles Narrative

Tables 4, 5, and 6 show the results of applying the evaluation criteria to the

selected set of MDA-based methodologies. It should be noted that the interpretation
of the results is largely dependent on the usage context. The evaluation results can be
used for selecting a suitable process from the set of surveyed ones based on a set of
predefined requirements, or for identifying shortcomings in these processes in order
to improve them. The evaluation framework (criteria) and the results can also be used
in a Method Engineering (ME) context; i.e. for guiding the adaptation, extension,
meta-modeling/instantiation, and decomposition/assembly of MDA-based processes.

4 Analysis of the Results

The following subsections contain analyses of the evaluation results shown in tables
4, 5, and 6. Of the methodologies reviewed herein, MODA-TEL and MASTER are
the methodologies that satisfy most of the criteria.

Criterion Name Criterion Type Description of Levels
PIM to PSM Transformation Narrative
PSM to Code Transformation Narrative
Metadata Management Narrative
Automatic Test Narrative
Traceability between Models Narrative

Involved: The Methodology explicitly participates in the activity and
provides precise techniques/guidelines.
Devolved: The activity is devolved to the tools and the methodology
does not prescribe the steps that should be performed by the tools.

428 M. Asadi and R. Ramsin

Table 3. General evaluation criteria (satisfying meta-criterion III)

Description of Levels Criterion Type Criterion Name
A: The methodology does not provide coverage for the phase.
B: The methodology provides general guidelines for the phase.
C: The methodology provides detailed directives for the phase.

Scale FormRequirements EngineeringG
eneric Life C

ycle

C
overage

Scale Form Analysis
Scale Form Design
Scale Form Implementation
Scale Form Test
Scale Form Deployment
Scale FormMaintenance

A: The methodology does not provide coverage for the activity.
B: The methodology provides general guidelines for the activity.
C: The methodology provides detailed directives for the activity.

Scale Form Project Management

U
m

brella
A

ctivities

Scale Form Quality Assurance
Scale Form Risk Management

A: Problem Domain Analysis has not been addressed.
B: Problem Domain Analysis is implicit and confined to requirements
engineering.
C: Problem Domain Analysis is explicitly addressed by the
methodology, and traceability is maintained.

Scale Form Problem Domain Analysis

A: The task is devolved to the developers; the methodology does not
prescribe techniques/guidelines.
B: The methodology explicitly prescribes techniques to create
potentially reusable artifacts.
C: In addition to B, the methodology prescribes techniques to record
syntactic/semantic features of reusable aspects for future reuse.

Scale Form Reusability

A: No techniques are prescribed for adapting the methodology.
B: The methodology provides extensible notations.
C: In addition to B, the methodology prescribes explicit techniques for
configuring the process and/or modeling language.

Scale Form Adaptability

A: Some phases of the methodology are not completely specified.
B: All phases are completely specified (in breadth) but details are
lacking in some phases.
C: All phases are completely specified at an adequate level of detail.

Scale Form Completeness of Definition

Extended: The methodology is the result of extending an existing
methodology to support MDA-based development.
MDA-based (Genuine): The methodology has been created from
scratch aimed at supporting MDA-based development.

Scale Form Methodology Type

NarrativeApplication Scope

4.1 Tool-Related Evaluation Results

The results seem to show that most of the methodologies examined do not offer any
guidelines as to how MDA tools should be used in coherence with the methodology,
thus leaving all tool-related issues to the tools themselves. The only counterexamples
are MODA-TEL and MASTER, and even these do not provide full coverage.

4.2 MDA-Related Evaluation Results

Since tools have a key role in MDD, MDA-based methodologies are expected to
incorporate activities aimed at selecting or implementing appropriate tools. While
DRIP-Catalyst and MASTER incorporate suitable tools themselves, MODA-TEL
provides guidelines for selecting the tool from existing commercial and open source
MDA toolsets. DREAM, C3 and ODAC are at the other end of the spectrum: they do
not even offer any guidelines as to how an appropriate alternative tool can be selected.

All of the MDA-based methodologies reviewed incorporate activities for creating
the PIM and PSM; creation of the CIM, however, is only addressed by MASTER and
C3. Due to the model-centric nature of MDD, syntactic and semantic accuracy of the
models is essential, as is their traceability to requirements; however, most of the
processes reviewed do not provide adequate support for model verification/validation.

All the methodologies reviewed (except for MASTER) are weak in providing other
important MDA features; i.e., support for extension of rules, round-trip engineering,
and source-model and target-model synchronization.

 MDA-Based Methodologies: An Analytical Survey 429

4.3 General Evaluation Results

Most of the methodologies reviewed cover the analysis, design, and implementation
phases of the generic software development life cycle, either by prescribing
specialized techniques, or through making use of existing object oriented techniques;
however, the requirements engineering, test, deployment, and maintenance phases are
not adequately supported in most of them. For instance, only MODA-TEL supports
maintenance, whereas MDA-based maintenance requires special techniques that
cannot be simply borrowed from existing methodologies. Another area where MDA-
based processes need improvement is support for umbrella activities; of the processes
reviewed, only MODA-TEL and MASTER provide support for project management
and quality assurance, while risk management is not supported by any methodology.

Table 4. Results of applying the Tool-related evaluation criteria

 Methodology
Criterion MODA-TEL MASTER C3 ODAC DREAM DRIP-Catalyst

PIM to PSM Transformation Involved Involved Devolved Devolved Devolved Devolved
PSM to Code Transformation Involved Involved Devolved Devolved Devolved Devolved
Metadata Management Involved Involved Involved Devolved Devolved Devolved
Automatic Test Devolved Involved Devolved Devolved Devolved Devolved
Traceability between Models Involved Devolved Devolved Devolved Devolved Devolved

Table 5. Results of applying the MDA-related criteria

 Methodology
Criterion MODA-TEL MASTER C3 ODAC DREAM DRIP-Catalyst

Tool Selection/
Implementation B C A A A C

CIM Creation A B B A A A
PIM Creation B C B C B C
PSM Creation B C B B B B
Verification/ Validation B A A A A B
Extension of Rules C B A B B A
Round-trip Engineering B A A A A A
Source Model and Target
Model Synchronization B B A A A A

Use of UML Profiles
Used for
Requirements
Representation

Used for Annotating
PIM with Management
Information

Not
Used

Used for Describing
Development Steps.

Used for Defining
Well-Structured
Models

Used for Defining
Fault-Tolerant
Transactions

Table 6. Results of applying the General criteria

DRIP-Catalyst DREAM ODAC C3MASTER MODA-TEL Methodology
Criterion

ABABCBRequirements Engineering G
eneric Life C

ycle

C
overage

CBCACBAnalysis
CBCBCBDesign
BBBBBBImplementation
AAAACBTest
BAABBBDeployment
AAAAABMaintenance
AAAACBProject Management

U
m

brella
A

ctivities

AAAABBQuality Assurance
AAAAAARisk Management
ABABBAProblem Domain Analysis
ABABBBReusability
AAAABBAdaptability
ABBACBCompleteness of Definition
Extended Extended Extended Extended MDA-BasedMDA-Based Methodology Type
Distributed Fault-
Tolerant Applications

Product Line
Engineering

Agent-Oriented
Systems

Business
Software

Information
Systems

Distributed
Applications Application Scope

430 M. Asadi and R. Ramsin

Most of the MDA-based methodologies reviewed provide techniques for creating
and applying reusable artifacts. Support for reusability, however, is not
comprehensive enough: Methodologies do not prescribe techniques for recording the
syntactic- and semantic features of reusable artifacts in order to facilitate future reuse.

Developers prefer methodologies which lend themselves to customization and
adaptation; but of the methodologies reviewed, only MODA-TEL and MASTER
provide adaptability (in the form of extensible notations). Furthermore, methodologies
need to be properly defined in order to be usable; however, some of the
methodologies reviewed herein (e.g., C3) suffer from cursory definitions of activities.

5 Conclusions and Future Work

MDA cannot be useful without software development methodology support and the
tools that implement its main concepts and standards. We have surveyed several
prominent MDA-based methodologies and have evaluated them using a predefined
set of evaluation criteria. According to the evaluations results, we can conclude that:

 The MDA-based methodologies studied herein are not mature enough, especially
as pertaining to providing support for standard software engineering activities.

 Definitions of methodologies are not complete.
 Umbrella activities are not adequately addressed in most of these methodologies.
 Most of the methodologies do not participate in the activities that are supported

by tools, and do not even provide guidelines for tool usage.
 PIM and PSM production is supported by the majority of these methodologies;

the CIM, however, is mostly neglected.
 Most of the methodologies use conventional OOA and OOD techniques to

produce PIMs.

We aim to further this research by identifying a set of process patterns showing
recurring activities in different MDA-based methodologies, thereby producing a
generic and instantiable process for such methodologies.

References

1. Mukerji, I., Miller, J.: MDA Guide Version 1.0.1. OMG (2003)
2. Ramsin, R., Paige, R.F.: Process-Centered Review of Object-Oriented Software

Development Methodologies. ACM Computing Surveys~40(1), 1--89 (2008)
3. Gervais, M.: Towards an MDA-Oriented Methodology. In: 26th Annual International

Computer Software and Applications Conference (COMPSAC 2002), pp. 265--270. IEEE
Press, Oxford (2002)

4. Gervais, M.: ODAC: An Agent-Oriented Methodology Based on ODP. Journal of
Autonomous Agents and Multi-Agent Systems~7(3), 199--228 (2003)

5. Larrucea, X., Diez, A.B.G., Mansell, J.X.: Practical Model Driven Development process.
In: Second European Workshop on Model Driven Architecture (MDA), UK (2004)

6. Object Management Group: Software Process Engineering Metamodel v1.0 (SPEM). OMG
(2002)

 MDA-Based Methodologies: An Analytical Survey 431

7. Hildenbrand, T., Korthaus, A.: A Model-Driven Approach to Business Software
Engineering. In: 8th World Multi-Conference on Systemics, Cybernetics and Informatics,
Florida. Information Systems, Technologies and Applications, vol.~IV, pp. 74--79 (2004)

8. Kim, S., Min, H.G., Her, J.S., Chang, S.H.: DREAM: A practical product line engineering
using model driven architecture. In: ICITA 2005, Australia, pp. 70--75 (2005)

9. Gavras, A., Belaunde, M., Ferreira Pires, L., Andrade Almeida, J.P.: Towards an MDA-
based development methodology. In: Oquendo, F., Warboys, B.C., Morrison, R. (eds.)
EWSA 2004. LNCS, vol.~3047, pp. 71--81. Springer, Heidelberg (2004)

10. Guelfi, N., Razavi, R., Romanovsky, A., Vandenbergh, S.: DRIP Catalyst: an MDE/MDA
Method for Fault-tolerant Distributed Software Families Development. In: OOPSLA \&
GPCE workshop on best practices for Model Driven Development, Portland (2004)

11. Kitchenham, B., Linkman, S., Law, D.: DESMET: a methodology for evaluating software
engineering methods and tools. Computing and Contrological Engineering Journal~8, 120-
-126 (1997)

12. Karam, G.M., Casselman, R.S.: A cataloging framework for software development
methods. IEEE Computer~26(2), 34--45 (1993)

	MDA-Based Methodologies: An Analytical Survey
	Introduction
	Review of MDA-Based Methodologies
	ODAC Methodology
	MASTER Methodology
	${C^3}$ Methodology
	DREAM Methodology
	MODA-TEL Methodology
	DRIP-Catalyst Methodology

	Evaluation of MDA-Based Methodologies
	Analysis of the Results
	Tool-Related Evaluation Results
	MDA-Related Evaluation Results
	General Evaluation Results

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

