
Information and Software Technology 78 (2016) 95–120

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A pattern-based model-driven approach for situational method

engineering

Halimeh Agh, Raman Ramsin

∗

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

a r t i c l e i n f o

Article history:

Received 20 December 2015

Revised 11 May 2016

Accepted 31 May 2016

Available online 2 June 2016

Keywords:

Software development methodology

Situational method engineering

Model-driven development

Process modeling

Pattern-based model transformation

a b s t r a c t

Context: Constructing bespoke software development methodologies for specific project situations has

become a crucial need, giving rise to Situational Method Engineering (SME). Compared with Software

Engineering, SME has a long way to go yet; SME approaches are especially deficient as to support for

modeling, portability, and automation. Model-Driven Development (MDD) has been effectively used for

addressing these issues in Software Engineering, and is also considered a promising approach for resolv-

ing them in SME.

Objective: This paper aims to address the shortcomings of existing SME approaches by introducing a

novel MDD approach, specifically intended for SME purposes, that uses a pattern-based approach for

model transformation.

Method: Developing a MDD approach for SME requires that a modeling framework, consisting of model-

ing levels, be defined for modeling software development methodologies. Transformation patterns should

also be specified for converting the models from one level to the next. A process should then be de-

fined for applying the framework and transformations patterns to real SME projects. The resulting MDD

approach requires proper evaluation to demonstrate its applicability.

Results: A framework and a semi-automated process have been proposed that adapt pattern-based model

transformation techniques for application to the methodology models used in SME. The transformation

patterns have been implemented in the Medini-QVT model transformation tool, along with two supple-

mentary method bases: one for mapping the situational factors of SME projects to requirements, and

the other for mapping the requirements to method fragments. The method engineer can produce the

methodology models by using the method bases and executing the transformation patterns via the tool.

Conclusion: The validity of the proposed approach has been assessed based on special evaluation crite-

ria, and also through application to a real-world project. Evaluation results indicate that the proposed

approach addresses the deficiencies of existing approaches, and satisfies the practicality requirements of

SME approaches.

© 2016 Elsevier B.V. All rights reserved.

1

s

o

M

d

a

E

t

m

o

a

h

p

a

i

i

a

b

t

a

e

h

0

. Introduction

The challenges of modern software development have neces-

itated that software development methodologies be custom-built

r adapted; this has led to the emergence of a discipline called

ethod Engineering (ME), formally defined as: “The engineering

iscipline to design, construct and adapt methods, techniques

nd tools for the development of systems”; Situational Method

ngineering (SME) is an important subfield of method engineering

hat focuses on composing or adapting a software development

ethodology according to the specific characteristics of the project
∗ Corresponding author. Department of Computer Engineering, Sharif University

f Technology, Azadi Ave., Tehran, Iran. Fax: + 98 21 6601 9246.

E-mail addresses: agh@ce.sharif.edu (H. Agh), ramsin@sharif.edu (R. Ramsin).

e

t

o

b

ttp://dx.doi.org/10.1016/j.infsof.2016.05.010

950-5849/© 2016 Elsevier B.V. All rights reserved.
t hand (expressed in terms of situational factors) [1] . Various

igh-level approaches have been proposed for SME, the most

rominent of which are: Paradigm-based [2] , Assembly-based [3] ,

nd Extension-based [4] . The paradigm-based approach is rooted

n metamodeling, in that the target methodology is produced by

nstantiating, abstracting or adapting an existing metamodel; in the

ssembly-based approach, the target methodology is constructed

y reusing methodology parts to compose a new methodology or

o enhance an existing one; and in the extension-based approach,

n existing methodology is augmented by applying special-purpose

xtension patterns. SME has been evolving for two decades; how-

ver, existing SME approaches have not been able to fully address

he various requirements of the SME domain, the most important

f which include: Complexity management, automation, porta-

ility, and accuracy [5] . In Model-Driven Development (MDD),

http://dx.doi.org/10.1016/j.infsof.2016.05.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.05.010&domain=pdf
mailto:agh@ce.sharif.edu
mailto:ramsin@sharif.edu
http://dx.doi.org/10.1016/j.infsof.2016.05.010

96 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

b

t

i

m

u

t

p

t

t

t

s

i

p

a

M

p

c

d

i

p

v

p

b

a

S

a

f

2

i

I

a

e

c

t

S

t

r

ing, method design, and method implementation.
models are the pivotal concepts and artifacts, and automating

the production of models through model transformations is the

primary objective [6] . This mindset has many advantages, such

as increasing productivity, managing complexity, and enhancing

portability. As the major manifestation of MDD, the Model-Driven

Architecture (MDA) prescribes the production of three models

of the target software system: Computation-Independent Model

(CIM), Platform-Independent Model (PIM), and Platform-Specific

Model (PSM) [7] ; this multi-level modeling framework, which

relies on the notions of “Computation” and “Platform”, has become

a de-facto standard for MDD approaches. Model transformation is

an important issue in MDD, as lower-level models are produced by

transforming their higher-level counterparts. There are several ap-

proaches for model transformation in MDD, including graph-based,

metamodel-based, by-example, and pattern-based [8] .

Due to its potential benefits, MDD has already been used for

SME purposes [5] ; however, as discussed in Section 5.2 , existing

approaches are deficient in that many of them lack adequate sup-

port for automation of model transformations, and all of them

are over-dependent on the method engineer’s expertise for de-

termining the method fragments suitable for constituting the tar-

get methodology. Moreover, these methods need to be further

improved as to the quality attributes typically targeted in MDD:

complexity management, portability, productivity, and reusability.

These attributes, as applicable in the context of SME, are briefly

explained below:

• Complexity management: many SME tasks are inherently com-

plex; prominent examples include: identifying the require-

ments of the target methodology, specifying method fragments

for each requirement, determining the relationships among the

method fragments, and modeling the constructed methodology.

SME approaches should provide adequate means for managing

the complexity of SME tasks and the artifacts produced.

• Portability: capability to transition the produced methodology

onto different platforms (enactment environments).

• Productivity: SME is typically a prelude to the main software

development activities; therefore, it is important that high-

quality situational methodologies be developed and maintained

rapidly and cost-effectively.

• Reusability: capability to reuse software process knowledge;

this can be realized through eliciting method fragments from

existing methodologies and storing them in method bases

which act as knowledge repositories.

We propose a novel pattern-based MDD approach for SME with

the specific aim of addressing the above issues. The approach

consists of: 1) a multi-level, pattern-based MDD framework for

methodology modeling and transformation (which we have chosen

to call PBMDD4SME, short for “Pattern-Based Model-Driven De-

velopment for Situational Method Engineering”), and 2) a process

for applying the framework to the engineering of software devel-

opment methodologies based on the specifications of the project

situation at hand. The framework defines three levels of models

and a set of pattern-based transformation rules. The transforma-

tion rules have been implemented in the Medini-QVT model trans-

formation tool [9] , and have been augmented with two supple-

mentary method bases; one for mapping the situational factors

(which express the project situation) to methodology requirements

and the other for mapping the requirements to method fragments.

This enables the method engineer to produce the models and com-

pose the target methodology in a semi-automated manner through

following a model-driven, tool-supported process.

We have used the pattern-based transformation approach [8] in

our proposed SME framework, as it facilitates automation and can

be suitably adapted to the SME context. A pattern is a successful

solution to a recurring problem in a given context . In the pattern-
ased model transformation approach, each transformation pat-

ern defines a general problem of interest in the source model and

ts corresponding solution (transformed counterpart) in the target

odel [10] . Several such pattern sets already exist, but they are

sed for model transformation in a software development con-

ext, not for SME (examples are provided in Section 2). Our pro-

osed transformation patterns are specifically intended for use in

he SME context, and have been described by using the general

emplate suggested in [10] ; the template consists of: 1) the pat-

ern’s name, purpose, motivation, and applicability, 2) the problem

ets resolved by the pattern, 3) features of the solution, and 4) an

llustration of how the pattern is typically applied.

In order to evaluate our proposed approach, we have com-

ared it with other MDD frameworks and other model-driven SME

pproaches based on specially defined criteria. In addition, PB-

DD4SME and its process have been applied to a real-world SME

roject, and the results have demonstrated its merits in a practical

ontext. Evaluation results show that the proposed approach ad-

resses the deficiencies encountered in existing SME approaches,

mproves on the quality attributes, and is applicable to real-world

roject situations.

The rest of this paper is structured as follows: Section 2 pro-

ides a survey of the related research; Section 3 introduces the

roposed PBMDD4SME framework and presents the two method

ases that are used in the proposed approach; Section 4 presents

 process for applying the proposed framework to SME problems;

ection 5 provides the results of evaluating the proposed approach;

nd Section 6 presents the concluding remarks and suggests ways

or furthering this research.

. Related research

Many of the concrete methods and frameworks currently used

n SME, such as the OPEN methodological approach [11,12] , the

SO/IEC-24,744 framework [13,14] , and the MMC approach [15] ,

re not model-driven; whereas MDD can be of significant ben-

fit to these approaches, mainly due to its positive effect on

omplexity management and automation. The literature related

o this research includes works on the application of MDD for

ME purposes, as well as MDD works focusing on pattern-based

ransformation.

In general, there are two categories of SME works related to this

esearch:

1. SME approaches that use MDD explicitly: In [16] , a method-

ological MDD framework is proposed for SME that is ap-

plied in three phases: Method design, method configuration,

and method implementation. In [5] , a MDD framework by

the name of Model Driven Situational Method Engineering

(MDSME) is proposed, which defines four modeling levels:

Enactment-Independent Model (EIM), Paradigm-Independent

Model (ParIM), Paradigm-Specific Model (ParSM), and Platform-

Specific Model (PSM). In [17] , methodology engineering meth-

ods based on MDD have been surveyed. In [18] , MDD has been

applied to method tailoring for specific project situations.

2. SME approaches that are not model-driven by name, but

highly resemble classical MDD approaches: In [19] , a three-

level scheme has been used for describing the target method-

ology, which resembles the multi-level modeling scheme typ-

ically used in MDD approaches; the levels include: General

level, model level, and project level. In [20] , a method has

been introduced to develop a methodology based on specific

requirements; the method is applied in three steps, which in-

volve multi-level specifications: Method requirements engineer-

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 97

i

m

o

s

t

t

t

e

a

s

s

p

d

t

t

t

p

t

a

e

s

e

e

b

s

e

p

t

h

a

c

f

g

d

b

3

(

t

f

e

i

c

c

t

A

u

m

(

i

M

w

d

t

t

R

M

a

3

3

m

3

fi

d

t

h

h

d

i

p

M

c

r

b

t

t

l

3

t

q

f

s

M

m

m

p

t

s

s

t

t

p

i

i

e

t

‘

o

t

m

t

[

t

o

e

s
Several approaches for pattern-based transformation have been

ntroduced in MDD literature, but they are typically used for

odel transformation in software development (not methodol-

gy development, as in SME). In [10] , five essential problem-

olution patterns are proposed: Mapping pattern, Refinement pat-

ern, Node Abstraction pattern, Duality pattern, and Flattening pat-

ern; these patterns are documented according to a description

emplate which consists of name, goal, motivation, specification,

xample, and applicability. In [21] , the Promotion Transformation

nd Instantiation Transformation patterns are proposed for multi-

tage model-driven software development. In [22] , the use of de-

ign patterns for model driven engineering is discussed, and two

atterns (Transformation Parameters and Multiple Matching) are

escribed as examples; the template used for describing these pat-

erns consists of motivation, solution, and consequences. In [23] ,

he knowledge required for transforming models from one abstrac-

ion level to the next is captured as parameterized patterns; these

atterns can be used for executing the transformations in software

ools. The transformation patterns proposed in [24–26] are aimed

t lower abstraction levels, such as from a specific PIM to a PSM.

The main motivation for this research is the observation that

xisting model-driven SME approaches need to be improved in

everal aspects: Some of the aforementioned approaches lack ad-

quate support for automatic model transformations (e.g., [5]), and

ven though complexity management is essential for the applica-

ility of these approaches, most of them provide low-to-moderate

upport for this feature (e.g., [17,19,20]). Furthermore, none of the

xisting approaches provides a method base of reusable method

arts for assembling the target methodology. In the approach

hat we propose in this paper, two tool-supported method bases

ave been developed which enable the method engineer to semi-

utomatically produce the methodology requirements and their

orresponding method fragments through the execution of trans-

ormation patterns; reliance of the approach on the method en-

ineer’s expertise is thus significantly reduced. Even non-model-

riven SME approaches and frameworks that do provide a method

ase (such as OPEN [11,12]) do not provide this feature.

. Proposed framework for pattern-based MDD for SME

PBMDD4SME)

To propose a methodology engineering (SME) process based on

he MDD approach, it is first necessary to define a multi-level

ramework for modeling in the SME context. The modeling lev-

ls defined in our proposed framework are distinguished accord-

ng to the two concepts of what and how : The what focuses on the

onstituent elements of the target methodology, including its pro-

esses, roles, and work products; whereas the how deals with the

echniques used for performing the processes of the methodology.

ccording to these concepts, a methodology model would be grad-

ally refined from a specification of what at the higher levels of

odeling (abstract) to a specification of how at the lowest level

concrete).

Based on the general scheme outlined above, three model-

ng levels have been defined in our proposed framework (PB-

DD4SME):

• First level: Methodology-Fragments-Independent Model (MFIM)

- Models the methodology requirements and the general struc-

ture of the target methodology, consisting of high-level phases

and activities.

• Second level: Technique-Independent Model (TIM) - Describes

the constituents of the methodology in detail, but stops short

of determining specific techniques for performing the tasks of

the methodology.
• Third level: Technique-Specific Model (TSM) - Determines spe-

cific techniques for performing the tasks of the methodology.

The model at the top level is independent from the what,

hereas the second-level model is dependent on the what but in-

ependent from the how; dependency on the how is introduced in

he model at the third level.

As previously mentioned, the proposed framework also includes

wo mapping method bases, one for mapping Situational Factors to

equirements (SF2R) and the other for mapping Requirements to

ethod Fragments (R2MF). The modeling levels of the framework,

nd their constituent sub-models, are explained in Sections 3.1,

.2 , and 3.3 ; the method bases are explained in Sections 3.4 and

.5 . Details of how to use these models for creating a situational

ethodology are provided in Section 4 .

.1. MFIM level

At this level, the methodology model is independent of the

ne-grained constituents of the methodology. Two models are pro-

uced at this level: one for specifying the requirements that the

arget methodology should satisfy, and the other for depicting the

igh-level phases and activities of the target methodology. The

igh-level constituents of the methodology are specified to ad-

ress the “Scope the Methodology” requirement; this requirement

s presupposed by default as a top-priority requirement for all SME

rojects, and should be satisfied at the MFIM level. Producing the

FIM requires more effort than the other two levels, mainly be-

ause extracting the requirements of the target methodology and

esolving their mutual conflicts is carried out at this level, and also

ecause the amount of work that is performed manually is more

han that of the other levels. The models defined at this level, and

he conflict resolution algorithm applied, are explained in the fol-

owing sections.

.1.1. Requirements model

This model depicts the requirements that should be met in the

arget methodology. Based on previous studies conducted on re-

uirements engineering in MDD, a metamodel has been defined

or modeling the requirements in the SME context. We have cho-

en to call this metamodel the “Requirements Engineering Meta-

odel for Situational Method Engineering (REMM4SME)”. This

etamodel, shown in Fig. 1 , has been adapted from the REMM

etamodel proposed in [27] . REMM has been selected for this pur-

ose as it builds on prominent requirements metamodels such as

hat of SysML; however, unlike SysML, it is not dependent on any

pecific domain and is therefore free from the constraints that re-

ult from such dependencies.

Situational factors are the coarse-grained requirements of the

arget organization and the project situation at hand. These fac-

ors should be refined into finer-grained requirements; in our pro-

osed approach, for each situational factor, a set of correspond-

ng requirements is extracted from the SF2R method base. There

s a range of possible values for each situational factor; stakehold-

rs assign values to a factor by selecting one value from the fac-

or’s corresponding range of possible values and assigning it to the

Value’ attribute of the factor. In Fig. 1 , the elements shown in italic

r dashed lines have been added to the REMM metamodel in order

o support the SME domain.

As seen in Fig. 1 , situational factors are of three types: Environ-

ental factors, Organizational factors, and Project factors; this par-

icular classification of situational factors has been adapted from

28–31] . Environmental factors highlight the attributes related to

he environment where the system will be operated. “Importance

f project in environment”, with a value range of “Yes/No”, is an

xample of this type of situational factor; if the value “Yes” is as-

igned to this situational factor, requirements such as “use past

98 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Fig. 1. REMM4SME metamodel.

t

I

R

t

u

s

u

o

f

c

b

s

t

F

e

fi

“

i

s

s

i

u

m

o

p

a

project experiences” and “apply evolution (maintenance)” are ex-

tracted from the SF2R method base as refinements for the situa-

tional factor. Organizational factors determine the attributes of the

organization responsible for developing the system. “Developers’

business knowledge”, with a value range of “Sufficient/Insufficient”,

is an example of this type of situational factor; if the value “In-

sufficient” is assigned to this situational factor, requirements such

as “Perform domain analysis in each iteration” and “Improve busi-

ness knowledge of team members” are extracted as its refine-

ments. Project factors specify the attributes of the system under

development. “System’s dependence on UI”, with a value range

of “High/Low”, is an example of this type of situational factor; if

the value “High” is assigned to this situational factor, “Welcome

change”, “Apply UI-based software development”, and “Enhance

usability” are examples of the requirements that are extracted as

its refinements.

After the set of requirements corresponding to each situational

factor is extracted from the SF2R method base, a subset of these

requirements is selected for satisfaction. It is possible to select the

whole set of requirements; however, doing so may well result in an

overly complex methodology. A Satisfaction Value (SV), which is a

numerical value between 0 and 1, is calculated for each situational

factor, which shows the degree to which the factor is satisfied by

its corresponding requirements. The requirements selection algo-

rithm should ensure that the selected subset maximizes the SV of

the situational factor. Fuzzy Control [32] is one possible means for

this purpose. This approach has long been applied in industry and

has been significantly successful [33] . The contributions reported

in [34] and [35] are examples of using the approach for require-

ments engineering: in [34] , Fuzzy Logic is used for requirements

prioritization; in [35] , Fuzzy Inference is used for selecting the fea-

tures corresponding to a specific situation.

The method proposed in [35] can be adapted and used in our

approach for selecting a subset of the requirements, although any

other working method may be used as well (the method engineers

might even decide to do the pruning without using any specific
echnique, simply relying on their own expertise and experience).

n [35] , a feature-based RE process factory is proposed to develop

E processes based on the characteristics of the project at hand. In

he Feature Analysis phase of this approach, after eliciting the val-

es of situational factors, a Fuzzy Inference System (FIS) is used for

electing the features corresponding to a specific situation; the FIS

ses a Fuzzy Rule Engine (FRE) for mapping an input space to an

utput space. In this approach, one or more quantified situational

actors are fed to the FIS. The FRE derives a conclusion that indi-

ates the fitness of the corresponding features according to a rule

ase. The logic rules in the rule base are in the form of IF-THEN

tatements. In our adaptation of this method, a quantified situa-

ional factor and its intended SV (0.9, for instance) are fed to the

IS as input. The FRE is configured to compute an output value for

ach relevant requirement, showing the degree to which it satis-

es the situational factor. As an example, two of the rules for the

Schedule constraints on the project” situational factor are shown

n Fig. 2 . The output value can thus determine whether a corre-

ponding requirement should be kept or removed from the final

election; for example, we may decide to keep a requirement only

f its corresponding output value is greater than 0.9.

Each of the requirements is characterized by two attributes: a

nique identifier (ID) and a textual description (Description). Infor-

ation on the stakeholders is also recorded (Name, Position, Pri-

rity), later to be used by the Conflict Resolution Algorithm (ex-

lained in the next section).

As shown in Fig. 1 , the following relationships can be defined

mong the requirements:

• Given two requirements R1 and R2, the following dependencies

can be defined between them:

◦ “R1 Requires R2”. This relationship implies that R2 is needed

to fulfill R1. In other words, R2 is a precondition for R1.

◦ “R1 Overlaps R2”. This relationship implies that the satis-

faction of one of the requirements is enough and the other

requirement will not be further processed.

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 99

Fig. 2. Conceptual model for FIS of a situational factor (Adapted from [35]).

3

t

q

o

[

p

t

(

t

d

u

a

h

s

(

m

o

s

o

f

s

t

t

i

t

f

s

i

j

t

s

a

s

t

a

1 Stakeholders are allowed to refrain from quantifying a situational factor, in case

they find it irrelevant to the project at hand and its environment.
• Given two requirements R1 and R2, “R1 Influences R2” implies

that R1 affects R2 either positively (+) or negatively (-). A posi-

tive impact means that satisfaction of the source requirement

(R1) can help satisfy the target requirement (R2). A negative

impact implies that the requirements have a conflict with each

other.

• Given two requirements R1 and R1.1, “R1 Is a Parent for R1.1” (or

equivalently, “R1.1 Is a Child for R1”) implies that R1.1 refines R1.

The following Parent-Child relationships can be defined between

R1 and R1.1:

◦ “R1 AND R1.1”. This relationship implies that in order to sat-

isfy R1, R1.1 has to be satisfied as well.

◦ “R1 OR R1.1”. This relationship implies that in order to sat-

isfy R1, the satisfaction of R1.1 is sufficient but not neces-

sary.

.1.2. Conflict resolution algorithm

It is imperative that any conflicts among the requirements of

he requirements model be resolved. The literature related to Re-

uirements Engineering contains numerous works on conflict res-

lution among system requirements; the contributions reported in

36–39] are just a few of the examples. In [39] , a conflict resolution

rocess is proposed for resolving conflicts among the aspects iden-

ified during requirements engineering in the AspeCiS approach

An Aspect-oriented approach to Develop a Cooperative informa-

ion System). In this process, dominant aspectual requirements are

etermined by computing a priority value for each aspect. We have

sed an adapted version of this method for resolving the conflicts

mong the requirements of the target methodology; this method

as been selected because its underlying concepts are more con-

istent with our requirements metamodel.

A conflict occurs between two or more method requirements

leaf requirements in the requirements model) when these require-

ents introduce conflicting behavior in the target methodology; in

ther words, one requirement mandates the addition of a certain

et of method fragments and relationships to the target methodol-

gy, while the other requirement results in the addition of method

ragments and relationships which act in contradiction of the first

et. In our proposed approach, the method engineer determines

he conflicting requirements in the SF2R method base (based on

he aforementioned definition). When a situational methodology

s being constructed, these relationships are extracted (along with

he requirements) from the method base by executing the trans-

ormation patterns. The resolution process involves the following

equence of stages :

1. Stakeholder Prioritization: In [39] , the method proposed in

[40] is used for this purpose. We use the same method in our

proposed approach, as its concepts are consistent with the en-
vironments that are typically investigated for extracting the sit-

uational factors (i.e., organizations). In this method, three fea-

tures are considered for prioritizing the stakeholders:

• Power: A stakeholder affecting the decision making of other

stakeholders has such a feature. The strength is taken from

owning financial resources or equipment, or is based on the

hierarchy of roles in the organization.

• Legitimacy: This feature is attributed to stakeholders with

legal, religious or supposed claims that affect the behavior,

orientation or output of the organization.

• Urgency: This feature is attributed to the stakeholders who

are under one of the following conditions:

◦ Their request must be met in a limited period of time.

◦ Their request is important or critical to the stakeholder.

In [39] , a combination of the three attributes is used for prior-

tization. Prioritization is applied as follows. A stakeholder having

ust one of the above features is considered a latent stakeholder;

his group of stakeholders is considered less important, and is as-

igned a low priority (a value of 1). A stakeholder with two of the

bove features is considered an expectant stakeholder, and is as-

igned a medium priority (a value of 2). A stakeholder with all

hree features is considered a definitive stakeholder, and is assigned

 high-priority (a value of 3).

2. Conflict resolution: Using the concepts and methods introduced

in [39] , we propose the following algorithm for resolving the

conflicts among methodology requirements in SME:

2.1. A Stakeholder ∗Requirement Matrix is formed in which the

priorities of the stakeholders are first entered; then, the de-

gree of importance of each requirement is determined based

on the views of the stakeholders relevant 1 to (involved in)

the requirement. Every stakeholder can assign a value of 1

(very low), 2 (low), 3 (average), 4 (high), or 5 (very high) to

each of his/her related requirements. It should be noted that

this matrix only contains the requirements that are involved

in conflicts; furthermore, all of the requirements should be

at the lowest level of the requirements hierarchy (i.e., as leaf

requirements).

2.2. The following four factors are computed for each require-

ment and added to the Stakeholder ∗Requirement Matrix:

• Priority of the Requirements: The priority of each re-

quirement is computed based on the importance as-

signed to the requirement by its relevant stakeholders

(specified in the previous step of the algorithm) and the

100 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

t

l

b

t

m

i

s

a

B

t

a

m

3

l

m

m

t

r

p

s

t

f

m

s

s

w

2

N

l

D

l

v

e

E

3

o

m

i

r

p

l

a

m

e

r

Q

i

e

l

t

m

S

3

t

s

a
priorities of those stakeholders, according to Formula (1).

P (R j) =

∑

P (Si, j) ∗V i, j ∑

P (Si, j)
(1)

Where P (Rj) is the priority computed for requirement Rj,

Si, j is the i th stakeholder involved in Rj, P (Si,j) is the pri-

ority of Si.j , and Vi,j is the importance assigned to Rj by

Si,j (as determined in the previous step).

• Sum of the priorities of the involved stakeholders: For

each requirement, the sum of stakeholder priorities is

computed according to Formula 2 .

SW (R j) =

∑

P (Si, j) (2)

Where SW (Rj) is the sum of the priorities of the stake-

holders involved in Rj .

• Number of involved stakeholders: For each requirement,

the number of stakeholders involved in that requirement

is determined.

• Number of conflicts: For each requirement, the number

of conflicts that it has with other requirements is com-

puted.

2.3. A Requirement ∗Requirement Matrix (Conflict Matrix) is

formed, which specifies the requirements that are in con-

flict. All of the requirements should be at the lowest level of

the requirements hierarchy (i.e., as leaf requirements). The

requirements in this matrix should first be ordered in such

a manner that the less important requirements are exam-

ined first. The reason for this is that such a requirement may

be involved in conflicts with more important requirements,

and all of these conflicts will be eliminated by applying the

conflict resolution strategy, resulting in a larger number of

stakeholders being satisfied.

The requirements are arranged in ascending or-

der of priority. If two requirements are equal

in this sense, they are ordered based on the

sum of the priorities of the stakeholders involved (in as-

cending order); if still equal, they are arranged based

on the number of stakeholders involved (in ascending or-

der); and if still equal, they are arranged based on their

number of conflicts (in descending order). If two require-

ments are still equal after the above steps, they are ordered

by the method engineer.

After ordering the requirements in the Conflict Matrix, the

requirements model is used for filling the matrix: If there

is a conflict between Ri and Rj, cell (i,j) will be marked; it

should be noted that conflicts are only marked once, so an

upper triangular matrix is produced.

2.4. The conflicts shown in the Conflict Matrix are resolved:

For each pair of conflicting requirements, resolution is per-

formed as follows:

• The requirement with the higher order in the matrix is

designated as the dominant requirement, and is kept as

is.

• Stakeholders are consulted and with their consent, the

recessive requirement is replaced with another require-

ment that corresponds to the same situational factor.

Choosing the alternative requirement is done with the

intention that situational factors be satisfied to a desir-

able degree.

As an example of applying the conflict resolution algorithm,

consider the following two situational factors: “Schedule con-

straints on the project” and “Developers’ business knowledge”. The

requirements extracted for these factors are shown in Table 1 (this

table is in fact a subset of the requirements model produced at

the MFIM level). In the “Corresponding Requirements” column of
he table, the requirements in parentheses have a parent-child re-

ationship with the ones shown outside the parentheses. The num-

ers in the “Involved Stakeholders” column of the table (in paren-

heses) show the priority of each stakeholder.

The relationships among the requirements in the requirements

odel show a conflict between “Perform domain analysis in each

teration” and “Speed up implementation”, which needs to be re-

olved. The Stakeholder ∗Requirement matrix is shown in Table 2 ,

nd the Requirement ٭ Requirement matrix is shown in Table 3 .

etween the two conflicting requirements, “Speed up implemen-

ation” is the dominant requirement. Therefore, “Perform domain

nalysis in each iteration” is replaced by “Incorporate risk manage-

ent”.

.1.3. High-level model of target methodology

The overall structure of the methodology, including its high-

evel lifecycle, is created according to the scope of the target

ethodology. The method engineer should decide what type of

ethodology is better for the project situation at hand. She/he

hen sets a value for (quantifies) the “Scope the Methodology”

equirement according to the environment and features of the

roject. This requirement is considered top-priority, and should be

atisfied at the MFIM level. If the method engineer does not quan-

ify the requirement, the Object Oriented Software Process (OOSP)

ramework [41] is by default set as the general lifecycle of the

ethodology. The methodology model that is produced is repre-

ented as a UML4SPM activity diagram [42] . In order to choose a

uitable modeling language for expressing the methodology model,

e examined six process modeling languages: SPEM 1.1 and SPEM

.0 ([43], [44]), DiNitto et al. ’s modeling language [43] , PROME-

ADE [43] , Chou’s modeling language [43] , and UML4SPM. These

anguages were evaluated based on the criteria introduced in [45] .

ue to the superior features of UML4SPM, it was ultimately se-

ected for application in our proposed approach. In order to pro-

ide a sense of the superior features of UML4SPM, the results of

valuating it based on four of the criteria are shown in Table 4 .

xamples of UML4SPM activity diagrams are provided in Section 4 .

.2. TIM level

At this level, the fine-grained constituents of the methodol-

gy are identified using the requirements model and the available

ethod base of method fragments (R2MF). Modeling at this level

s performed in several iterations; the Methodology model, rep-

esented as UML4SPM activity diagram(s), is thus gradually com-

leted by the method engineer. The modeling is performed as fol-

ows: In each iteration, the set of requirements corresponding to

 situational factor is fed to the Medini-QVT tool as input, and the

ethod’s fine-grained constituents are determined through the ex-

cution of transformation patterns. The method engineer can then

efine the methodology model attained in each iteration.

The R2MF method base has been implemented in the Medini-

VT tool for extracting the method fragments corresponding to the

dentified requirements. Medini-QVT is a tool for (semi)automatic

xecution of model transformations, and implements the relational

anguage of QVT [9] . This tool has been used for implementing

he transformation patterns, the SF2R method base, and the R2MF

ethod base. It thus enables the automation of transformations for

ME purposes.

.3. TSM level

At this level, the TIM-level methodology model is fed to the

ool as input, and for each of the tasks in the model, the corre-

ponding concrete technique(s) for performing the task (if avail-

ble) are extracted from the R2MF method base and added to the

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 101

Table 1

Requirements corresponding to sample situational factors.

Situational factor Involved stakeholders Corresponding requirements

Schedule constraints on the project Programmer (1) Break down into smaller tasks, Limit modeling, Constrain implementation of requirements

(Prioritize requirements), Evaluate alternative hardware devices and select the fastest,

Speed up implementation, Limit changes

Technical Manager (2)

Domain Expert (3)

Analyst (2)

Developers’ business knowledge Programmer (1) Iterative-Incremental Lifecycle (Perform domain analysis in each iteration, Apply repetitive

validation),

Technical Manager (2)

Domain Expert (3)

Analyst (4)

Incorporate risk management,

Use people who are familiar with the business area (Use JAD sessions, Use ambassador

users),

Improve business knowledge of team members

Table 2

Sample stakeholder ∗requirement matrix.

Requirement Speed up implementation Perform domain analysis in each iteration

Stakeholder

Priority

Programmer 1 5 3

Technical manager 2 4 2

Domain expert 3 3 4

Analyst 2 2 3

Requirement priority 26 .8 25 .8

Total priorities of involved stakeholders 8 8

Number of involved stakeholders 4 4

Number of conflicts with other requirements 1 1

Table 3

Sample requirement ∗requirement matrix.

Requirement Perform domain analysis

in each iteration

Speed up

implementation

Perform domain analysis in

each iteration

×

Speed up implementation

m

T

t

r

t

3

t

a

t

i

r

F

s

q

i

m

t

l

a

v

(

t

q

t

T

P

E

ethodology model by execution of the transformation patterns.

here is also the possibility of refining the methodology model at

his level. The resulting methodology model can be enacted in the

eal development environment, and can be polished as needed at

he method engineer’s discretion.

.4. SF2R method base

The SF2R method base is used for mapping situational factors

o methodology requirements. The fragments in the method base

re of the following format:
able 4

artial results of evaluating UML4SPM.

Assessment criterion Evaluation result

Semantic richness

(Expressiveness) ∗
UML4SPM provides the notation for modeling the key elem

Consistency of notation UML4SPM models are notationally consistent.

Clarity of notation UML4SPM notation can be understood easily, especially by

Extensibility of concepts

and notation ∗∗
New concepts can be added to the metamodel of UML4SPM

xplanations:
∗ Does the language fully express what is actually performed and involved in the enact
∗∗ Is it possible to extend the metamodel of the language in order to allow the modelin
< (quantified situational factor), (requirement related to situa-

ional factor (requirement related to requirement and …), …) > .

The above structure denotes that a quantified situational factor

s satisfied by the requirements in the second component, and the

equirements can be recursively refined into other requirements.

or example:

< (Schedule constraints on the project), (Break down into

maller tasks, Limit modeling, Constrain implementation of re-

uirements (Prioritize requirements) > .

Fig. 3 shows the metamodel of this method base.

The concepts depicted in Fig. 3 are the same as those shown

n Fig. 1 . In total, 15 situational factors have been defined in this

ethod base; these factors will be explained in Section 5.4 . Also,

he requirements related to each situational factor and the re-

ationships among them (Refinement, Dependency, Parent-Child,

nd Influence) have been added to the method base. A partial

iew of the contents of the SF2R method base is shown in Fig. 4

in Medini-QVT); the ‘Properties’ pane contains the attributes of

he “Prioritize Requirements” requirement, and shows that this re-

uirement refines the “Financial Constraints on the Project” situa-

ional factor.
ents of software development methodologies according to the SPEM metamodel.

modelers who are familiar with UML.

 through the use of the extension mechanisms provided by UML.

ment of software development methodologies?

g of new concepts related to software development methodologies?

102 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Fig. 3. Metamodel of the SF2R method base.

Fig. 4. Partial view of the contents of the SF2R method base.

Fig. 5. Metamodel of the R2MF method base.

i

c

b

c

t
3.5. R2MF method base

The R2MF method base is used as a source of method frag-

ments for satisfying the requirements at different levels of the pro-

posed framework. The metamodel of this method base is shown
n Fig. 5 . We have adopted SPEM 2.0 (Software and System Pro-

ess Engineering Metamodel) [46] for the definition of this method

ase. In SPEM 2.0, the Method Content package defines the core

oncepts for specifying basic method contents. There are three

ypes of elements in this package: roles, work products, and tasks.

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 103

S

a

f

t

t

t

p

b

s

e

a

s

c

a

m

p

c

d

t

c

e

m

t

v

C

m

g

t

m

d

o

s

s

p

s

s

a

t

r

r

S

“

o

s

t

i

f

e

a

t

l

s

t

t

d

p

4

P

o

u

t

v

s

T

c

4

a

g

i

fi

d

p

PEM 2.0 incorporates the notions of lifecycle, phase, activity, task,

nd technique for defining the lifecycle of a process, depicting dif-

erent levels of abstraction and constraining the order in which ac-

ivities can be performed. These concepts have been followed in

he definition of the R2MF method base.

Process Patterns are the main method fragments: These pat-

erns are in fact software development work units (high-level

hases , intermediate-level activities , and low-level tasks) that have

een proven successful in practice. These patterns have been cho-

en from among the process patterns already utilized in software

ngineering; i.e., the process patterns that we use in our approach

re Software Engineering (SE) work units which have been proved

uccessful in practice (this is somewhat different from SME pro-

ess patterns [47] , which have been extracted from existing SME

pproaches). Process patterns are complemented with other frag-

ents: Each process pattern is associated with certain Roles (peo-

le involved), Products (results produced), and Techniques (con-

rete methods for implementing the pattern). It is important to

istinguish between process patterns and transformation patterns:

ransformation patterns are transformation rules which are exe-

uted to extract process patterns from the R2MF method base.

The method fragments of the R2MF method base have been

xtracted from various sources: the fragments related to agile

ethodologies have been derived from those proposed in [48] ;

he phases and high level activities related to other types of de-

elopment approaches, including Model-Driven Development [49] ,

omponent-Based Development [50] , Aspect-Oriented Develop-

ent [51] , High Integrity Systems Engineering [52] , and Web En-

ineering [53] have also been added to this method base. Each of

hese resources [48–53] introduces process patterns for a specific

ethodology type (according to a particular domain, paradigm, or

evelopment approach), and creates a high-level software devel-

pment process which can potentially be used for instantiating a

ituational methodology of that particular type; however, the in-

tantiation process is not elaborated upon. In comparison, our ap-

roach is generic (type-independent), and provides a comprehen-

ive model-driven step-by-step process for constructing the target

ituational methodology.

In total, around 330 fragments have been defined in R2MF. In

ddition, the relationships that exist between process patterns at

he “phase” and “activity” levels have been added. In contrast, the

elationships between “task” process patterns are specified in the

ules that accompany the transformation patterns (explained in

ection 4.2). The reason for this is that high-level “phases” and

activities” are somewhat predetermined for a specific methodol-

gy type, and are therefore fixed when the methodology type is

elected, whereas lower-level “tasks” are determined according to

he requirements of the target methodology.

The method engineer revisits the SF2R and R2MF method bases

teratively and refines them as needed (by adding new situational

actors and method fragments, and defining new value ranges for

xisting situational factors). It should be noted that the changes

pplied to the method bases do not affect the transformation pat-

erns.

The attributes of the “Process Pattern” class in Fig. 5 are as fol-

ows:

• Name : The unique name of the process pattern.

• Scope : The application scope of the process pattern; this fea-

ture may consist of one or more development approach types

(Agile, Model-Driven, Component-Based, etc.).

• Granularity : This feature denotes the granularity of the process

pattern, and can have one of three possible values: Phase, Ac-

tivity, or Task. Phases are at the highest level, and may consist

of activities and/or tasks. Activities may consist of tasks and/or
other (nested) activities. Tasks are atomic and reside at the bot-

tom level of the hierarchy.

• Prerequisite : The prerequisite patterns (work units) of the pro-

cess pattern.

• Parent : The coarse-grained pattern (phase or activity) that con-

tains the process pattern as a constituent.

A partial view of the contents of the R2MF method base is

hown in Fig. 6 . The ‘Properties’ pane contains the attributes of

he “Fine-Tune the Methodology” process pattern, and shows that

his pattern is performed by the “Project Community” role, pro-

uces “Refined Methodology” as a product, and satisfies the “Im-

rove Quality of Used Methods” and “Flexibility” requirements.

. Proposed process and transformation patterns for applying

BMDD4SME framework

In this section, a process is provided for conducting SME based

n the proposed framework. Moreover, the transformation patterns

sed for this purpose will be explained. It should be noted that

he models created in our proposed approach comply with OMG’s

iew on modeling, as we use UML class and object diagrams for

tructural modeling, and UML4SPM for software process modeling.

hus, all the models created in the proposed approach are MOF-

ompliant.

.1. Proposed model-driven SME process

At the first level of the proposed framework, a Paradigm-based

pproach is used for determining the overall structure of the tar-

et methodology. At the next levels, an Assembly-based approach

s applied to complete the model. Fig. 7 shows the steps of the

rst two stages of the proposed process (at the MFIM level). In or-

er to better clarify the various stages, an example of enacting the

rocess will be presented at the end of this section.

The stages of the process are as follows:

1. A set of situational factors are extracted for the situation of

the project at hand. Each of the situational factors has a value

range that is determined by the method engineer. The situa-

tional factors are then given to stakeholders, who assign a value

to each situational factor from its corresponding value range ac-

cording to the project circumstances; the method engineer then

documents the stakeholder(s) from whom the information has

been elicited. Completion of the requirements model typically

requires several iterations, and the method engineer’s expertise

is essential for this task. The sub-stages of this stage are as fol-

lows:

1.1 An unprocessed situational factor is chosen as the target fac-

tor.

1.2. The requirements related to the target situational factor are

extracted from the SF2R method base. This is automati-

cally done based on the value of the situational factor and

through the execution of transformation patterns in the tool.

Extracted requirements can be refined by the method engi-

neer.

1.3. A subset of the requirements extracted for the target sit-

uational factor is determined for satisfaction; this subset

should provide the maximum Satisfaction Value (SV) for the

target factor.

1.4. If there remains an unprocessed situational factor, return to

step 1-1.

1.5. After the determination of the requirements related to each

situational factor, the transformation patterns and the SF2R

method base are used for defining the relationships among

requirements. The requirements model created so far is

considered as an input to the transformation patterns. Upon

104 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Fig. 6. Partial view of the contents of the R2MF method base.

Fig. 7. Proposed model-driven method engineering process at the MFIM level.

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 105

Fig. 8. Example of a requirements model (for the “Schedule constraints of the project” factor).

p

to Step 3-1.
execution, these patterns extract all the relevant relation-

ships among the requirements from the SF2R method base,

and add them to the requirements model.

1.6. The method engineer reviews the output model and refines

it as needed. If conflicts are detected among the require-

ments, they are resolved through applying the conflict reso-

lution algorithm.

As an example, a partial requirements model, related to the

“Schedule constraints on the project” factor, is shown in Fig.

8 . If the method engineer feels the need to change the value

range of a situational factor or add a new situational fac-

tor, he/she can execute the transformation patterns for those

situational factors in order to apply the required changes;

new requirements may thus be added to the requirements

model.

2. The method engineer specifies a value for the “Scope the

Methodology” requirement according to the environment and

features of the project, and thus determines the methodol-

ogy type (this is considered the most important requirement

and should be applied before other requirements). High-level

phases and activities (including their relationships and um-

brella activities) have already been defined in the R2MF method

base for different methodology scopes (types), and are ex-

tracted from the method base by executing the transforma-

tion patterns based on the value determined for the scope. This

stage is performed automatically by the tool. An example of the

produced model is shown in Section 5.4 .

Fig. 9 shows the steps of the last two stages of the proposed

rocess (at the TIM and TSM levels).

The stages are explained below:
3. Finer-grained constituents of the methodology (at the TIM

level) are extracted based on the requirements model. Firstly,

an unprocessed situational factor is chosen. The extraction of

method fragments from the R2MF method base is performed

iteratively, for each situational factor selected, through the fol-

lowing sub-stages:

3.1. A subset of the requirements that provides the maximum

SV for the selected factor has been determined in previ-

ous stages. For each requirement R in this set, the following

stages will be applied (depending on R’s relationships with

other requirements):

3.1.1. If R has an ‘Overlaps’ relationship with requirement(s) Ri

(i = 1 … n), Ri are marked as reviewed and will not be

processed further.

3.1.2. If R has a ‘Requires’ relationship with requirement(s) Ri

(i = 1 … n) (i.e., Ri are prerequisites for R), fragments

should first be extracted for Ri; therefore, stages 3-1-1

and 3-1-2 will first be applied to Ri.

3.2. For each of the requirements, the corresponding method

fragments (process patterns, roles, and input/output prod-

ucts) are determined and entered into the methodology

model. This task is performed based on the R2MF method

base and through the execution of the transformation pat-

terns in the tool. The relationships between task process

patterns are determined through executing the transforma-

tion patterns (explained in Section 4.2).

3.3. A method engineer verifies and refines the methodology

model created so far.

3.4. If there remains an unprocessed situational factor, go back

106 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Fig. 9. Proposed model-driven method engineering process at the TIM and TSM levels.

Fig. 10. Sample output generated by Medini-QVT: Result of execution of transformation patterns at the TIM level.

An example of the output generated by Medini-QVT, as a result

of executing the transformation patterns at the TIM level, is shown

in Figs. 10 and 11 shows the produced methodology as a UML4SPM

activity diagram. If the SF2R method base is updated during this

stage, the method engineer should re-execute the transformation

patterns related to the previous stage to update the requirements

model. Then, the methodology model should be updated by re-

executing the current stage’s transformation patterns on R2MF.

Thus, returning to the previous stage is a regular occurrence.
4. The output model of the previous stage (TIM-level) depicts the

purpose and detailed structure of the methodology, but not

how to enact its activities. To add this level of detail, the model

is input to the tool, and techniques are determined for each

task based on the R2MF method base and through execution

of the relevant transformation patterns in the tool. The out-

put is the TSM-level methodology model. The method engineer

verifies the model and refines it if necessary. The produced

methodology is then enacted in the real world and is further

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 107

Fig. 11. Partial model of the “Project Initiation” phase: Result of execution of transformation patterns at the TIM level.

u

4

t

t

t

v

p

f

m

p

Q

T

t

w

t

m

t

i

t

s

m

refined by the method engineer. An example of the output gen-

erated by Medini-QVT as a result of executing the transforma-

tion patterns at the TSM level is shown in Fig. 12 . If the SF2R or

R2MF method bases are changed during this stage, it is possible

to return to previous stages and re-execute the transformation

patterns, and thus apply the required changes to the methodol-

ogy model.

An example of applying the proposed SME process on two sit-

ational factors is shown in Fig. 13.

.2. Transformation patterns

In this section, the transformations necessary for producing

he various models of the target methodology are proposed as 13

ransformation patterns. The general idea of these patterns is

aken from [10] . High-level definitions of these patterns are pro-

ided in Table 5 . All of the patterns in this table are transformation

atterns, some of which are used for extracting process patterns

rom the R2MF method base.
We have also used a template for describing these patterns in

ore detail; this description template provides the pattern’s name,

roblem definition, solution definition, expression of the pattern in

VT, and an example of the pattern’s application; as an example,

able 6 shows the detailed description of the “Add techniques” pat-

ern through the use of this template. Due to space limitations, we

ill not provide the detailed descriptions of the rest of the pat-

erns herein.

In Table 6 , Part 1 checks if there are any techniques in the R2MF

ethod base that are related to a process pattern (work unit) in

he methodology model produced so far. The process pattern itself

s specified in Part 2. In Part 3, the identified techniques are added

o the process pattern. In fact, Parts 1 and 2 constitute the ‘before’

tate of the pattern, and Part 3 denotes the ‘after’ state.

It should be noted that the proposed transformation patterns

ay involve vertical as well as horizontal transformations, in that:

• According to the proposed SME process, the methodology

model produced at each level is completed gradually with

the constant involvement of the method engineer. Therefore,

108 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Table 5

General descriptions for proposed transformation patterns.

Transformation pattern name Transformation pattern description

Problem Solution

Identify the requirements

corresponding to a given

situational factor

Situational factors are too abstract

(methodology-independent) and need to be

refined.

Based on the refinement relationships between situational factors and

requirements (defined in the metamodel of the SF2R method base), the

requirements corresponding to each situational factor are identified and

added to the requirements model.

Identify parent-child

relationships

Certain requirements in the requirements model

are coarse-grained and need to be broken down

into finer-grained requirements.

The SF2R method base is used for identifying fine-grained requirements that

have a parent-child relationship with the coarse-grained requirements. The

child requirements thus identified are added to the requirements model

under their coarse-grained parents.

Identify dependency

relationships among

requirements

It is possible for ‘overlapping’ or ‘prerequisite’

dependencies to exist among requirements.

The SF2R method base is used as a basis for identifying these dependency

relationships. Identified relationships are added to the requirements model.

Identify influence relationships

among requirements

Requirements may influence one another. These

effects may be positive (+) or negative (-).

Based on the influence relationships defined in the metamodel of the SF2R

method base, these relationships are identified and added to the

requirements model.

Extract general structure for

target methodology

A general structure should be determined for the

target methodology, depending on its scope.

The general structure is determined by extracting high-level phases/activities

(including umbrella activities) from the R2MF method base based on the

value assigned to the scope of the target methodology. The transitions

among phases/activities are also determined.

Map requirements to process

patterns (work units)

For each requirement, the process patterns that

satisfy them need to be extracted from the R2MF

method base.

According to the ‘satisfy’ relationships defined in the metamodel of the

method base, suitable process patterns (work units) are extracted for each

requirement, and are then added to the methodology model.

Identify prerequisite process

patterns (work units)

The process patterns (work units) extracted from

the R2MF method base may have prerequisite

process patterns that have not been considered.

The R2MF method base is used as a basis for identifying the prerequisites of

each process pattern; these prerequisites (work units) are then added to the

methodology model.

Add roles to work units After the elicitation of work units (and

prerequisites), suitable roles must be defined for

performing them.

By using the ‘perform’ relationship defined in the metamodel of the R2MF

method base, the roles corresponding to each work unit are identified and

added to the methodology model.

Add input and output products

to work units

After the extraction of work units (and

prerequisites), input and output products must

be determined for each work unit.

According to the relationships defined among the products and method

fragments in the metamodel of the R2MF method base, the input/output

products of the work units are extracted and added to the methodology

model.

Determine transition

relationships

By applying the previous transformation patterns,

work units are added to the methodology model,

but no transition relationships are defined

among them.

Identification of transitions is based on the input and output products of the

corresponding work units: If the output product of one work unit is the

input to another, and both of them reside in the same parent work unit, a

transition is established between them as an Object Flow.

Define parallel relationships Some work units can be executed in parallel. Parallel relationships are established among the work units if they 1) have the

same common parent (reside in the same phase/activity), and 2) either do

not have any prerequisites or share the same prerequisites . It should be

noted that these two conditions are necessary, but not sufficient: There

might be work units that cannot be executed in parallel even though they

satisfy the above conditions; the method engineer will have to define a

sequence of execution for such tasks .

Define synchronization

relationships

There are work units with two or more

prerequisites, all of which should be executed

before the tasks can start.

A Join Node is added to the methodology model to depict the required

synchronization: The prerequisite work units are designated as inputs to the

Join Node, and the target work unit is designated as the output.

Add techniques Techniques should be determined for each work

unit in order to specify how the work units

should be implemented.

According to the relationships defined between the work units and their

related techniques (in the metamodel of the R2MF method base), the

techniques associated with the work units of the methodology model are

identified and added to the model.

Table 6

Detailed description for the “add techniques” pattern.

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 109

Fig. 12. Sample output generated by Medini-QVT: Result of execution of transformation patterns at the TSM level.

5

c

a

M

p

5

S

M

r

s

b

t

a

t

p

t

i

A

g

p

horizontal transformations are typically performed continu-

ously at each level.

• Vertical transformations are evident between adjacent levels, as

the output of each level is input to the next level down the

hierarchy. Additional information is added along the way, which

puts the resulting model at a lower level of abstraction.

. Evaluation of proposed approach

In this section, PBMDD4SME has been evaluated through 1)

omparison with other MDD frameworks used for SME purposes,

nd 2) comparison with other SME approaches. In addition, PB-

DD4SME and its process have been applied to a real-world

roject, the results of which are analyzed later in this section.

.1. Comparison of PBMDD4SME with other MDD frameworks used in

ME

Unfortunately, a comprehensive set of criteria for evaluating

DD frameworks is not available. This comparison is therefore car-

ied out based on a set of criteria that every MDD framework

hould satisfy [5] . Brief explanations of these criteria are given

elow:

• Definition of modeling levels: Each of the modeling levels de-

fined in the framework is at a specific abstraction level. This

criterion refers to the viewpoint abstraction provided at each

level.

• Transformation Type: The transformation rules defined for con-

verting models to one another can be vertical or horizontal.

Vertical transformation when the source and destination mod-

els are at different levels of abstraction, while horizontal trans-

formation is used for converting models that are at the same

abstraction level.
• Potential for automation of problem-to-solution transforma-

tions: This refers to the level of automation in executing the

transformations defined in the framework. The possible values

for automation potential are as follows:

◦ Low: Transformations have been addressed in the frame-

work, but the framework does not provide methods for pro-

ducing solution-domain models from problem-domain mod-

els.

◦ Medium: The framework provides methods for producing

solution-domain models from problem-domain models, but

these methods cannot be performed (semi)automatically.

◦ Medium to High: The framework defines transformations

that can be applied (semi)automatically, but it does not pro-

vide a method base of method fragments for this purpose.

◦ High: The framework defines transformations that can be

applied (semi)automatically. Moreover, it also provides a

method base of method fragments for this purpose.

• Portability: This criterion signifies the concept(s) that differen-

tiate the modeling levels defined in the framework. Portability

is supported for higher-level models across the concepts repre-

senting (introduced at) the lower levels.

The results of this evaluation are shown in Table 7 . Parts of

he table have been reproduced from [5] . It should be noted that

ll of these MDD frameworks, except for MDA, are specifically in-

ended for SME purposes; MDA has been added as a reference

oint, due to its generality of purpose. It can be observed that

he main strength of our proposed approach (PBMDD4SME) lies in

ts high level of automation in performing model transformations.

lso, the modeling levels defined in the framework, and the de-

ree of abstraction that they provide, enhances the reusability and

ortability of the models.

110 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Fig. 13. Example of application of proposed process.

t

b

5.2. Comparison of PBMDD4SME with other SME approaches

This comparison is carried out based on the set of criteria pro-

posed in [5] for evaluating SME processes. These criteria are the

results of adapting the process evaluation criteria defined for SE
o the SME context. Brief explanations of these criteria are given

elow:

• Design model: The model(s) created throughout the SME pro-

cess.

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 111

Table 7

PBMDD4SME framework in comparison to other mdd frameworks.

MDD framework

Criterion MDA Model driven

process

engineering [17]

MDE approach to

software process

tailoring [18]

MDSME [5] Methodological

framework [16]

PBMDD4SME

Definition of

modeling levels

Viewpoint abstraction: Linguistic Viewpoint

abstraction:

Viewpoint

abstraction:

Viewpoint

abstraction:

Viewpoint

abstraction:

• Business viewpoint Metamodeling • Requirements-

independent

method model

• Enactment-

independent

viewpoint

• Technology- and

tool-independent

viewpoint

• Fine-grained

method-

fragments-

independent

viewpoint

• System viewpoint • Requirements-

specific method

model

• Paradigm-

independent

viewpoint

• Technology- and

tool-specific

viewpoint

• Technique-

independent

viewpoint

• Software viewpoint • Paradigm-specific

viewpoint

• Technique-specific

viewpoint

• Platform-specific

viewpoint

Transformation

Type

• Vertical • Vertical • Vertical • Vertical • Vertical • Vertical

• Horizontal • Horizontal • Horizontal • Horizontal • Horizontal

Potential for

automation of

problem-to-

solution

transformations

Low (based on [54]) N/A

(Transformation

of models has

not been

addressed)

Medium to High Medium Medium to High High

Portability as to:

• Platforms • Method execution

environments

• Project situations • Method platforms • Technology and

tools

• Techniques

• Project situations • Project situations

c

s

i

o

o

i

f

t

e

5

p

r
• Potential for process automation: What level of automation is

provided for performing the SME process? The possible values

for this criterion are as follows:

◦ Low: Most of the process is performed manually.

◦ Medium: A part of the process (transformation rules) is per-

formed automatically, but extraction of method fragments

needs manual intervention by the method engineer.

◦ High: Most of the process is performed automatically by

providing method bases of method fragments and automatic

execution of transformation rules.

• Portability of methodology model: This criterion signifies the

concept(s) across which the methodology model is portable.

The possible values for this criterion are as follows:

◦ Low: Portability of the methodology model is not addressed.

◦ Medium: There is portability as to certain concepts, but

these concepts do not cover the full set of SME concepts.

◦ Medium to High: There is portability as to the basic con-

cepts of the SME context (such as project situations).

• Complexity management: Structural complexity (such as com-

plexity of design models) and behavioral complexity (such as

complexity in performing the steps of the SME process) can

be managed by mechanisms such as selecting a suitable PML

and providing an appropriate level of automation in perform-

ing SME process steps. The possible values for this criterion are

as follows:

◦ Low: Complexity management has not been explicitly ad-

dressed.

◦ Medium: There are methods for complexity management in

the proposed approach, but unmanaged complexity is still

observable.

◦ High: Complexity is fully managed (structural and behav-

ioral).

• Maintainability: Does the process facilitate model change? The

possible values for this criterion are as follows:

e

b

◦ Low: Any change in any part of the methodology models

leads to a ripple effect throughout the models.

◦ Medium to High: Mechanisms such as intermediate mod-

els are provided for enhancing the maintainability of the

methodology models.

◦ High: In addition to intermediate models, automatic propa-

gation of maintenance changes to the methodology models

is supported.

• Environment and tool dependency: Performing SME process

steps may require specific environment(s) or tool(s). The pos-

sible values for this criterion are as follows:

◦ Low: There is no dependency to any specific tool or envi-

ronment.

◦ Medium: A specific environment is required with certain

SME facilities (such as a method base of method fragments).

◦ High: Specific SME environment(s) and tool(s) are required

for performing the steps of the process.

It should be noted that only SME approaches that provide a

risply defined process for creating a situational method have been

elected for comparison. The results of this evaluation are shown

n Table 8 . Parts of the table containing the results of evaluating

ther SME approaches have been reproduced from [5] . It can be

bserved that one of the main advantages of our proposed process

s that it provides a method base of reusable method fragments

or assembling the target methodology. Also, the modeling levels of

he framework enhance the maintainability of methodology mod-

ls, and facilitate complexity management.

.3. Evaluation of transformation patterns

In [8] , a set of evaluation criteria has been proposed for com-

aring transformation languages and tools. Based on these crite-

ia and those proposed in [55–57] , a set of criteria is proposed for

valuating the proposed transformation patterns. These criteria are

riefly explained below:

112 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Table 8

PBMDD4SME framework in comparison to other SME approaches.

SME approach

Criterion Generic process for SME

[17]

MEMA-model [19] Method engineering from

MRS [20]

PBMDD4SME

Design model N/A Semi-open method Decision metamodel Models:

• Fine-grained method-

fragments-independent

• Technique-independent

• Technique-specific

Potential for process

automation

Low: N/A Medium: High:

• Selection and use of

method fragments

• Use of a CAME tool for

method engineering

• Use of a tool to execute

transformations

Portability of methodology

model

Low: Medium to High: Medium: Medium to High:

• Limited to the

paradigm-based approach

• towards project situations • towards relation types • towards techniques

• towards detailed

descriptions

• towards situations

Complexity management Low Medium Medium High:

• Automatic execution of a

large part of the process

Maintainability Low: Medium to High: High: High:

• Direct mapping of

requirements to method

fragments

• Use of design models • Use of a meta- modeling

approach

• Appropriate level of

automation through the

use of the tool

• Appropriate level of

automation through the

use of the tool

• Design models at various

abstraction levels

Environment and tool

dependency

Medium: Low High: High:

• Need for a method base

of method fragments

• Need for transformation

tool

• Need for transformation

tool

• Need for various method

bases

• Need for mapping

method bases

T

f

s

t

o

t

u

t

t

t

fi

5

a

c

o

a

m

m

t

t

g

u
• Statelessness: This refers to the preservation of the model state

during the transformation; in other words, whether the source

model is modified or kept unchanged during the transformation

process.

• Automatability: Whether the transformation can be carried out

automatically, or it can only be applied manually.

• Understandability: Whether the syntax of the transformation

rules can be easily understood by the users.

• Directionality: Whether the transformation is bidirectional or

unidirectional. Bidirectional transformations can be used in two

different directions: to transform the source model(s) into tar-

get model(s), and conversely.

• Evolvability: Whether the transformation approach makes

gradual updates possible.

• Tracking: Whether the transformation approach keeps track of

the sequence of changes.

• Tool support: Whether the transformation approach provides

tool support.

• Syntactic correctness: Whether a well-defined target model is

producible from a well-defined source model.

• Syntactic completeness (preservation of information):

Whether for each element of the source model, the related

element is created in the target model by the model transfor-

mation.

• Semantic correctness: Whether the produced target model

meets the conceptual features expected. This criterion can be a

crucial requirement in transformations for which preservation

of certain behavioral properties is important (such as refactor-

ing transformations).

• Termination: Whether termination of the transformation pro-

cess is guaranteed.

e
• Confluence (Inconsistency): Whether transformation results

complement each other and are consistent.

• Change propagation: Whether changes in the source models

can be automatically propagated to the target models.

The results of this evaluation are shown in Table 9 . As seen in

able 9 , most of the proposed criteria are satisfied by the trans-

ormation patterns. The strength of these patterns lies in the tool

upport provided for their automatic execution. Due to this feature,

here is no need for the users to understand the QVT-equivalents

f the transformation rules; therefore, low understandability (men-

ioned in Table 9) is not a significant weakness of the patterns,

nless a user needs to edit the QVT code of a transformation pat-

ern. Another weakness pointed out in the table is that termina-

ion of the transformation process cannot be guaranteed; however,

his problem can be ameliorated if certain preconditions are de-

ned and imposed by the method engineer.

.4. Example of application of the proposed approach

The proposed approach has been applied to a real-world project

s an example of its enactment, in order to demonstrate its appli-

ability. The project was carried out at an Iranian software devel-

pment company that specializes in developing Web-based, mobile

nd E-commerce applications. The aim was to develop a suitable

ethodology for a project targeted at developing a correspondence

anagement system. In order to determine the requirements of

he target methodology, the relevant situational factors (along with

heir range of possible values) were given to the stakeholders (Pro-

rammer, Technical Manager, Domain Expert, and Analyst) for eval-

ation. The factors and their values, as assigned by the stakehold-

rs, are shown in Table 10 (the assigned values are underlined).

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 113

Table 9

Evaluation of transformation patterns.

Assessment Criterion (and possible values) Evaluation result

Statelessness (Yes/No) Yes: New models can be created without any changes to the source models.

Automatability (Yes/No) Yes: Transformation patterns have been successfully implemented and used in the Medini-QVT automatic

transformation tool.

Understandability (Yes/No) No: Transformation rules are expressed formally in QVT, so they are not easily understandable for the user.

Directionality (Bidirectional, Unidirectional) Bidirectional: Since it is possible to trace the changes made to the model to the transformation patterns applied,

the proposed approach supports bidirectional transformation.

Evolvability (Yes/No) Yes: The proposed approach supports gradual update.

Tracking (Yes/No) Yes: The changes made to the source models are recordable.

Tool support (Yes/No) Yes: Tool support has been provided by implementing the transformation patterns in the Medini-QVT tool.

Syntactic correctness (Yes/No) Yes: By applying the transformation patterns to the source (requirements) model, a well-defined target

(methodology) model is produced that is understandable to the user and possesses the key features expected

from a software development methodology model.

Syntactic completeness (Yes/No) Yes: If the source model satisfies the preconditions of the transformation patterns, for each element of the model,

its related element(s) will be created in the target model.

Semantic correctness (Yes/No) Yes: The target model is created through the use of transformation patterns that produce the key elements of

software development methodologies according to the SPEM metamodel.

Termination (Yes/No) No: If the transformation patterns are not implemented properly and the relationships between the source and

target models are not well-defined, termination of the transformation process is not guaranteed.

Confluence (Yes/No) Yes: The models resulting from the application of the transformation patterns are unique and consistent. Also, the

execution of a transformation pattern does not interfere with other transformation patterns. On the other hand,

applying the patterns at each level of the framework complements and completes the existing models. No

inconsistency occurs in the methodology model in passing from one level to the next.

Change propagation (Yes/No) Yes: A change in the source models is automatically propagated to the target models upon re-execution of the

transformation patterns.

Table 10

Important situational factors of the example, and their assigned values (underlined).

Factor classification Situational factor Value

Environmental factors Financial constraints on the project No \ Medium \ High

Variety of end users Wide \ Limited

Schedule constraints on the project Yes \ No

Importance of project in environment Yes \ No

Application domain factors Required standardization level in development methodology High \ Low

Importance of quality factors in development methodology High \ Medium

System size Large \ Medium

Criticality level High \ Medium

Level of technology innovation required High \ Medium

System’s dependence on UI High \ Low

Project organization factors Developers’ business knowledge Sufficient \ Insufficient

Developers’ technical expertise Sufficient \ Insufficient

Geographical distribution of development teams Yes \ No

Distribution of skills among team members Balanced \ Unbalanced

Team’s familiarity with agile methodologies Sufficient \ Insufficient

T

t

e

“

t

l

s

m

v

s

q

m

t

t

a

h

c

m

s

t

p

s

p

m

o

t

g

r

t

t

r

p

r

T

w

i

t

s

p

p

a

as a result. This model was fed to the next level of transformation
he requirements model of the example was created by applying

he transformation patterns based on the values determined for

ach situational factor; the patterns used for this purpose were:

Identify the requirements corresponding to a given situational fac-

or”, “Identify parent-child relationships”, “Identify dependency re-

ationships among requirements”, and “Identify influence relation-

hips among requirements”. Fig. 14 shows a partial requirements

odel for the example. In order to save space, the stakeholders in-

olved have been intentionally left out of this figure, along with

ome of the less significant situational factors and their related re-

uirements. A subset was then chosen from among the require-

ents (shown in Table 11).

As there are conflicts between some of these requirements,

he conflict resolution algorithm is applied. As a result, some of

hese requirements are replaced. For example, “Welcome changes”

nd “Limit changes” are not compatible, and since “Limit changes”

as a higher priority, the method engineer replaces “Welcome

hanges” with “Emphasize customer satisfaction”; the new require-

ent has been chosen from the requirements model, with the

takeholders’ consent. Interviewing the project team determined

hat they had been using a customized version of Scrum for their

rojects. Also, the requirements determined in the previous step,
uch as “Limit modeling”, “Speed up implementation”, and “Em-

hasize customer satisfaction”, showed the need for a lightweight

ethodology. Therefore, the scope (type) of the target methodol-

gy was set to “agile”. The high-level phases and activities of the

arget agile methodology were determined by applying the “Extract

eneral form of target methodology” transformation pattern; the

esulting methodology model is shown in Fig. 15 . This model and

he requirements model were fed to the next level of transforma-

ion as input.

The “Map requirements to process patterns” and “Identify pre-

equisite process patterns” transformation patterns were then ap-

lied for extracting the method fragments corresponding to the

equirements; the method fragments thus extracted are shown in

able 12 . Finer-grained method fragments, consisting of roles and

ork products, were extracted from the R2MF method base by us-

ng the “Add roles to tasks” and “Add input and output products to

asks” transformation patterns. Inter-task relationships were then

pecified by using the “Determine transition relationships”, “Define

arallel relationships”, and “Define synchronization relationships”

atterns. This information was added to the methodology model

nd the Technique-Independent Methodology Model was created

114 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Fig. 14. Partial requirements model for the example.

Table 11

Requirements selected for the situational factors of the example.

Situational factor Selected requirements

Schedule constraints on the project • Obtain fast hardware

• Prioritize requirements

• Speed up implementation

• Apply exact timing

• Limit changes

• Limit modeling

Importance of project in environment • Use past project experiences

• Apply evolution (maintenance)

Importance of quality factors in development methodology • Improve quality of methodology

• Raise productivity of people

• Enhance planning quality

Required standardization level in development methodology • Review and revise methodology

Criticality level • Extract necessary models at each step

• Obtain accurate hardware

System’s dependence on UI • Welcome changes

• Apply UI-based software development

• Enhance usability

Developers’ business knowledge • Perform domain analysis in each

iteration

• Improve business knowledge of team

members

Developers’ technical expertise • Improve product quality

• Improve skills of team members

Team’s familiarity with agile methodologies • Provide training on methodology

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 115

Fig. 15. High level phases and activities of the target methodology.

Table 12

Method fragments extracted for the requirements of the example.

Requirement Extracted Method Fragments

Obtain fast hardware, Prioritize requirements, Speed up implementation,

Apply exact timing, Limit changes, Limit modeling

Provide Software/Hardware Infrastructure, Prioritize Product Backlog, Code,

Develop Rough Estimates, Declare Velocity, Evaluate Velocity

Use past project experiences, Apply evolution (maintenance) Tune Development Teams, Refactor, Test, Code, Document Requirements,

Generate Product Backlog, Design Architecture, Hold Design Sessions,

Conduct Post-Mortem Activities

Improve quality of methodology, Raise productivity of people, Enhance

planning quality

Recalibrate Release Plan, Tune Development Teams, Fine-Tune Methodology,

(Re)Assign Responsibilities, Shape Methodology, Develop Release Plan

Review and revise methodology Fine-Tune Methodology

Extract necessary models at each step, Obtain accurate hardware Break Down into Tasks, Generate Product Backlog, Hold Design Sessions,

Prepare Pilot Scheme, Design Architecture

Welcome changes, Apply UI-based software development, Enhance usability Validate Product, Elicit User Experience, Build User Interface

Perform domain analysis in each iteration, Improve business knowledge of

team members

Conduct Domain Walkthrough, Generate Product Backlog, Prioritize Product

Backlog

Improve product quality, Improve skills of team members Code

Provide training on methodology Provide Training

a

f

t

s

t

s

I

t

T

s

s
s input. As the last step, the “Add techniques” pattern was applied

or extracting the techniques related to each task. Fig. 16 shows

he result of applying these transformation patterns (applied at the

econd and third levels of the framework); due to space limita-

ions, only one of the activities (Requirements Elicitation) has been

hown, along with its constituent method fragments.
The final model of the target methodology is shown in Fig. 17 .

n order to save space, some method fragments (such as roles,

echniques and work products) have been intentionally left out.

he methodology produced was ultimately demonstrated to the

takeholders. As the stakeholders had been using a customized ver-

ion of Scrum for their projects, several suggestions were made

116 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Fig. 16. Final model of the "Requirements Elicitation" activity.

for improving their current methodology based on the situational

methodology produced.

The problems of the current methodology (as stated by the

stakeholders) are tabulated in Table 13 , along with the sugges-

tions made for resolving them. Since the suggestions are based on

the tasks of the situational methodology, explaining the sugges-

tions requires a closer look at the tasks. The tasks based on which

the suggestions were made are briefly explained below, along with

their related suggestions:

1. Shape methodology : In this task, the skeleton of the method-

ology is shaped at the start of the process, to be revised at the

end of each execution of the development phase. This task was

not performed in the methodology practiced at the company.

We therefore suggested that the methodology be augmented

with this task, and that the methodology be evolved by using

the “Hold Reflection Workshop” technique.

2. Provide training: Organizations that provide training on the

use of the methodology are better prepared to implement it

[58] . This task was not performed in the methodology prac-

ticed at the company. We suggested that training be conducted

during the initial phases of the methodology, and that “Direct

Training” and “Expert in Earshot” techniques be used for this

purpose.

3. Elicit user experience: This task is essential for obtaining a

thorough understanding of the user environment and the rel-

evant requirements. It was partially covered by the methodol-

ogy practiced at the company (in an implicit manner). We sug-

gested that the current methodology be augmented with this

task to enhance interaction with the users and identify their

exact expectations from the system under development.
4. Conduct domain walkthrough : In this task, a high-level de-

scription of the problem domain is presented by the domain

experts. This task was partially covered by the methodology

practiced at the company during architectural design. We sug-

gested that the “Conduct Domain Walkthrough” task be per-

formed in the early phases of the methodology to enhance the

organizational knowledge of the development teams. The “Hold

Problem Domain Training Sessions” technique was proposed for

conducting the task.

5. Document requirements : The information on the require-

ments, which is mostly exchanged through face-to-face com-

munication, is documented through this task. This task was

partially covered by the methodology practiced at the com-

pany; descriptions of the requirements were prepared by the

Product Owner, but parts of the information that had been

elicited through face-to-face communication were not docu-

mented. We suggested that the current methodology be aug-

mented with this task, and that the “Discover Safety Scenar-

ios”, “Write Change Report” and “Hire Mercenary Analyst” tech-

niques be used for conducting the task.

6. Build user interface: In this task, prototypes of the user inter-

face are built and user feedback is obtained for improving the

UI. This task was not performed in the methodology practiced

at the company. We suggested that the methodology be aug-

mented with this task to thereby increase user satisfaction.

7. Develop release plan: In this task, a list of requirements and

goals with the highest priority are specified by the customer to

be achieved in the next execution of the development phase.

This task was partially covered in the methodology practiced

at the company; however, it was only performed during the

pregame phase of the methodology. We suggested that the task

be added to the methodology in order to enhance the qual-

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 117

Fig. 17. Final model of the methodology produced in the example.

ity of the plans. Furthermore, we suggested the addition of the

“Recalibrate Release Plan” task to the methodology, so that the

plan is iteratively updated and refined.

8. Code: This task was completely covered by the methodology

practiced at the company, but proper techniques were not used.

We suggested that “Pair Programming” and “Side-by-Side Pro-
gramming” techniques be applied in order to enhance software

quality and facilitate skill transfer.

9. Test: This task was completely covered by the methodology

practiced at the company, but proper techniques were not used.

We suggested that the “Test-Driven Development” technique be

applied in order to enhance software quality and increase cus-

tomer satisfaction.

118 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

Table 13

Problems with the current methodology, and suggestions based on the situational methodology developed in the example project.

Problem Suggestion Effectiveness of the suggestion

Ineffective Low Medium High

1 Single, fixed methodology is used for

all projects.

Evolve the methodology by using the

“Hold Reflection Workshop”

technique.

√

2 Methodology training is cumbersome,

as it is performed during the project.

Conduct training by using “Direct

Training” and “Expert in Earshot”

techniques.

√

3 The Product Owner prepares the

requirements as user stories. If

he/she does not have the required

knowledge for the task, the

development team has to create user

stories from textual files.

Enhance interaction with stakeholders

by applying the “Elicit User

Experience” task.

√

4 Analysis of the problem domain is

unwieldy, as it is performed through

the “Design Architecture” task.

Enhance the organizational knowledge

of the development team by using

the “Hold Problem Domain Training

Sessions” technique.

√

5 Descriptions of the requirements are

prepared by the Product Owner, but

parts of the information, which has

been elicited through face to face

communication, is not documented.

Apply the “Document Requirements”

task in the methodology, and use the

“Discover Safety Scenarios”, “Write

Change Report” and “Hire Mercenary

Analyst” techniques for performing

the task.

√

6 UI design is not specifically targeted in

the current methodology.

Increase customer satisfaction by

applying the “Build User Interface”

task in the methodology.

√

7 Project scheduling is only performed

during the pregame phase of the

current methodology.

Enhance the quality of plans by

applying the “Develop Release Plan”

and “Recalibrate Release Plan” tasks

in the methodology.

√

8 Proper coding techniques are not

applied.

Enhance software quality and facilitate

skill transfer by using the “Pair

Programming” and “Side-by-Side

Programming” techniques.

√

9 Proper software testing techniques are

not applied.

Enhance software quality and increase

customer satisfaction by using the

“Test-Driven Development”

technique.

√

p

a

o
The “Effectiveness of the Suggestion” column in Table 13 shows

the stakeholders’ responses to the suggested improvements; it can

be observed that they have shown a positive response to most of

the suggestions.

6. Conclusions and future work

Evaluation results indicate that the proposed approach ad-

dresses the deficiencies encountered in previous approaches (es-

pecially as to automation and provision of method bases) by de-

signing two method bases and a set of executable transforma-

tion patterns (13 transformation patterns), and implementing them

in a specialized model transformation tool (Medini-QVT). On the

other hand, the proposed approach is highly flexible as it allows

the method engineer to actively join in and refine the produced

methodology. The targeted quality attributes are improved as fol-

lows:

- Complexity is managed in three ways: 1- through the three-

level modeling framework, and the modeling language applied;

2- by providing a semi-automated process in which most of

the SME process tasks are performed automatically (the method

engineer is only involved for further refinement); and 3- via

breaking the SME process into fine-grained activities through

which the target methodology is gradually completed.

- Portability is enhanced by defining a three-level modeling

framework in which higher-level models are portable across sit-

uations and techniques.
- Productivity: Deciding about whether a specific task should be

part of a methodology or not is very time-consuming; this

problem is addressed in our approach through the provision

of method bases and transformation patterns, so that suitable

method fragments for the project at hand are extracted auto-

matically through the execution of transformation patterns. An-

other important issue that can adversely affect productivity is

the need for highly skilled professionals for software process

definition, as this task requires experience and knowledge from

several disciplines of software engineering [59] ; this issue too

is dealt with through the use of method bases and transforma-

tion patterns, which enable non-experts to perform the task. An

important issue in productivity is to make sure that the quality

of the target methodology is not traded for development speed;

quality is properly maintained in our proposed approach, as the

method fragments that are stored in the method bases have

been extracted from existing methodologies, and have therefore

been tried and tested in practice.

- Reusability: Reusability is enhanced in two ways: 1- software

process knowledge is reused through the creation and use of

method bases; and 2- the three-level MDD framework enhances

the reusability of models: higher-level models are independent

from situations/techniques, and are hence more readily reusable

due to their relative abstractness.

We have demonstrated the applicability of the proposed ap-

roach by applying it to a real-world project. The method bases

re only partially populated, but since the scope of the methodol-

gy was set to “agile” for this project, the contents were sufficient

H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120 119

f

t

n

s

b

o

i

p

t

t

s

a

h

o

S

a

t

e

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

or achieving the objectives. However, if the proposed approach is

o be applied to other types of methodologies (scopes) that are

ot currently supported by the method bases, the content neces-

ary for those types should be identified and added to the method

ases; once the content has been added, it can be used for devel-

ping all the methodologies of the new types.

This research can be furthered in several directions: Complet-

ng the SF2R and R2MF method bases, refining the transformation

atterns and extending the pattern set, and extending the applied

ool with advanced SME features. Although the results of applying

he approach to an industrial SME effort were encouraging, there

till exist certain threats to their validity: the approach has been

pplied to a relatively small-scale SME project, and its applicability

as not been fully explored in cases where the project situation is

f a more complex nature; applying the approach to larger-scale

ME projects has therefore been planned as a future undertaking,

nd is expected to improve the proposed approach and enhance

he transformation patterns and method bases. We also acknowl-

dge the merits of empirical experimentation for mitigating these

hreats, and plan to conduct such a validation in the future.

eferences

[1] B. Henderson-Sellers, J. Ralyté, P.J. Ågerfalk, M. Rossi, Situational Method Engi-

neering, Springer-Verlag, 2014, doi: 10.1007/978- 3- 642- 41467- 1 .
[2] J. Ralyté, R. Deneckère, C. Rolland, Towards a generic model for situational

method engineering, in: Proceedings of the Advanced Information Systems En-
gineering, 2003, pp. 95–110, doi: 10.1007/3- 540- 45017- 3 _ 9 .

[3] I. Mirbel, J. Ralyté, Situational method engineering: Combining assembly-based

and roadmap-driven approaches, Requir. Eng. 11 (1) (2006) 58–78, doi: 10.
10 07/s0 0766-0 05-0 019-0 .

[4] R. Deneckere , Approche d’extension de méthodes fondée sur l’utilisation de
composants génériques PhD Thesis, University of Paris I-Sorbonne, France,

2001 .
[5] Z. Zohrevand, Y.M. Bibalan, R. Ramsin, Towards a framework for the application

of model-driven development in situational method engineering, in: Proceed-

ings of the 18th Asia Pacific Software Engineering Conference (APSEC’11), 2011,
pp. 122–129, doi: 10.1109/APSEC.2011.55 .

[6] M. Völter , T. Stahl , J. Bettin , A. Haase , S. Helsen , Model-Driven Software Devel-
opment: Technology, Engineering, Management, John Wiley & Sons, 2013 .

[7] J. Mukerji, J. Miller, MDA Guide Version 1.0.1, Object Management Group, 2003
http://www.omg.org .

[8] T. Mens, K. Czarnecki, P. Van Gorp, A taxonomy of model transformation, in:
Proceedings of the International Workshop on Group and Model Transforma-

tion (GraMoT’05), 2006, pp. 7–23, doi: 10.1016/j.entcs.2005.10.021 .

[9] Medini QVT: IKV ++ technologies home, http://www.ikv.de .
[10] M.E. Iacob, M.W. Steen, L. Heerink, Reusable model transformation patterns, in:

Proceedings of the 12th Enterprise Distributed Object Computing Conference
Workshops, 2008, pp. 1–10, doi: 10.1109/EDOCW.2008.51 .

[11] I. Graham , B. Henderson-Sellers , H. Younessi , The OPEN Process Specification,
Addison-Wesley, 1997 .

[12] D.G. Firesmith , B. Henderson-Sellers , The OPEN Process Framework: An Intro-

duction, Addison-Wesley, 2002 .
[13] ISO/IEC. “ISO/IEC 24744:2007/Amd 1:2010 notation. Software Engineering –

Metamodel for Development Methodologies,” ISO, Geneva, 2010.
[14] ISO/IEC. “ISO/IEC 24744. Software Engineering – Metamodel for Development

Methodologies,” ISO, Geneva, 2007.
[15] F. Karlsson, P.J. Ågerfalk, Method configuration: adapting to situational charac-

teristics while creating reusable assets, Inf. Softw. Technol. 46 (9) (2004) 619–

633, doi: 10.1016/j.infsof.20 03.12.0 04 .
[16] M. Cervera, M. Albert, V. Torres, V. Pelechano, A model-driven approach for the

design and implementation of software development methods, Int. J. Inf. Syst.
Model. Des. 3 (4) (2012) 86–103, doi: 10.4018/jismd.2012100105 .

[17] E. Breton, J. Bézivin, Model driven process engineering, in: Proceedings of
the 25th Annual International Computer Software and Applications Conference

(COMPSAC’01), 2001, pp. 225–230, doi: 10.1109/CMPSAC.2001.960620 .

[18] J.A.H. Alegría, M.C. Bastarrica, A. Quispe, S.F. Ochoa, An MDE approach to soft-
ware process tailoring, in: Proceedings of the 7th International Conference on

Software and Systems Process, 2011, pp. 43–52, doi: 10.1145/1987875.1987885 .
[19] T. Punter, K. Lemmen, The MEMA-model: Towards a new approach for

Method Engineering, Inf. Softw. Technol. 38 (4) (1996) 295–305, doi: 10.1016/
0950- 5849(95)01087- 4 .

20] D. Gupta, N. Prakash, Engineering methods from method requirements specifi-

cations, Require. Eng. 6 (3) (2001) 135–160, doi: 10.1007/s007660170001 .
[21] A. Braganca, R.J. Machado, Transformation patterns for multi-staged model

driven software development, in: Proceedings of the 12th International Soft-
ware Product Line Conference (SPLC’08), 2008, pp. 329–338, doi: 10.1109/SPLC.

2008.41 .
22] J. Bézivin , F. Jouault , J. Paliès , Towards model transformation design patterns,
in: Proceedings of the First European Workshop on Model Transformations

(EWMT’05), 2005, pp. 1–6 .
23] S. Brahe, B. Bordbar, A pattern-based approach to business process mod-

eling and implementation in web services, in: Proceedings of the Service-
Oriented Computing (ICSOC’07), Springer, 2007, pp. 166–177, doi: 10.1007/

978- 3- 540- 75492- 3 _ 15 .
[24] B.K. Appukuttan , T. Clark , S. Reddy , L. Tratt , R. Venkatesh , A pattern based

model driven approach to model transformations, in: Proceedings of the Meta-

modelling for MDA, 2003, pp. 110–128 .
25] K. Duddy, A. Gerber, M. Lawley, K. Raymond, J. Steel, Model Transformation: a

declarative, reusable patterns approach, in: Proceedings of the 17th IEEE Inter-
national Enterprise Distributed Object Computing Conference, 2003, pp. 174–

185, doi: 10.1109/EDOC.2003.1233847 .
26] A. D’Ambrogio, A model transformation framework for the automated building

of performance models from UML models, in: Proceedings of the 5th interna-

tional workshop on Software and Performance, 2005, pp. 75–86, doi: 10.1145/
1071021.1071029 .

[27] C.V. Chicote , B. Moros , A. Toval , REMM-Studio: An integrated model-driven
environment for requirements specification, validation and formatting, Object

Technol. 6 (9) (2007) 437–454 .
28] A. Niknafs, R. Ramsin, Computer-aided method engineering: An analysis of ex-

isting environments, in: Proceedings of the Advanced Information Systems En-

gineering, 2008, pp. 525–540, doi: 10.1007/978- 3- 540- 69534- 9 _ 39 .
29] P. Clarke, R.V. O’Connor, The situational factors that affect the software de-

velopment process: Towards a comprehensive reference framework, Inf. Softw.
Technol. 54 (5) (2012) 433–447, doi: 10.1016/j.infsof.2011.12.003 .

30] B. Henderson-Sellers, J. Ralyté, Situational Method Engineering: State-of-
the-Art Review, Universal Comput. Sci. 16 (3) (2010) 424–478, doi: 10.1007/

978- 3- 642- 41467- 1 .

[31] E. Kornyshova, R. Deneckere, R. Salinesi, Method chunks selection by multicri-
teria techniques: an extension of the assembly-based approach, in: Proceed-

ings of the Situational Method Engineering: Fundamentals and Experiences,
2007, pp. 64–78, doi: 10.1007/978- 0- 387- 73947- 2 _ 7 .

32] J. Jantzen, Foundations of Fuzzy Control, John Wiley & Sons, 2007, doi: 10.1002/
9780470061176 .

[33] R.E. Precup, H. Hellendoorn, A survey on industrial applications of fuzzy con-

trol, Comput. Ind. 62 (3) (2011) 213–226, doi: 10.1016/j.compind.2010.10.001 .
34] M. Sadiq, S.K. Jain, Applying fuzzy preference relation for requirements priori-

tization in goal oriented requirements elicitation process, Int. J. Syst. Assurance
Eng. Manage. 5 (4) (2014) 711–723, doi: 10.1007/s13198- 014- 0236- 3 .

[35] O. Jafarinezhad, R. Ramsin, Development of situational requirements engineer-
ing processes: a process factory approach, in: Proceedings of the 36th Annual

IEEE Computer Software and Applications Conference (COMPSAC’12), 2012,

pp. 279–288, doi: 10.1109/COMPSAC.2012.39 .
36] A. Van Lamsweerde, R. Darimont, E. Letier, Managing conflicts in goal-driven

requirements engineering, IEEE Trans. Softw. Eng. 24 (11) (1998) 908–926,
doi: 10.1109/32.730542 .

[37] A. Sardinha , J. Araújo , A. Moreira , A. Rashid , Conflict Management in Aspec-
t-Oriented Requirements Engineering, Inf. Sci. Technol. Bull. ACM Slovakia 2

(1) (2010) 56–59 .
38] H. Bendjenna , P.J. Charrel , N.E. Zarour , Using AHP method to resolve conflicts

between non-functional concerns, in: Proceedings of the International Confer-

ence on Education, Applied Sciences and Management, 2012, pp. 167–170 .
39] M. Amroune, J.M. Inglebert, P.J. Charrel, N. Zarour, A Conflict Resolution Process

in AspeCiS approach, Int. J. Comput. Appl. 44 (10) (2012) 14–21, doi: 10.5120/
6298-8504 .

40] K. Mitchell, B.R. Agle, D.J. Wood, Toward a theory of stakeholder identifica-
tion and salience: defining the principle of who and what really counts, Acad.

Manage. Rev. 22 (4) (1997) 853–886, doi: 10.5465/AMR.1997.9711022105 .

[41] S.W. Ambler , Process Patterns: Building Large-Scale Systems Using Object
Technology, Cambridge University Press, 1998 .

42] R. Bendraou, M.P. Gervais, X. Blanc, Uml4spm: a uml2.0-based metamodel for
software process modelling, in: Proceedings of the Model Driven Engineering

Languages and Systems, Springer, 2005, pp. 17–38, doi: 10.1007/11557432 _ 3 .
43] R. Bendraou, J.M. Jézéquel, M.P. Gervais, X. Blanc, A comparison of six uml-

based languages for software process modeling, IEEE Trans. Softw. Eng 36 (5)

(2010) 662–675, doi: 10.1109/TSE.2009.85 .
44] R. Schuppenies , S. Steinhauer , Software Process Engineering Metamodel, Object

Management Group, 2002 .
45] S. Hesari, H. Mashayekhi, R. Ramsin, Towards a general framework for evaluat-

ing software development methodologies, in: Proceedings of the 34th Annual
IEEE Computer Software and Applications Conference (COMPSAC’10), 2010,

pp. 208–217, doi: 10.1109/COMPSAC.2010.69 .

46] R. Bendraou, B. Combemale, X. Cregut, M. Gervais, Definition of an executable
SPEM 2.0, in: Proceedings of the 14th Asia-Pacific Software Engineering Con-

ference, 2007, pp. 390–397, doi: 10.1109/ASPEC.2007.60 .
[47] M. Asadi, R. Ramsin, Patterns of situational method engineering, in: Proceed-

ings of the Software Engineering Research, Management and Applications,
2009, pp. 277–291, doi: 10.1007/978- 3- 642- 05441- 9 _ 24 .

48] Z. Shakeri, M.H. Sadi, R. Ramsin, Towards tool support for situational en-

gineering of agile methodologies, in: Proceedings of the 17th Asia Pacific
Software Engineering Conference (APSEC’10), 2010, pp. 326–335, doi: 10.1109/

APSEC.2010.45 .

http://dx.doi.org/10.1007/978-3-642-41467-1
http://dx.doi.org/10.1007/3-540-45017-3_9
http://dx.doi.org/10.1007/s00766-005-0019-0
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0004
http://dx.doi.org/10.1109/APSEC.2011.55
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0006
http://www.omg.org
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://www.ikv.de
http://dx.doi.org/10.1109/EDOCW.2008.51
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0011
http://dx.doi.org/10.1016/j.infsof.2003.12.004
http://dx.doi.org/10.4018/jismd.2012100105
http://dx.doi.org/10.1109/CMPSAC.2001.960620
http://dx.doi.org/10.1145/1987875.1987885
http://dx.doi.org/10.1016/0950-5849(95)01087-4
http://dx.doi.org/10.1007/s007660170001
http://dx.doi.org/10.1109/SPLC.2008.41
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0019
http://dx.doi.org/10.1007/978-3-540-75492-3_15
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0021
http://dx.doi.org/10.1109/EDOC.2003.1233847
http://dx.doi.org/10.1145/1071021.1071029
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0024
http://dx.doi.org/10.1007/978-3-540-69534-9_39
http://dx.doi.org/10.1016/j.infsof.2011.12.003
http://dx.doi.org/10.1007/978-3-642-41467-1
http://dx.doi.org/10.1007/978-0-387-73947-2_7
http://dx.doi.org/10.1002/9780470061176
http://dx.doi.org/10.1016/j.compind.2010.10.001
http://dx.doi.org/10.1007/s13198-014-0236-3
http://dx.doi.org/10.1109/COMPSAC.2012.39
http://dx.doi.org/10.1109/32.730542
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0035
http://dx.doi.org/10.5120/6298-8504
http://dx.doi.org/10.5465/AMR.1997.9711022105
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0038
http://dx.doi.org/10.1007/11557432_3
http://dx.doi.org/10.1109/TSE.2009.85
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0041
http://dx.doi.org/10.1109/COMPSAC.2010.69
http://dx.doi.org/10.1109/ASPEC.2007.60
http://dx.doi.org/10.1007/978-3-642-05441-9_24
http://dx.doi.org/10.1109/APSEC.2010.45

120 H. Agh, R. Ramsin / Information and Software Technology 78 (2016) 95–120

[49] M. Asadi, N. Esfahani, R. Ramsin, Process patterns for MDA-based software de-
velopment, in: Proceedings of the 8th ACIS International Conference on Soft-

ware Engineering Research, Management and Applications (SERA’10), 2010,
pp. 190–197, doi: 10.1109/SERA.2010.32 .

[50] M. Khaari, R. Ramsin, Process patterns for aspect-oriented software develop-
ment, in: Proceedings of the 17th IEEE International Conference and Work-

shops on Engineering of Computer Based Systems (ECBS’10), 2010, pp. 241–
250, doi: 10.1109/ECBS.2010.33 .

[51] E. Kouroshfar, H.Y. Shahir, R. Ramsin, Process patterns for component-based

software development, in: Proceedings of the Component-Based Software En-
gineering, 2009, pp. 54–68, doi: 10.1007/978- 3- 642- 02414- 6 _ 4 .

[52] B. Biglari, R. Ramsin, Generic process framework for developing high-integrity
software, in: Proceedings of the 11th International Conference on Intelligent

Software Methodologies, Tools and Techniques (SoMeT’12), 2012, pp. 73–88,
doi: 10.3233/ 978- 1- 61499- 125- 0- 73 .

[53] R. Babanezhad, Y.M. Bibalan, R. Ramsin, Process patterns for web engineering,

in: Proceedings of the 34th Annual IEEE Computer Software and Applications
Conference (COMPSAC’10), 2010, pp. 477–486, doi: 10.1109/COMPSAC.2010.55 .

[54] M. Karow , A. Gehlert , J. Becker , W. Esswein , On the transition from com-
putation independent to platform independent models, in: Proceedings of

the 12th Americas Conference on Information Systems (AMCIS’06), 2006,
pp. 3913–3921 .
[55] A .A .A . Jilani , M. Usman , Z. Halim , Model transformations in model driven ar-
chitecture, Universal J. Comput. Sci. Eng. Technol. 1 (1) (2010) 50–54 .

[56] T. Yue, L.C. Briand, Y. Labiche, A systematic review of transformation ap-
proaches between user requirements and analysis models, Require. Eng. 16 (2)

(2011) 75–99, doi: 10.10 07/s0 0766- 010- 0111-y .
[57] F. Orejas, E. Guerra, J. de Lara, H. Ehrig, Correctness, completeness and ter-

mination of pattern-based model-to-model transformation, in: Proceedings of
Algebra and Coalgebra in Computer Science , 2009, pp. 383–397, doi: 10.1007/

978- 3- 642- 03741- 2 _ 26 .

[58] J.A. Livermore, Factors that significantly impact the implementation of an agile
software development methodology, J. Softw. 3 (4) (2008) 31–36, doi: 10.4304/

jsw.3.4.31-36 .
[59] A. Barreto, E. Duarte, A.R. Rocha, L. Murta, Supporting the definition of soft-

ware processes at consulting organizations via software process lines, in: Pro-
ceedings of Quality of Information and Communications Technology (QUATIC),

2010, pp. 15–24, doi: 10.1109/QUATIC.2010.19 .

http://dx.doi.org/10.1109/SERA.2010.32
http://dx.doi.org/10.1109/ECBS.2010.33
http://dx.doi.org/10.1007/978-3-642-02414-6_4
http://dx.doi.org/10.3233/ ignorespaces 978-1-61499-125-0-73
http://dx.doi.org/10.1109/COMPSAC.2010.55
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30096-9/sbref0052
http://dx.doi.org/10.1007/s00766-010-0111-y
http://dx.doi.org/10.1007/978-3-642-03741-2_26
http://dx.doi.org/10.4304/jsw.3.4.31-36
http://dx.doi.org/10.1109/QUATIC.2010.19

	A pattern-based model-driven approach for situational method engineering
	1 Introduction
	2 Related research
	3 Proposed framework for pattern-based MDD for SME (PBMDD4SME)
	3.1 MFIM level
	3.1.1 Requirements model
	3.1.2 Conflict resolution algorithm
	3.1.3 High-level model of target methodology

	3.2 TIM level
	3.3 TSM level
	3.4 SF2R method base
	3.5 R2MF method base

	4 Proposed process and transformation patterns for applying PBMDD4SME framework
	4.1 Proposed model-driven SME process
	4.2 Transformation patterns

	5 Evaluation of proposed approach
	5.1 Comparison of PBMDD4SME with other MDD frameworks used in SME
	5.2 Comparison of PBMDD4SME with other SME approaches
	5.3 Evaluation of transformation patterns
	5.4 Example of application of the proposed approach

	6 Conclusions and future work
	 References

