

Towards a Generic Framework for Model-Driven Engineering of

Software Process Lines

 H. Agh, R. Ramsin

Department of Computer Engineering, Sharif University of Technology

P.O. Box 11365-11155

Tehran, Iran

agh@ce.sharif.edu, ramsin@sharif.edu

ABSTRACT

Situational Method Engineering (SME)1approaches help construct

bespoke software development processes according to the

specifications of the project at hand, but they are time-consuming

and costly. A Software Process Line (SPrL) tackles this problem

by allowing software processes to be constructed for specific

project situations through reusing core process assets. Model-

Driven Development (MDD) has been used for automating SPrL

Engineering (SPrLE); however, existing model-driven SPrLE

methods are deficient as to their coverage of key MDD features.

We propose a novel model-driven SPrLE approach that aims to

address these shortcomings; it can be regarded as a framework

that specifies the model chain and the core model-driven SPrLE

activities that should be applied. The approach is yet to be refined

and evolved through application to a real-world project; however,

a preliminary criteria-based evaluation has shown that the

shortcomings of existing SPrLE methods have indeed been

addressed by the proposed approach.

CCS CONCEPTS

• Software and its engineering → Software development

process management; Model-driven software engineering;

KEYWORDS

Situational Method Engineering; Software Process Line; Model-

Driven Development; Software Process Improvement

ACM Reference format:

H. Agh, R. Ramsin. 2017. Towards a Generic Framework for

Model-Driven Engineering of Software Process Lines. In

Proceedings of European Conference on the Engineering of

Computer Based Systems, Larnaca, Cyprus, August-September

2017 (ECBS’17), 4 pages. DOI: 10.1145/3123779.3123810

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ECBS '17, August 31-September 1, 2017, Larnaca, Cyprus

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4843-0/17/08…$15.00

https://doi.org/10.1145/3123779.3123810

1 INTRODUCTION

Software Product Line Engineering (SPLE) [1] has proven

itself as an effective approach for fast and cost-effective

development of high-quality software products and software-

intensive systems [2]. Software Process Line Engineering (SPrLE)

is somewhat similar to SPLE, but instead of software production,

it is aimed at producing software development processes.

Software processes have been recognized as essential means

for developing quality software systems [3]. Situational Method

Engineering (SME) [4] is the discipline concerned with

constructing bespoke software processes, tailored to fit the project

situation at hand. A Software Process Line (SPrL) is a specialized

Software Product Line (SPL) in the context of SME [5].

According to [6], a SPrL is “a set of software development

processes that share a common, managed set of features satisfying

the specific needs of an organization and that are developed from

a common set of core assets in a prescribed way.” Tailoring a

SPrL for constructing project-specific processes is slow and error-

prone if done manually. Therefore, Model-Driven Development

(MDD) has been applied to SPrLE; thus, tailoring the SPrL to fit a

specific project context can be (semi)automatically performed if:

1) a method base of reusable core assets is created, and 2) implicit

tailoring knowledge is explicitly specified in the form of tailoring

transformations [7]. Existing methods for model-driven SPrLE are

afflicted with major deficiencies, namely: lack of a precise

method for defining core processes, inadequate attention to the

quality of software process practices selected in process tailoring,

lack of multi-level modeling, and nonexistence of a method base

for mapping project context attributes to development practices.

We propose a novel MDD approach/framework for SPrLE

with the specific aim of addressing the above issues. Similar to

SPLE, our approach is performed in two phases: Domain

Engineering (DE) and Application Engineering (AE). During DE,

common and variable elements of the targeted software processes

are identified to create a core process which forms the architecture

of the SPrL; Software Process Improvement (SPI) methods are

used for improving the quality of the core process. During AE,

members of the SPrL (specific processes) are built based on the

core process and through applying tailoring transformations.

The rest of this paper is structured as follows: Section 2

provides a survey and evaluation of existing SPrLE approaches;

Section 3 introduces our proposed approach; Section 4 examines

the strengths of the proposed approach in comparison to existing

approaches; and Section 5 presents the concluding remarks.

mailto:agh@ce.sharif.edu
mailto:ramsin@sharif.edu

ECBS’17, August-September 2017, Larnaca, Cyprus H. Agh and R. Ramsin

2

2 Related Research

In general, there are two categories of SPrLE approaches:

 Non-model-driven approaches: In [8], an approach is

proposed for developing the architecture of a SPrL and then

deriving a specific process from the architecture. In [9], an

approach for creating a business SPrL is proposed. The Map

Indicator-based Guidance (MIG) approach [10] extends the

MAP formalism [11] to facilitate process customization. In

[12], an approach is proposed for defining reusable processes in

Software Process Consulting Organizations (SPCOs).

 Model-driven approaches: CASPER [5] is a meta-process and

a set of process practices for creating adaptable process models.

The method proposed in [13] supports variability management

in software processes, automatic derivation of software

processes, and automatic transformation of the derived

processes into workflow specifications. In the approach

proposed in [7], variabilities of process models are represented

as feature models, the software process is modeled in eSPEM,

and a MDD strategy is used for supporting automatic execution

of transformation rules. In [14], a mega-model consisting of

models and transformations is proposed for modeling and

evolution of process lines in small software organizations.

We have evaluated the existing model-driven SPrLE

approaches based on specially defined criteria. Since a

comprehensive set of criteria for evaluating SPrLE approaches is

not available, we have defined the criteria based on the features

deemed desirable in SME and MDD frameworks, as specified in

[15]. The evaluation results, shown in Table 1, indicate that these

approaches are deficient in several aspects:

 Although the core process is a key part of a SPrL, many of the

existing approaches lack a precise method for defining it.

 None of the approaches provides the features that are

considered essential in MDD, such as multi-level modeling.

 one of the approaches provides a method base for mapping

project context attributes to development practices; they thus

fail to support (semi)automatic generation of custom processes.

 Although software process quality is of utmost importance [16],

existing approaches fail to give proper attention to the quality

of the practices selected during process tailoring.

3 Proposed Approach for Model-Driven SPrLE

Our proposed approach for model-driven SPrLE is shown in

Figure 1. Each of its two phases, DE and AE (Sections 3.1 and

3.2), includes three sub-phases: Analysis, Design, and

Implementation. Returning from each sub-phase to the previous

one(s) is possible, as shown in Figure 1 by feedback loops.

Returns from AE to DE are done in order to update the models.

Table 1: Results of criteria-based evaluation of existing model-driven SPrLE approaches

 Model-Driven SPrLE Approach

Criterion
[5] [13] [7] [14]

Definition of core process(1) Low Low Low Low

Definition of modeling levels(2) Low Low Low Low

Attention to quality of process practices(3) Low Low Low Low

Potential for process automation(4) Medium Medium Medium Medium

Provision of knowledge repository(5) Low Low Low Low

Complexity management(6) Low High Medium Low

Transformation type(7) Horizontal Horizontal & Vertical Horizontal Horizontal

Maintainability(8) Medium High Medium Medium

Explanation of possible values for the criteria:
(1) - Low: The need for definition of the core process is mentioned, but a precise method for defining it is not provided.

- High: A precise method is provided for defining the core process.

(2) - Low: Some models are created throughout the process, but different levels of abstraction (prescribed by MDD) are not supported.

- High: Modeling levels are properly defined, and model transformation rules are specified.

(3) - Low: The core process is created by using the method fragments defined in organizational processes, and mechanisms such as SPI methods are not used for enhancing

the quality of the core process.

- High: Mechanisms such as SPI methods are used for enhancing the quality of the core process.

(4) - Low: Most of the process is performed manually.

- Medium: A part of the process (pertaining to the application of transformation rules) is performed automatically, but complete identification of method fragments needs

manual intervention by the method engineer.

- High: Most of the process is performed automatically by providing method bases of method fragments and automatic execution of transformation rules.

(5) - Low: No method base is defined for storing the method fragments and the relationships among the models.

- High: A method base is defined for storing the method fragments and the model relationships, and it is used throughout the process.

(6) - Low: Variation points and variants are included into the core process. Therefore, extending the core process will increase its complexity.

- Medium: The variability model and the core process model are defined separately, but the traceability links between them are not specified.

- High: The variability model and the core process model are defined separately, and the traceability links between them are specified.

(7) - Vertical: It is used when the source and destination models are at different levels of abstraction.

- Horizontal: It is used to convert models that are at the same abstraction level

(8) - Low: Any change in any part of the models leads to a ripple effect throughout the models.

- Medium to High: Mechanisms such as intermediate models are provided for enhancing the maintainability of the models.

- High: In addition to intermediate models, automatic propagation of maintenance changes to the models is supported.

ECBS’17, August-September 2017, Larnaca, Cyprus H. Agh and R. Ramsin

3

Figure 1: Proposed approach for SPrLE

3.1 Domain Engineering (DE)

The sub-phases of DE are explained in the following sections.

3.1.1 Analysis

 The activities performed in this sub-phase are as follows:

 Selecting similar processes: Organizational processes are

examined, and similar processes are identified.

 Modeling similar processes in SPEM: The identified processes

are all remodeled in SPEM; this facilitates the identification of

their commonalities and variabilities.

 Identification of context attributes: Attributes important to the

organization are elicited from the tacit process knowledge of

employees and published empirical knowledge.

3.1.2 Design

The activities performed in this sub-phase are as follows:

 Context modeling: Identified context attributes are modeled

based on the Software Process Context Metamodel (SPCM) [7].

 Identification of commonalities and variabilities: A bottom-up

approach is usually used for producing the core process, in

which knowledge on existing process definitions and

applications (in a well-known problem domain) is used for

extracting the commonalities and variabilities. However, this

approach can result in an inadequate core process, as existing

processes may not be adequate. In the top-down approach,

which is based on analyzing the domain, it is difficult to

adequately elicit the commonalities and variabilities from

scratch [8]. Therefore, we use both approaches: the bottom-up

approach is applied in the Design sub-phase of DE to produce

an initial core process; the top-down approach is then used in

Implementation to improve the quality of the core process.

3.1.3 Implementation

The activities performed in this sub-phase are as follows:

 Analyzing and identifying the relationships between context

attributes and process practices: The practices that are useful

for each specific situation are identified. SPI practices can be

used for improving the quality of the core process.

 Developing a method base: A method base is built for storing

the core assets as well as the relationships between project

context attributes and the core assets.

 Implementing transformation rules: Transformation rules are

implemented using a language such as ATL. They are used for

automatic derivation of a specific methodology from the SPrL.

 Constructing the extended part of the core process: The top-

down approach is used for improving the quality of the core

process based on the project situation. In [17], a reference

framework is defined for situational factors that affect software

processes; we use this framework to specify the situation. The

mappings between context attributes (situational factors) and

suitable development practices should also be identified so as to

automatically determine the practices that fit the situation.

 Creating the complete core process: Transformations are

applied to automatically merge the models created by the top-

down and bottom-up approaches.

3.2 Application Engineering (AE)

The sub-phases of AE are explained in the following sections.

3.2.1 Analysis

The context model of DE is taken as input, and the values of

context attributes are set by the method engineer based on the

project situation, thus yielding an organizational context model.

ECBS’17, August-September 2017, Larnaca, Cyprus H. Agh and R. Ramsin

4

3.2.2 Design

This is where MDD is applied. The organizational context

model, core process model, and transformation rules are used for

generating a situational methodology: the situational methodology

is gradually generated at multiple modeling levels, from abstract

to concrete, through the application of transformation rules. Two

alternatives have so far been identified as the bases for defining

the modeling levels: the granularity level of method fragments

and the abstraction level of context attributes. In the former

solution, variation points with higher granularities, such as the

ones associated with phases or activities, are resolved first (at

higher modeling levels); whereas variation points with lower

granularities, such as those associated with tasks, roles, and work

products, are resolved at lower levels. In the alternative solution,

situational factors are classified based on their abstraction levels;

variation points dependent on the values of higher-abstraction

factors, such as organizational factors, are resolved first, whereas

variation points dependent on lower-abstraction factors, such as

project factors, are resolved at lower modeling levels.

3.2.3 Implementation

The methodology produced in the previous phase is enacted in

the real world, and the results of its application may call for

further iterations of the DE and AE phases.

4 Discussion

The problems observed in existing approaches, listed in

Section 2, are addressed in our proposed approach; namely:

 In DE, a precise method is presented for creating the core

process using bottom-up and top-down approaches.

 SPI methods are used in order to improve the quality of the core

process and the derivable processes.

 Multiple modeling levels are defined in AE.

 A method base is devised for storing the core assets, and also

for mapping project context attributes to the relevant practices.

 The target process, and parts of the core process, are generated

automatically, thus providing a high degree of automation.

 The variability- and core-process models are produced

separately, and a traceability matrix is used for maintaining

their dependencies. Also, the target process is generated

gradually during AE. Disruptive complexity is thus avoided.

 Horizontal and vertical transformations are both supported, the

former for creating models such as the core process model, and

the latter for generating the lower-level models in AE.

 Intermediate models are created, and transformation rules are

applied for automatic propagation of changes to the models.

Maintainability is thus promoted through MDD features.

5 Conclusion and Future Work

Even though the general specifications of the proposed

approach are complete, the following elements have not been

finalized yet: the contents of the method base, the modeling levels

used in AE for model-driven development of processes, and the

transformation rules. Future effort will hence focus on completing

and refining the proposed approach through empirical evaluation.

REFERENCES
[1] Klaus Pohl, Günter Böckle, and Frank J. van Der Linden. 2005.

Software Product Line Engineering: Foundations, Principles and

Techniques. Springer-Verlag.

[2] Linda M. Northrop. 2002. Software Product Line Tenets. IEEE Software

19, 4 (2002), 32–40. DOI: http://dx.doi.org/10.1109/MS.2002.1020285

[3] Silvia T. Acuna, Angelica D. Antonio, Xavier Ferre, Marta Lopez, and

Luis Mate. 2000. The Software Process: Modelling, Evaluation and

Improvement. In Handbook of Software Engineering and Knowledge

Engineering, Shi Kuo Chang (Ed.). World Scientific, Vol. 1, 193–238.

DOI: http://dx.doi.org/10.1142/9789812389718_0011

[4] Brian Henderson-Sellers, Jolita Ralyté, Pär J. Agerfalk, and Matti Rossi.

2014. Situational Method Engineering. Springer-Verlag. DOI:

http://dx.doi.org/ 10.1007/978-3-642-41467-1.

[5] Julio Ariel Hurtado Alegría and María Cecilia Bastarrica. 2012. Building

Software Process Lines with CASPER. In Proceedings of the 12th

International Conference on Software and System Process (ICSSP’12).

IEEE, 170–179. DOI: http://dx.doi.org/10.1109/ICSSP.2012.6225962

[6] Ove Armbrust, Masafumi Katahira, Yuko Miyamoto, Jürgen Münch,

Haruka Nakao, and Alexis Ocampo. 2009. Scoping Software Process

Lines. Software Process: Improvement and Practice 14, 3 (2009), 181–

197. DOI: http://dx.doi.org/10.1002/spip.412

[7] Julio Ariel Hurtado Alegría, María Cecilia Bastarrica, Sergio F. Ochoa,

and Jocelyn Simmonds. 2013. MDE Software Process Lines in Small

Companies. Journal of Systems and Software 86, 5 (2013), 1153–1171.

DOI: http://doi.org/10.1016/j.jss.2012.09.033

[8] Hironori Washizaki. 2006. Building Software Process Line Architectures

from Bottom Up. In Lecture Notes in Computer Science, Vol. 4034.

Springer, 415–421. DOI: http://dx.doi.org/10.1007/11767718_37

[9] Vanessa Tavares Nunes, Claudia Maria Lima Werner, and Flávia Maria

Santoro. 2010. Context-Based Process Line. In Proceedings of the 12th

International Conference on Enterprise Information System (ICEIS’10).

277–282.

[10] Rébecca Deneckère and Elena Kornyshova. 2010. Process Line

Configuration: An Indicator-Based Guidance of the Intentional Model

MAP. In Lecture Notes in Business Information Processing, Vol. 50.

Springer, 327–339. DOI: http://dx.doi.org/10.1007/978-3-642-13051-

9_27

[11] Colette Rolland, Naveen Prakash, and Adolphe Benjamen. 1999. A

Multi-Model View of Process Modeling. Requirements Engineering 4, 4

(1999), 169–187. DOI: http://dx.doi.org/10.1007/s007660050018

[12] Ahilton Barreto, Elaine Duarte, Ana Regina Rocha, and Leonardo

Murta. 2010. Supporting the Definition of Software Processes at

Consulting Organizations via Software Process Lines. In Proceedings of

the 7th International Conference on the Quality of Information and

Communications Technology (QUATIC’10). IEEE, 15–24. DOI:

http://dx.doi.org/10.1109/QUATIC.2010.19

[13] Fellipe Araújo Aleixo, Marília Aranha Freire, Wanderson Câmara dos

Santos, and Uirá Kulesza. 2010. Automating the Variability

Management, Customization and Deployment of Software Processes: A

Model-Driven Approach. In Lecture Notes in Business Information

Processing, Vol. 73. Springer, 372–387. DOI:

http://dx.doi.org/10.1007/978-3-642-19802-1_26

[14] Jocelyn Simmonds, Daniel Perovich, María Cecilia Bastarrica, and Luis

Silvestre. 2015. A Megamodel for Software Process Line Modeling and

Evolution. In Proceedings of the 18th ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems

(MODELS’15). IEEE, 406–415. DOI: http://dx.doi.org/

10.1109/MODELS.2015.7338272

[15] Halimeh Agh and Raman Ramsin. 2016. A Pattern-Based Model-Driven

Approach for Situational Method Engineering. Information and Software

Technology 78 (2016), 95–120. DOI:

http://dx.doi.org/10.1016/j.infsof.2016.05.010

[16] Noor Azura Zakaria, Suhaimi Ibrahim, and Mohd Naz’ri Mahrin. 2015.

The State of the Art and Issues in Software Process Tailoring. In

Proceedings of the 4th International Conference on Software

Engineering and Computer Systems (ICSECS’15). IEEE, 130–135. DOI:

http://dx.doi.org/10.1109/ICSECS.2015.7333097

[17] Paul Clarke and Rory V. O’Connor. 2012. The Situational Factors That

Affect the Software Development Process: Towards a Comprehensive

Reference Framework. Information and Software Technology 54, 5

(2012), 433–447. DOI: http://dx.doi.org/10.1016/j.infsof.2011.12.003

