
Towards Tool Support for Situational Engineering of Agile Methodologies 
 

Zahra Shakeri Hossein Abad, Mahsa Hasani Sadi, Raman Ramsin 
Department of Computer Engineering 

Sharif University of Technology 
Tehran, Iran 

E-mail: z_shakeri@ce.sharif.edu, mhsadi@ce.sharif.edu, ramsin@sharif.edu 
 
 

Abstract—Various agile software development methodologies, 
practices, and techniques have been proposed in the last 
decade; some present novel ideas, while many are simply made 
up of tasks and techniques borrowed from prominent agile 
methodologies. Each of these methodologies prescribes a set of 
practices and techniques which are deemed appropriate for 
application in a specific context. However, there exists no 
single method which fits all project situations. This has 
resulted in the advent of Situational Method Engineering 
(SME) approaches, which are used for developing software 
methodologies that are tailored to fit the specific circumstances 
of the project situation at hand. Since tool support has become 
an essential prerequisite for widespread adoption of software 
engineering methods, provision of Computer-Aided Method 
Engineering (CAME) tools has become a priority. We provide 
a basis for the application of assembly-based situational 
method engineering to the development of bespoke agile 
methodologies. To this aim, a comprehensive set of relevant 
methodology features has first been identified, spanning the 
range of possible requirements that a method engineer may 
define for the agile methodology under development. Based on 
this set of requirements, a method base has been proposed that 
contains the method chunks necessary for satisfying these 
requirements. The proposed method base conforms to the 
Software Process Engineering Metamodel (SPEM 2.0), and can 
be immediately plugged into CAME tools which implement 
this metamodel, including the Eclipse Process Framework 
Composer (EPFC).  

Keywords-agile software development methodology; 
situational method engineering; tool support; methodology 
requirement 

I. INTRODUCTION 
Since their emergence on the software engineering scene, 

agile methodologies have won widespread acclaim among 
managers and developers. This popularity is mainly due to 
the set of considerations that agile methodologies take into 
account in their processes − as stated in the Agile Principles 
[1] − including frequent delivery of executable products, 
active user involvement in the development process, and 
acceptability of change even if requested late in the 
development process. Based on these principles, a myriad 
number of techniques, practices, activities and processes 
have been introduced, both in practice and in the literature. 
Although several prominent agile processes exist – such as 
DSDM [2], Scrum [3], XP [4], ASD [5], Crystal Clear [6] 

and FDD [7] – they do not completely meet the situation-
specific needs of method engineering projects.  

In order to address the issue of developing and/or 
tailoring agile processes according to the requirements of a 
specific project situation, it has become essential to apply 
Situational Method Engineering (SME) approaches [8]. 
However, the introduction of a solitary SME approach does 
not solve the problems confronted in practice. A solid 
practical framework is needed that is applicable to a wide 
range of projects through adequate tools. Tool support has 
thus become indispensable, especially through specialized 
CAME (Computer-Aided Method Engineering) tools [9] that 
support the development of agile methodologies. On the 
other hand, the sheer number and variety of agile practices 
and processes poses a serious problem for methodology 
engineers: they have to choose from a vast pool of process 
components at various levels of granularity and with widely 
differing features. Aiming at resolving these issues, we have 
explored the utilization of method engineering approaches 
for developing agile methodologies, and have developed the 
basis required for the provision of full CAME tool support in 
this context.  

Among the different strategies of SME, assembly-based 
SME has received considerable attention, and has become 
the basis of method construction in CAME tools. This 
strategy, in which a method is composed of reusable 
components called method chunks, defines the following 
four steps for method construction [8]:  
1. Specification of the situation of the project at hand. 
2. Definition of methodology requirements which reflect 

the project situation. 
3. Selection of a set of method chunks satisfying the 

requirements. 
4. Assembly of the selected method chunks into a 

coherent methodology. 
Following the above steps, four preliminary prerequisites 

should be fulfilled in order to provide adequate CAME tool 
support for assembly-based engineering of agile 
methodologies: 
1. Specification of a set of methodology requirements that 

are of main concern in the development of agile 
software processes. 

2. Extraction of a set of agile process fragments from 
existing agile methodologies. These fragments are in 
fact empirically proven patterns of practice at different 

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE

DOI 10.1109/APSEC.2010.45

326



levels of granularity applied in the context of agile 
development projects. 

3. Matching the extracted method chunks with the 
specified methodology requirements which they satisfy, 
thereby forming a cohesive set of method chunks. 

4. Supplementing the method chunks with relevant 
guidelines on how they can be assembled into a 
coherent process. 

The first three stages mentioned above provide a 
comprehensive repository of method chunks, referred to as 
the method base (or method repository) in CAME tools [9]. 
We propose an agile method base as the first necessary step 
in assembly-based engineering of agile methodologies. 
However, since the ultimate goal is to provide CAME-tool 
support for developing these methodologies, the definition of 
the method base should conform to a standard formalism. To 
address this requirement, we have adopted the Eclipse 
Process Framework Composer (EPFC) [10], which is an 
open-source situational method engineering tool platform. 
EPFC provides an extensible platform for assembly-based 
method engineering, and is fully extensible through 
provision of facilities for adding new method plug-ins, 
method packages, and libraries. Since EPFC conforms to the 
OMG’s Software and System Process Engineering 
Metamodel (SPEM 2.0) [11] in the decomposition of 
software processes into their building blocks, we have thus 
adopted SPEM 2.0 for the definition of the proposed agile 
method base. In SPEM 2.0, processes are composed of 
standard reusable components that constitute the method 
content. The method content is composed of elements of 
three types: roles, work products, and tasks. In order to 
define the lifecycle of a process, illustrate different levels of 
abstraction, and constrain the order in which activities are 
performed, SPEM 2.0 incorporates the notions of lifecycle, 
phase, activity, task and technique – in descending order of 
granularity. The same formalism has been followed for 
process decomposition in our proposed agile method base. 

Having delineated the outline of our approach, the rest of 
this paper is organized as follows: Section 2 briefly reviews 
the literature related to this work and highlights the 
contributions of this research; Section 3 covers the first step 
in defining the agile method base by delineating the 
methodology requirements of an agile development process; 
Section 4 completes the specification of the agile method 
base by introducing agile method chunks and relating them 
to the methodology requirements that they address; and 
Section 5 presents the concluding remarks and discusses 
possible directions for furthering this research.  

II. RELATED RESEARCH 
Research efforts focusing on providing CAME-tool 

support for agile methodologies can be categorized in the 
following three classes, according to the assembly-based 
SME stage that they address: 

• Research efforts which either explicitly focus on 
eliciting requirements for software development 
methodologies, or implicitly address methodology 

requirements by proposing evaluation criteria for 
methodologies [12, 13, 14]. 

• Research efforts which address the application of 
situational method engineering to the development of 
agile methodologies in the following three areas:  

a. Introduction and adoption of agile practices, 
processes and activities; from among these, we have 
scrutinized the most prominent ones, including 
DSDM [2], Scrum [3], XP [4], ASD [5], Crystal 
Clear [6] and FDD [7]. 
b. Extraction and integration of agile best 
practices and activities into unified frameworks, 
metamodels, and process patterns; the methods 
proposed in [15, 16, 17] are good examples. 
c. Enhancement of existing agile processes with 
successful practices and techniques; among these are 
the research efforts reported in [18, 19, 20, 21, 22, 
23].  

• And finally, research efforts which explore the 
implementation of agile methodologies in CAME tools, 
for which the only resource that we have found is the 
EPFC platform, already providing support for 
instantiation of XP and Scrum processes [10]. However, 
this support is partial, since it is limited to the proper 
instantiation of just two agile processes, and does not 
provide assembly-based method engineering support in 
this context. 

The novelty of our approach is in the combination of SME 
steps. This research is distinguished from previous research 
endeavors in two aspects: 

• It adopts the systematic approach of assembly-based 
method engineering in its entirety, and applies it in the 
context of agile methodologies. 

• It takes the most important step towards enhancing 
CAME-tool support for situational engineering of agile 
method by covering the first three steps of assembly-
based method engineering, and proposing an agile 
method base based on SPEM 2.0 formalisms. 
Conforming to SPEM 2.0 results in a standard process 
decomposition scheme which can be immediately 
plugged into CAME tools supporting this standard. 
Moreover, it provides an initial standardized basis which 
can be further extended and enriched by defining new 
method chunks. 

III.  AGILE METHODOLOGY REQUIREMENTS 
The situation-specific nature of methodology features 

and requirements necessitates the application of method 
engineering practices. Each project situation distinguishes 
itself from others by a set of characteristics which should be 
addressed by the methodology constructed for it. Thus, in the 
process of situational method engineering, the characteristics 
of the project situation become a set of requirements for the 
method under construction. Accordingly, in the assembly-
based strategy, method chunks are picked out from the 
method repository based on the requirements that they 
should satisfy. Consequently, the first step in the design of an 
agile method base is to identify a generic, comprehensive set 

327



of possible methodology requirements to be satisfied by the 
proposed method chunks. In this section, we introduce a set 
of fundamental requirements which arise in the context of 
agile software development. The main factor in the 
elicitation of the set of method requirements proposed herein 
is the consequences which result from the natural 
compliance of agile methods to the principles of agility [1].  

Since software development processes are composed of 
two basic types of activities, namely project management 
activities and software development activities, we have 
categorized the method requirements into the two groups of 
management requirements and development requirements, as 
delineated throughout the rest of this section: 
a) Management Requirements: 
- Project Management: Deviation from plan-driven 
approaches, in which plans and schedules are firmly adhered 
to, and welcoming change even in the late phases of 
development, puts a strong demand on project management 
issues in agile methodologies. Therefore, project 
management requirements are of paramount importance to 
the success of an agile methodology. 
- Risk Management: Risks which are characterized with the 
three factors of uncertainty, loss (lack of required 
knowledge, time, or resources), and finite duration, can 
adversely affect the progress of the development process if 
they are not handled appropriately at the process level. 
Although the iterative-incremental nature of agile 
methodologies satisfies this requirement to some extent, the 
ever-changing environment of these methodologies means 
that risks need to be handled more elaborately. This poses 
risk management as a challenging requirement in agile 
methodologies. 
- Quality Assurance: The emphatic attention of agile 
methodologies to technical excellence and good design is 
somewhat eroded by their emphasis on “maximizing the 
amount of work not done”. Quality assurance is therefore a 
challenging requirement in agile methodologies. 
- Configuration Management: Frequent delivery of an 
executable product in a short period of time, in addition to 
frequent application of change in the delivered product, 
demonstrates the inevitable importance of configuration 
management activities in agile methodologies. 
b) Development Method Requirements 
- Complexity Management: Lightweight agile processes 
should be capable of accommodating the complexities 
arising in their ever-changing environments. Hence, 
complexity management should be handled properly in agile 
methodologies. 
- Basis in Requirements: Strict adherence to customer 
requirements requires stringent strategies to be adopted by 
agile methodologies. 
- Traceability to Requirements: The frequent changes in 
requirements faced during the lifecycle of agile 
methodologies, along with the methodology requirement 
“basis in the requirements”, raises the need for tracing a 
product to the requirements that it addresses. 

- Seamlessness: Seams arise when untraceable changes are 
introduced during transitions between different phases of 
methodologies, and in the transformation of the outputs of 
one phase to the inputs of another phase. Seams give rise to 
unresolved faults and defects, thus violating the method 
requirement of “traceability to requirements”. The agile 
practice of pruning input and output products, and replacing 
them with face-to-face conversation, contradicts 
seamlessness. Thus, preserving this feature has become an 
essential requirement in agile methodologies. 
- Flexibility: Due to their turbulent and risky environments 
and the frequent changes occurring in their process 
frameworks, agile methodologies should be equipped with 
adjustment and tuning activities in order to remain effective. 
- Maintainability: The high frequency of product delivery, 
and the rate at which the requirements and the product 
change in agile methodologies, necessitates special attention 
to maintainability issues. 
- Usability: A methodology should deliver the products 
which fit best to their usage context. The need for this 
feature is intensified in agile methodologies, which put great 
emphasis on customer satisfaction by adopting it as a 
fundamental principle.   
- Support for Distributed teams: Face-to-face conversation, 
as recommended in the context of agility, is in conflict with 
modern outsourcing policies, in which a project is developed 
across geographically dispersed locations. 

IV. THE PROPOSED AGILE METHOD BASE 
In this section, we propose an agile method repository 

composed of a set of agile method chunks. In the extraction 
of the proposed method chunks, we have extensively 
scrutinized the prominent processes in the context of agile 
development, including DSDM, Scrum, XP, ASD, Crystal 
Clear, and FDD, along with their enhancements and 
augmented practices and activities, as proposed in [18, 19, 
20, 21]. The most common workflows taking place during 
the lifecycle of an agile methodology are delineated in this 
section. 

Although there are several research efforts similar to ours 
in presenting an all-embracing paradigm for agile 
methodologies – such as ASDLC (Agile System 
Development Life Cycle) [15], FRAME (FRactal Agile 
MEtamodel) [16] and process patterns for agile 
methodologies [17] – this research is different in two 
aspects: 

1) Application of a method engineering approach and 
specification of agile workflows based on process elements 
conforming to the SPEM 2.0 metamodel. Regarding this, 
each workflow is depicted based on  the roles taking part in 
that workflow, the tasks performed by the roles, and the 
work products which are input and output to each task. 
Previous research has been solely focused on the activities 
involved. 

2) Decomposing the overall lifecycle of agile 
methodologies into different levels of granularity − 

328



following SPEM2.0 metamodel −  including phases, 
activities, tasks and techniques, in descending order of 
granularity. Previous research efforts neglect some of these 
different levels of granularity. 
The above explanations specify the overall structure of our 
proposed method base and its method chunks. To delineate 
the constituents of the method base, we have first identified 
the relevant roles participating in agile workflows – along 
with their responsibilities – in section A; we have then 
demonstrated the work products developed in agile 
workflows in section B; subsequently, a description of the 
tasks performed during the lifecycle of agile methodologies 
is provided in section C. The delineation of each task is 
accompanied by the source process from which it has been 
extracted. 
Finally, to provide an overall overview of our proposed 
method base, we have summarized the decomposition of the 
lifecycle of agile methodologies into the specified method 
chunks – along with the method requirements that they 
address – in Table II.  

A. Roles 
The typical roles participating in agile workflows – along 
with their responsibilities – have been briefly explained 
below: 
- Customer: A user representative in charge of interacting 
with the development teams in order to help in eliciting 
system requirements, prioritizing requirements, writing 
functional tests, and providing feedback on the delivered 
product.   
- Product owner: An individual from the user community 
who is in charge of prioritizing and maintaining the 
requirements, and keeping track of their business values and 
their interrelationships. This role is also responsible for the 
success and failure of the project. 
- Domain expert: A customer, business analyst, or product 
owner who provides the development teams with proper 
knowledge about user requirements. 
- User-product owner: An individual from the 
development team (first proposed in [18]) who is in charge of 
establishing communication between customers, product 
owner and domain experts to provide them with a proper 
vision of the system to be developed. 
- Programmer: An individual in charge of designing, 
coding and testing the delivered product. 
- Chief programmer: Expert developer(s) in charge of 
managing the project, forming the development team(s), 
assigning roles to individuals, and monitoring development 
activities. 
- Release manager: An individual in charge of applying 
software configuration management activities during the 
frequent deliveries of the system under development. 
- Modeling team: A team of programmers, chief 
programmers and domain experts in charge of modeling and 
designing the system under development. 

- Tester/Analyst: An individual in charge of documenting 
the requirements specification, testing the system, and 
keeping track of the requirements and their relevant tests. 
- Technical coordinator: An individual who is in charge of 
developing the system architecture, and controlling and 
assuring the technical quality features of the project and its 
products. 
- Technical writer: An individual who is in charge of 
documenting the user manuals and guidelines. 
- Tracker: An individual in charge of keeping track of the 
project progress and the velocity of task accomplishments, 
and providing feedback and estimations on project tasks. 
- Development team: A team consisting of programmers, 
chief programmer(s), tester/analysts, technical coordinator(s), 
technical writers, the release manager, and tracker. 
- Project community: A community of all the people 
involved or affected by the project, including the 
development team(s), customer, product owner, financial and 
executive sponsors, and marketing team(s). 

B. Work Products 
To present the work products produced during the 

lifecycle of agile methodologies, we have categorized them 
into three standard classes of Artifacts, Outcomes and 
Deliverables, in accordance with SPEM 2.0. A brief 
definition of each category is provided below: 

• Artifact: A tangible work product that is consumed, 
produced, or modified by one or more tasks. Roles use 
artifacts to perform tasks and to produce other artifacts.  

• Outcome: An intangible work product that may be a 
result or state. Outcomes may also be used to describe 
work products that are not formally defined. 

• Deliverable: A collection of work products, usually 
artifacts. Deliverables are also used to represent an 
output from a process that has material value to a client, 
customer, or other stakeholder. 

Based on the definition of each class, we have categorized 
the work products of our method base in Table I. 

C. Tasks 
To present the tasks taking place during the lifecycle of 

agile methodologies, we have organized them into four 
separate phases of:  Project Initiation, Development, Review 
and Project Termination. These phases are accordingly 
broken down into a set of activities, namely Project Start-up, 
Initial Exploration, Requirements Elicitation, Release 
Planning, Iteration Planning, Build, Reflection and Project 
Wrap-up.  

The outlines of the phases, their relevant activities, and 
the interrelationships are illustrated in Fig. 1. Each activity is 
in turn composed of a set of tasks which should be 
performed in order to accomplish the relevant activity.  

Throughout the rest of this section, we delineate these 
tasks and their related techniques, the roles involved, and the 
resulting work products, ordered by their relevant phases. 
The outline for each of the four phases is depicted in Fig. 2, 
Fig. 3, Fig. 4, and Fig. 5, respectively.  

 

329



TABLE I.  AGILE WORK PRODUCTS 

Type Work products 

Outcome 

 

Feasibility report 
Initial methodology 
Project teams report 
Model notes 
Project velocity 
Release plan 
Roles specification 
Iteration plan 
Test notes 
Refined methodology 
Reformed teams 
Recalibrated release plan 
Validation report 

Artifact 

 

User Experience (UE)  vision 
Overall object model 
High-level requirements 
Prioritized requirements 
Requirements specification 
High-level architecture 
Design notes 
Design package 
User manuals 
Postmortem report 

Deliverable 

 

Iteration release 

Final product 

 
1. Project Initiation Phase 

- Analyze Feasibility (DSDM, Crystal Clear): This task, 
performed by the project community, deals with assessing 
the feasibility and applicability of the methods to be 
developed under the specific circumstances of a project. The 
output of this task is the feasibility report, which determines 
the next step to be taken. 
  Related techniques: Apply suitability filter (DSDM)- This 
technique checks the suitability of a method for the project 
at hand by applying a list of project- and organizational 
criteria. 
- Build the development teams (Scrum, XP, Crystal Clear): In 
this task, the structure of the teams involved in a 
development process is determined by the project 
community. This results in the identification of issues such 
as the size of the teams and the distribution of skills among 
the teams. The output of this task is a report on team 
structure which is updated in subsequent phases. 
   Related techniques: Develop Self-organized teams (Scrum)- 
In this technique, development teams of diversely skilled 
members are formed without any centralized control. 
- Shape the methodology (Crystal Clear): In this task, the 
skeleton of a methodology is shaped by identifying an initial 
set of rules and working conventions which should be 
followed by the teams. This set will be continuously revised 
at the end of each execution of the development phase. 
- Elicit user experience ([18]): In this task, in order to 
obtain a thorough understanding of the user environment 
and user requirements, a dedicated role – User-product 
owner – is assigned in order to get in touch with the user 

community and provide an updated version of the user 
vision identifying the exact delineation of the users’ 
expectations from the system under development. 
- Conduct domain walkthrough (FDD): In this task, an 
overview of the problem domain is presented by the domain 
experts. This outputs a high-level description of the problem 
domain identifying the outline of the system to be 
developed, including the overall functional requirements, 
data models, and guidelines. 
- Develop the object model (FDD): Based on the scope of 
the problem domain specified in the high-level description 
of  the system, modeling team(s) develop an overall object 
model of the system which identifies the overall structure 
(objects), functions (methods) and behavior (the sequence of 
method calls) of the system to be developed. Attached to the 
object model are model notes which provide detailed 
explanation for each of its parts. 
  Related techniques: Develop Small Group model (FDD)- 
To assure the quality of the models developed and to 
manage their complexity, the problem domain is partitioned 
into separate areas and each area is examined by several 
individual modeling teams. This outputs several models for 
each area, one of which (or a combination) is approved to be 
integrated into the overall object model of the system. 
- Generate product backlog (Scrum, XP, Crystal Clear): In this 
task, the high-level requirements identified in the user vision 
are inserted into a repository of requirements called the 
product backlog − a term borrowed from Scrum− to be 
managed and updated by the product owner. This provides 
the development team(s) with an overall insight into the 
amount of work to be done. 
- Prioritize the product backlog (Scrum, XP, Crystal Clear): In 
this task, product backlog items are prioritized by the 
product owner according to their business value and the risks 
involved in their development.  
Related techniques: Apply MoSCoW rules (DSDM)- In this 
technique, the requirements are prioritized based on their 
importance into four groups of Must-have, Should-have, 
Could-have and Won’t-have features. 
- Document the requirements ([20, 22]): In this task, the 
information on project requirements, which is mostly 
exchanged through face-to-face communication, is 
documented by tester/analysts. 
 
 

 
Figure 1.  Overall phases and activities of agile methodologies 

Project  
Initiation 

Release 
Planning

 Initial 
Exploration

Requirements 
Elicitation 

Project 
Start-up Iteration 

Planning  

 

Build 

Development  

Review 

 

Reflection 

Project 
Wrap-up 

Project 
Termination

330



 

 
Figure 2.  Workflows of the Project Initiation phase 

 

- Declare velocity (XP): In this task, based on the prioritized 
items of the product backlog, the velocity of the project, 
which is the expected amount of work to be done in each 
execution of the development cycle, is specified by the 
tracker. This results in the declaration of project velocity.  
  Related techniques: Use Burn-chart (Crystal Clear)- In this 
technique, to monitor the progress of a project, a special 
chart is developed with time on its x-axis and the work-units 
(use cases or modules) on its y-axis. This chart demonstrates 
the overall progress of the project.  
- Develop the release plan (Scrum, XP, FDD): in this task, 
based on the velocity declared, a list of requirements and 
goals of the highest priority are specified by the customer 
and product owner to be achieved in the next execution of 
the development phase. This results in the delineation of the 
iteration scope. 
- Design architecture (Scrum, XP, ASD, Crystal Clear): In this 
task, an initial, abstract schema of the system and its 
components is sketched by the technical coordinator, to be 
refined continuously in subsequent phases. 
  Related techniques: Create system metaphor (XP)- In this 
technique, a high-level story of the system narrating the 
system’s functionality and architecture is provided which 
provides the common vision and vocabulary shared between 
customers and developers.  
Explore technology alternatives (Crystal Clear)- In this 
technique, different technologies which could be applied to 
each component of the system are examined, and the most 
promising one is adopted. 
Hold Joint Application Design (JAD) session (DSDM, ASD)- 
In this technique, in order to sketch the overall architecture 
of the system under development and its key features, and to 

specify the different components of the system, a meeting is 
held by the project community in which all the stakeholders 
discuss the different aspects of the system. 

2. Development Phase 
- Break down into tasks (Scrum, XP, Crystal Clear, FDD): In this 
task, the iteration scope is broken down into concrete 
programming tasks which require roughly the same amount 
of time to be developed. This task is performed by the chief 
programmer. 
  Related techniques: Divide based on functionality (FDD)- In 
this technique, the system is divided into subsystems based 
on its structure and functionality. 
Divide based on skills and time base (DSDM)- In this 
technique, tasks are broken down based on the amount of 
effort and the skills required for developing them. 
- Evaluate velocity (XP, Crystal Clear): In this task, the 
velocity of previous executions of the development cycle is 
evaluated by the tracker, and the result is used in order to 
adjust the velocity of the current development phase. 
- Develop rough estimates (Scrum, XP): In this task, an 
estimation of the development time and effort is assigned by 
the programmers to fine-grained tasks. The estimates 
become more accurate as the project velocity is reassessed 
after each execution of the development phase. 
  Related techniques: Prototype-based planning (DSDM, 
Scrum)-  In this technique, in order to resolve ambiguities on 
the amount of time and effort required, quick throwaway 
prototypes of the system are developed.  
Card-based/Blitz planning (XP, Crystal Clear)- In this 
technique, tasks are written down on separate cards such that 
there is no task dependency between the different cards. 

Analyze 
feasibility 

Build the 
development teams 

Shape the 
methodology 

Project 
community 

Feasibility 
report 

Initial 
methodology 

Project teams 
report 

Generate  
product backlog 

Prioritize the 
product backlog 

Document the 
requirements 

Declare 
velocity 

Design 
architecture 

Develop the 
release plan 

User-product 
owner 

Domain expert

Modeling 
team 

Elicit 
user experience 

Conduct domain 
walkthrough 

Develop the 
object model 

High-level 
descriptions 

Overall 
object model 

UE vision 

Model notes 

Product 
owner 

 Tester/Analyst 

High-level 
requirements

Prioritized 
requirements

Requirements
specification 

Tracker 

Technical 
coordinator 

High-level 
architecture 

Release  
plan 

  

Customer 

Project 
velocity 

Project Start-up Initial Exploration 
Requirements 

Elicitation Release Planning 

Deliverable Artifact Role Task 

Activity 
Performs Produces/Consumes 

Outcome 

331



Programmers then estimate the time and effort required to 
develop each task. 
- (Re) Assign responsibilities (Scrum, XP, Crystal Clear, FDD): 
In this task, based on the rough estimates specified, a set of 
tasks is assigned/reassigned to each programmer in each 
execution of the development phase. The tasks are assigned 
so that the workload of the team members stays equal. 
  Related techniques: Task sign-up (Scrum, XP)- In this 
technique, programmers voluntarily choose a set of tasks to 
complete during an execution of the development cycle. 
Assign to class owners (FDD)- In this technique, the chief 
programmer assigns each set of the tasks (features) to each 
individual programmer. 
- Hold Daily stand-up meeting (Scrum, XP, Crystal Clear): 
During the development phase, a daily meeting is held 
between the development-team members to distribute 
information, communicate problems and solutions, and help 
the team stay on track. 
- Hold design session (XP, FDD): In this task, a meeting is 
held in which the chief programmers and/or programmers 
design the parts of the system which should be developed in 
the current development phase. However, the weight of this 
task, its importance and its outputs differ according to the 
situation at hand.  
  Related techniques: Conduct design inspections (FDD)- In 
this technique, team effort is focused on the design task. By 
involving the programmers, different parts of the system are 
designed carefully by inspecting and updating the overall 
object model produced in the Project Initiation phase, 
investigating different design alternatives, and developing 
detailed sequence diagrams. The result of this technique is a 
design package consisting of the detailed design of the 
system (classes and their attributes and functions). 
- Hold quick design session (XP)- In this technique, a 30-
minute design session is held among the chief programmers, 

in which the system part under development is designed. 
The output of this meeting is CRC cards indicating the 
classes of the system along with the required UML diagrams 
(typically consisting of activity-, collaboration-, and 
sequence diagrams). 
- Code (DSDM, XP, Scrum, ASD, Crystal Clear, FDD): In this task, 
executable parts of the system under development are 
produced by programmers. 
  Related techniques: Collective code ownership (XP)- In this 
technique, in order to accelerate the development, all the 
code is put in a shared repository, so that all programmers 
have access to it in order to add functionality or fix bugs. 
Apply stringent coding standard (XP)- In order to enhance 
communication among programmers, a common coding 
standard is enforced, mainly to promote code legibility. 
Pair programming (XP, ASD)- In this technique, programmers 
work in pairs, with each pair working on the same machine 
and the same code.  
Side-by-side programming (Crystal Clear)- In this technique, 
programmers work in pairs. While they work on different 
programming tasks, they help each other with the problems 
encountered. 
One owner per class (FDD)- In this technique, the 
development of each class, module or component is assigned 
to a class owners, who is solely responsible for creating and 
updating the parts thus assigned.   
- Test (Scrum, XP, Crystal Clear): In this task, the code 
developed is tested by testers/analysts in order to identify 
and remove the bugs. 
  Related techniques: Test-driven development (Scrum, XP, 
Crystal Clear)- In this technique, tests are produced before the 
coding task begins. Therefore, test cases are developed 
based on the requirements, and code fragments are then 
produced to satisfy these test cases.  

 

 
Figure 3.  Workflows of the Development phase 

Release 
plan 

Assign/Reassign 
responsibilities  

Chief 
programmer 

Develop rough 
estimates 

Evaluate 
velocity Iteration plan 

Break down 
into tasks 

Hold daily 
stand-up meeting 

Refactor 

Code

Apply continuous 
integration 

Test

Design  
package 

Hold design 
session 

 Tester/Analyst 

Chief  
programmer 

Iteration 
release 

Project 
community 

Design notes 

Programmer 

Test 
notes 

Roles 
specification 

Iteration Planning 

Build 

Tracker 
Programmer

Release 
manager 

332



- Refactor (Scrum, XP, Crystal Clear, FDD): In order to eliminate 
redundancy, simplify and refine the code without changing 
its external behavior, and enhance code readability, 
refactoring should be done continuously on the code 
developed. 
- Apply continuous integration (Scrum, XP, Crystal Clear): 
Due to frequent builds of software, the integration task is of 
main concern in agile methods, and should be applied 
continuously.  

3. Review Phase 
- Fine-tune the methodology (ASD, Crystal Clear): After each 
release of the product, the methods used are revised and 
refined in order to remove the weaknesses of the methods 
and reinforce their strengths. To this aim, the problems of 
the method used are identified and removed, and new 
conventions are added to the existing ones. 
  Related techniques: Hold reflection workshop (Crystal Clear)- 
In this technique, after each release of the system, a 
workshop is held in which the project community reviews 
and tunes the processes in use. 
- Recalibrate the release plan (DSDM, Scrum, XP, ASD, Crystal 
clear): After each release, the experience gained of the project 
velocity, the achievement of the iteration scope and the 
estimates made about the tasks during the development, are 
reflected to the release plan. The release plan is thus updated 
and refined iteratively. 
- Tune the development teams (XP, Crystal Clear, ASD): In 
this task, the progress of the development teams is evaluated 
and team structures are tuned in order to increase their 
performance, remove workload bottlenecks, and distribute 
development information among the teams and individuals. 
  Related techniques: Move people around (XP, Crystal Clear, 
ASD)- In this task, parallel teams are introduced, and team 
members are moved around in order to bring the project to 
its desirable status, remove bottlenecks, and distribute 
information among the teams. Proper flow of knowledge and 
experience is thus ensured. 
 

 
 

Figure 4.  Workflows of the Review phase  
 

- Validate the product (DSDM, ASD): In this task, the 
released product goes through acceptance tests by the 
customers and the release manager to validate the 
functionality of the system produced so far. This results in 
adding new requirements to the product backlog, and 
changing or reversing the implemented requirements in case 
faults or defects are detected in the system. Based on the 
result of this task, which is documented in the validation 
report, either another execution of the development phase is 
commenced, or the project enters the termination phase. 

4. Project Termination Phase 
- Prepare the environment (Scrum, XP, DSDM, Crystal Clear): 
In order to deliver the final product to the customer, all the 
necessary resources for the final system are installed, and 
system manuals and documents are prepared by the technical 
writer. 
- Release the final product (DSDM, XP, Scrum, ASD, Crystal 
Clear, FDD): In this task, the final version of the system is 
released and integrated with other components and systems. 
- Apply system-wide testing (Scrum, XP, Crystal Clear): Having 
released the final system, in this task, system-wide tests are 
applied by the project community and customer to ensure the 
correct operation of the system. If no errors are reported, 
deployment will ensue. 
- Deploy (DSDM, Scrum, XP, Crystal Clear): In this task, the 
system is deployed into the user environment, necessary 
system conversions are carried out, system users and 
operators are trained, and final tuning and stabilization 
activities are conducted. 
- Conduct postmortem activities (XP, Crystal Clear): This 
task, performed by the chief programmers and relevant 
members of the project community, involves compiling and 
recording the lessons learned from the project, in order to be 
used in future projects. This results in the postmortem report, 
which reflects the experience gained during the project by all 
the people involved. 
 

Figure 5.  Workflows of the Project Termination phase 

Recalibrate the 
release plan  

Project 
community 

Validate the 
product 

Fine-tune  
the methodology 

Refined  
methodology 

Recalibrated 
release plan 

Validation 
report 

Tune the 
development teams  

Chief  
programmer 

Release 
manager 

Reformed  
teams 

Reflection  Chief 
programmer 

Release the  
final product 

Conduct  
postmortem 

activities  

Apply system- 
wide testing 

Prepare the 
environment 

Recalibrated 
release plan 

Validation 
 report 

Postmortem 
report 

Final  
product 

User  
manuals 

Technical 
writer 

Deploy 

Project  
community 

Test 
notes 

Customer

Project  
community 

Project Wrap-up 

Release 
manager 

333



TABLE II.   OVERVIEW OF AGILE METHOD CHUNKS AND THE REQUIREMENTS ADDRESSED 

Phase 
(Activity) Tasks Techniques Related roles Work-products Method Requirements Addressed 

Pr
oj

ec
t i

ni
tia

tio
n 

Pr
oj

ec
t 

St
ar

t-u
p 

Analyze feasibility Apply suitability filter Project community Feasibility report Risk management 

Shape the methodology  --- Project community Initial methodology Risk management, Flexibility, 
Complexity management 

Build the development teams Develop self-organized 
teams Project community Project teams report Distributed teams, Project management 

In
iti

al
 

Ex
pl

or
at

io
n Elicit user experience  --- User-product owner User experience vision Risk management, Usability  

Conduct domain walkthrough --- Domain expert High-level descriptions Risk management 

Develop the object model Develop small group model Modeling team Overall object model, 
Model notes  

Complexity  management, Risk 
management, Seamlessness  

R
eq

ui
re

m
en

ts
 

El
ic

ita
tio

n Generate product backlog  --- Product owner High-level 
requirements 

Quality assurance, Basis in 
requirements, Traceability to 
requirements 

Prioritize the product backlog Apply MoSCoW rules Product owner Prioritized 
requirements Risk management, Project management 

Document the  requirements --- Tester/Analyst Requirements 
specification  

Maintainability, Complexity 
management, Risk management 

R
el

ea
se

 P
la

nn
in

g Declare velocity Use Burn-chart Tracker Project velocity  Risk management, Project management, 
Complexity management 

Design architecture  

Create system metaphor, 
Explore technology 
alternatives, Hold JAD 
session 

Technical coordinator High-level architecture 
Risk management, Complexity 
management, Project management, 
Quality assurance 

Develop the release plan --- Customer,  
Product owner Release plan Project management 

D
ev

el
op

m
en

t 

Ite
ra

tio
n 

Pl
an

ni
ng

 

Break down into tasks 
Divide based on 
functionality, Divide based 
on skills and time base 

Chief programmer --- Project management, Risk management 

Assign/Reassign 
responsibilities 

Task sign-up, 
Assign to class owners Chief programmer Roles specification Project management, Risk management, 

Quality assurance 

Develop rough estimates Prototype-based planning, 
Card-based/Blitz planning Programmer Iteration plan Project management, Risk management, 

Configuration management 
Evaluate velocity --- Tracker --- Project management, Risk management 

B
ui

ld
 

Hold daily stand-up meeting --- Project community, 
Chief programmer --- Project management, Risk management, 

Quality assurance 

Hold design sessions Conduct design inspections, 
Hold quick design session 

Chief programmer, 
Programmer 

Design notes, Design 
package 

Risk management, Project management, 
Complexity management, Seamlessness 

Test Test-driven development Tester/Analyst Test notes Quality assurance, Risk management, 
Project management 

Code 

Collective code ownership, 
Pair programming, Side-by-
side programming, Apply 
stringent coding standard, 
One owner per class 

Chief programmer Iteration release 
Quality assurance, Risk management, 
Maintainability, Project management, 
Complexity management 

Refactor --- Chief programmer, 
Programmer Iteration release Maintainability, Quality assurance 

Apply continuous integration --- Release manager Iteration release Risk management, Quality assurance 

R
ev

ie
w

 

R
ef

le
ct

io
n 

Fine-tune the methodology Hold reflection workshop Project community Refined methodology  Risk management, Complexity 
management, Flexibility  

Recalibrate the release plan --- Project community Recalibrated release 
plan Project management, Risk management 

Tune development teams Move people around  Project community Reformed teams  Maintainability, Risk management, 
Project management 

Validate the product --- Release manager,  
Chief programmer Validation report Quality assurance, Risk management, 

Project management, Usability 

Pr
oj

ec
t T

er
m

in
at

io
n 

Pr
oj

ec
t W

ra
p-

up
 

Prepare the environment --- Project community, 
Technical writer User manuals Risk management, Project management 

Release the final product --- Release manager, 
Chief programmer Final product --- 

Apply system-wide testing --- 
Project community, 
Release manager, 
Customer 

Test notes Risk management, Quality assurance 

Deploy  --- Release manager, 
Chief programmer Final product --- 

Conduct postmortem 
activities --- Project community, 

Chief programmer Postmortem report Risk management, Quality assurance 

334



V. CONCLUSIONS AND FUTURE WORK 
In this research, the ultimate objective is to apply the 

assembly-based SME approach to the development of 
bespoke agile methodologies. To this aim, as the first step, 
we have extensively explored successful agile processes, 
practices and techniques, and have proposed an agile method 
base. In the development of the proposed method chunks, 
SPEM-2.0 conventions have been followed; the processes 
have therefore been decomposed into three types of 
elements: tasks, roles, and work products. This enhances the 
usability of the proposed method base in CAME tools that 
conform to the SPEM-2.0 metamodel, including the EPFC 
tool.  

As the next step, a process will be defined for assembling 
the method chunks of the proposed method base into a 
coherent methodology. This includes the provision of 
guidelines and configuration rules for the assembly process. 
These steps together provide a comprehensive method 
framework for assembly-based engineering of agile 
methodologies. The final result will be integrated into the 
EPFC tool. The validity of the integrated framework will be 
examined in the context of a concrete SME project: the 
specific requirements of a realistic project situation will be 
elicited, and a complete situation-specific methodology 
which satisfies these requirements will be developed through 
applying the enriched version of the EPFC tool. 

ACKNOWLEDGEMENT 
We wish to thank Iran Telecommunications Research 

Center (ITRC) for sponsoring this research. 

REFERENCES 
[1] K. Beck et al., "Manifesto for agile software development," published 

on the web at: http://agilemanifesto.org. 
[2] J. Stapleton, "DSDM: Business focused development," 2nd edition, 

Addison Wesley, 2003. 
[3] K. Schwaber and M. Beedle, "Agile software development with 

Scrum," Prentice-Hall, 2001. 
[4] K. Beck and C. Andres, "Extreme programming explained: Embrace 

change,"  2nd edition, Addison Wesley,  2004. 
[5] J. Highsmith, "Adaptive software development: A collaborative 

approach to managing complex systems," Dorset House, 2000. 
[6] A. Cockburn, "Crystal clear: A human-powered methodology for 

small teams," Addison Wesley, 2004. 
[7] S. R. Palmer and J. M. Felsing, "A practical guide to feature-driven 

development," Prentice-Hall, 2002. 
[8] J. Ralyté, S. Brinkkemper and B. Henderson-Sellers, "Situational 

method engineering: Fundamentals and experiences," Springer, 2007. 
[9] A. Niknafs and R. Ramsin, "Computer-aided method engineering: An 

analysis of existing environments," Proc. 20th International 
Conference on Advanced Information Systems Engineering 
(CAiSE'08), LNCS 5074, Springer, 2008, pp. 525-540, doi: 
10.1007/978-3-540-69534-9_39. 

[10] P. Haumer, "Eclipse Process Framework Composer," Eclipse 
Foundation, 2007. 

[11] R. Bendraou, B. Combemale, X. Cregut and M. Gervais, "Definition 
of an executable SPEM 2.0," Proc. 14th Asia-Pacific Software 
Engineering Conference (APSEC'07), December. 2007, pp. 390-397, 
doi: 10.1109/ASPEC.2007.60. 

[12] R. Ramsin and R. F. Paige, “Process-centered review of object 
oriented software development methodologies,” ACM Computing 

Surveys, vol. 40, no. 1, February. 2008, pp. 1-89, doi: 
10.1145/1322432.1322435. 

[13] J. Koskela, "Software configuration management in agile methods," 
VTT Publications, 2003. 

[14] M. Taromirad and R. Ramsin, "CEFAM: Comprehensive Evaluation 
Framework for Agile Methodologies," Proc. 32nd Annual IEEE 
Software Engineering Workshop (SEW’08), December. 2008, pp. 
195-204, doi: 10.1109/SEW.2008.19. 

[15] S. W. Ambler, "The agile system development lifecycle," published 
on the web at: http://www.ambysoft.com/essays/agileLifecycle.html. 

[16] M. Hasani Sadi and R. Ramsin, "FRAME: A generic fractal process 
metamodel for agile methodologies," Proc. 7th International 
Conference on Software Engineering Research, Management and 
Applications (SERA’09), December. 2009, pp. 251-264, doi: 
10.1007/978-3-642-05441-9_22. 

[17] S. Tasharofi and R. Ramsin, "Process patterns for Agile 
methodologies," In Situational Method Engineering: Fundamentals 
and Experiences, J. Ralyté, S. Brinkkemper and B. Henderson-Sellers 
(Eds.), Springer, 2007, pp. 222-237, doi: 0.1007/978-0-387-73947-2. 

[18] M. Singh, "U-Scrum: An agile methodology for promoting usability," 
Proc. Agile 2008 Conference, IEEE Press, August. 2008, pp. 555-
560, doi: 10.1109/Agile.2008.33. 

[19] K. Sureshchandra and J. Shirinivasavadhani, “Adopting agile in 
distributed development,” Proc. IEEE International Conference on 
Global Software Engineering (ICGSE’08), August. 2008, pp. 217-
221, doi: 10.1109/ICGSE.2008.25. 

[20] J. Nawrocki, M. Jasiński, B. Walter and A. Wojciechowski, "Extreme 
programming modified: Embrace requirements engineering 
practices,” Proc. 10th Joint IEEE International Requirements 
Engineering Conference (RE’02), September. 2002, pp. 303-310, doi: 
10.1109/ICRE.2002.1048543. 

[21] J. Dajda and G. Dobrowolski, “Experiment-driven approach to 
building support for distributed agile teams,” Proc. 14th Asia-Pacific 
Software Engineering Conference (APSEC’07), December. 2007, pp. 
398-405, doi: 10.1109/ASPEC.2007.12. 

[22] T. Karamat and A. N. Jamil, "Reducing test cost and improving 
documentation in TDD (Test Driven Development)," Proc. Seventh 
ACIS International Conference on Software Engineering, Artificial 
Intelligence, Networking, and Parallel/Distributed Computing 
(SNPD’06), IEEE Press, June. 2006, pp. 73-76, doi: 10.1109/SNPD-
SAWN.2006.59. 

[23] M. Huo, J. Verner, L. Zhu and M. A. Babar, "Software quality and 
agile methods," Proc. 28th Annual International Computer Software 
and Applications Conference (COMPSAC’04), IEEE Press, 
September. 2004, pp. 520-525, doi: 
10.1109/CMPSAC.2004.1342889. 

[24] T. Dingsøyr and G. K. Hanssen, “Extending agile methods: 
Postmortem reviews as extended feedback,” Proc. 4th International 
Workshop on Learning Software Organizations, LNCS 2640, 
Springer, 2002, pp. 4-12, doi: 10.1007/b94220. 

[25] L. Crispin and T. House, "Testing extreme programming," Addison 
Wesley, 2002.  

[26] W. Wake, "Extreme programming explored," Addison Wesley, 2001. 
[27] G. Succi, and M. Marchesi, "Extreme programming examined," 

Addison Wesley, 2001. 
[28] R. Jeffries, A. Anderson and C. Hendrickson, "Extreme programming 

installed," Addison Wesley, 2001. 

335


