
R. Lee (Ed.): Software Engineering Research, Management and Appl. 2012, SCI 430, pp. 141–152.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Enhancing Tool Support for Situational
Engineering of Agile Methodologies in Eclipse

Zahra Shakeri Hossein Abad, Anahita Alipour, and Raman Ramsin

Abstract. In recent years, with the growth of software engineering, agile soft-
ware development methodologies have also grown substantially, replacing plan-
driven approaches in many areas. Although prominent agile methodologies are
in wide use today, there is no method which is suitable for all situations. It has
therefore become essential to apply Situational Method Engineering (SME) ap-
proaches to produce agile methodologies that are tailored to fit specific software
development situations. Since SME is a complex process, and there is a vast
pool of techniques, practices, activities, and processes available for composing
agile methodologies, tool support–in the form of Computer Aided Method Engi-
neering (CAME) environments–has become essential. Despite the importance of
tool support for developing agile methodologies, available CAME environments
do not fully support all the steps of method construction, and the need remains
for a comprehensive environment. The Eclipse Process Framework Composer
(EPFC) is an open-source situational method engineering tool platform, which
provides an extensible platform for assembly-based method engineering in Ec-
lipse. EPFC is fully extensible through provision of facilities for adding new
method plug-ins, method packages, and libraries. The authors propose a plug-in
for EPFC which enables method engineers to construct agile methodologies
through an assembly-based SME approach. The plug-in provides facilities for
the specification of the characteristics of a given project, selection of suitable
agile process components from the method repository, and the final assembly of
the selected method chunks, while providing a set of guidelines throughout the
assembly process.

Keywords: Agile methodology, Situational Method Engineering, Eclipse Process
Framework Composer, Computer-Aided Method Engineering.

Zahra Shakeri Hossein Abad · Anahita Alipour · Raman Ramsin
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
e-mail: z_shakeri@ce.sharif.edu, alipour@ce.sharif.edu,

ramsin@sharif.edu

142 Z.S. Hossein Abad, A. Alipour, and R. Ramsin

1 Introduction

The simplicity and development speed of agile methodologies are the main rea-
sons for their popularity. Although prominent agile methodologies are available,
there is no general-purpose agile methodology which fits all situations. This has
led to the application of Situational Method Engineering (SME) approaches to
produce project-specific methodologies that are tailored to fit specific develop-
ment situations. Like all engineering disciplines, efficient application of SME me-
thods is dependent on the availability of adequate tools; Computer Aided Method
Engineering (CAME) environments have been developed for this purpose [1, 2].

There are three main SME approaches [3]: Assembly-based SME, in which a
method is constructed from reusable method components that are extracted from
existing methodologies and stored in a repository called the “method base”; Ex-
tension-based SME, in which existing methods are extended and enriched by ap-
plying extension patterns [1]; and Paradigm-based SME, in which a new method
is constructed by instantiating a metamodel or applying abstraction to existing me-
thods. Among the different approaches to SME, Assembly-based SME is the most
commonly used and has become the basis of method construction in CAME tools.
Method development in these tools consists of three distinct stages: Specifying the
method requirements based on the situation of the project, selecting the appropri-
ate method fragments, and assembling the fragments into a coherent methodology.

In assembly-based engineering of agile methodologies, CAME tools are ex-
pected to provide the necessary means for performing the following four stages
[2]: (1) Specification of a set of methodology requirements by characterizing the
project at hand; (2) Development of an agile method base (repository) by extract-
ing a set of method fragments from existing agile methodologies; (3) Matching the
extracted method chunks with the methodology requirements, thereby forming a
cohesive set of method chunks; and (4) Supplementing the method chunks with
guidelines on how they can be assembled into a coherent process. The main short-
coming of existing CAME tools is that they only partially cover these stages [1].

The Eclipse Process Framework Composer (EPFC) [4] is the single most prom-
inent CAME tool currently used by method engineers. EPFC already provides
support for the instantiation of XP and Scrum methodologies, but this support is
partial; EPFC represents these methodologies as general methods, and does not
support assembly-based SME stages for constructing bespoke methodologies from
their components. In order to address the shortcomings of existing CAME tools,
we propose ASEAME (Assembly-based Situational Engineering of Agile Metho-
dologies in Eclipse) as a plug-in for EPFC which enables method engineers to
construct agile methodologies through an assembly-based SME approach.
ASEAME provides facilities for the specification of the characteristics of a given-
project, selection of suitable agile process components from the method reposito-
ry, and the final assembly of the selected method chunks, while providing a set of
guidelines throughout the assembly process.

The rest of this paper is organized as follows: Section 2 briefly reviews the lite-
rature related to this work and highlights the contributions of this research; Section
3 explains the details of ASEAME; Section 4 evaluates ASEAME according to the

Enhancing Tool Support for Situational Engineering of Agile Methodologies 143

ISO/IEC 9126 quality model and compares it to other CAME tools; and Section 5
presents the concluding remarks and suggests ways for furthering this research.

2 Related Research

Since the early years of method engineering, several academic prototypes of
CAME environments have been introduced [1], and different versions of them
have been developed. Since our main focus is on CAME tool support for agile
methodologies, we have divided this research work into the following categories:

- Research conducted on CAME environments in general: None of the research
efforts in this category has resulted in CAME tools that provide adequate support
for the method engineering process. Method Base [5] is one of the primary tools in
this area, which is focused on helping the method engineer in selecting the appro-
priate method for the project at hand. This tool does not support some of the fea-
tures of assembly-based SME, but provides facilities for method customization.
Other CAME tools in this category, including Decomerone [1], MENTOR [6],
Method Editor [7], MERU [8], and METAEdit+ [9] provide partial support for the
assembly-based approach, but only MENTOR and MERU cover method require-
ments analysis; others just support the design and implementation stages.
MENTOR and MERU, in turn, have other problems: In MERU, methods are con-
sidered only in the product part; therefore, method fragments defined in this tool
are not comprehensive; since method fragments collection is a prerequisite for me-
thod fragments selection, we regard this is as a major flaw. MENTOR, on the oth-
er hand, supports both assembly-based and paradigm-based approaches, and the
assembly-based approach is not its main focus.

- Research conducted on CAME-tool support for agile methodologies: Among
the few studies that have been conducted in this area, EPFC is the only tool intro-
duced that represents two agile methodologies (SCRUM and XP) in their entirety,
and that provides the means to instantiate these methodologies. However, this
cannot be considered as adequate support for assembly-based SME [2]. In [10], a
toolbox is introduced for agile methodology selection which assists the method
engineers in classifying the projects, selecting agile methodologies, and selecting
agile practices. However, the method classification factors provided in this tool
are very limited. Moreover, the tool proposes a limited collection of agile practices
for the project at hand, and even these limited practices are provided separately for
each agile methodology. Furthermore, the ultimate assembly of the practices is not
supported; in other words, this toolbox does not support the assembly-based
approach.

3 Particulars of ASEAME

ASEAME is an Eclipse plug-in for EPFC which supports the comprehensive im-
plementation of assembly-based SME, and enhances situational method engineer-
ing of agile methodologies. As shown in Fig. 1, EPFC provides extension facilities
for adding new method plug-ins, method packages, and method libraries [1]. In

144 Z.S. Hossein Abad, A. Alipour, and R. Ramsin

this section, we first study the coverage of the generic SME process in EPFC, and
then introduce the architecture of ASEAME.

3.1 Coverage of the Generic SME Process in EPFC

Although EPFC is being used extensively by methodology engineers for ME and
SME purposes, this environment does not provide full coverage of SME stages,
and requires a high level of involvement by the method engineer. In this section,
we investigate the mapping between the generic SME stages (as defined in [4])
and the EPFC, and present ASEAME with the purpose of providing complete
coverage of SME stages, so that the deficiencies of EPFC are properly
addressed.

EPFC is an open-source Eclipse project which has been created using the
Eclipse Integrated Development Environment, and which supports a large number
of Eclipse plug-ins. This CAME environment enables process engineers and
managers to implement, deploy, and maintain situation-specific methodologies,
and is intended to provide the following two facilities:

• A knowledge base to help developers learn their responsibilities in SME

projects. This knowledge base includes external content as well as the users’
own content, and can be used for educational purposes.

• A catalog of predefined processes which helps method engineers learn how
to perform their responsibilities in a process, and understand how the
different tasks in a process relate to one another. Some of these processes are
complete “deliverables” that can be adapted to individual situations. Other
processes (called “capability patterns”) are building blocks for other complete
processes, and represent the best development practices for specific disciplines,
technologies, or management styles.

Fig. 1 Position of ASEAME in the EPFC architecture

Enhancing Tool Support for Situational Engineering of Agile Methodologies 145

In [4], a generic process is proposed for SME which consists of three main
steps:

• Situation characterization: In which project situations are distinguished by

using a set of factors called “situational factors.” Project managers and method
engineers can specify the situation of the project at hand by assigning values to
these factors.

• Method fragments selection: In which the method fragments that correspond to
the project characterization are selected from the method base (repository).

• Method assembly: In which the selected method fragments are assembled to
form a coherent situational method. Method engineers need proper guidelines
and rules to develop consistent methods.

EPFC does not support the “situation characterization” stage. It only supports two
stages: Selection of method fragments, and method assembly. However, this
support is only partial, and requires a high level of involvement on the part of the
method engineer. Since characterizing the situation of the project at hand is a key
step in determining method requirements, ignoring this step reduces the quality
and efficiency of the methodologies produced.

Considering the vast amount of activities, tasks, and techniques available for
agile methodologies, the method engineer’s deep involvement in fragments selec-
tion not only significantly increases the complexity of the task, but also turns it in-
to an error-prone process. Moreover, if method engineers do not have sufficient
knowledge of all agile methodologies, necessary and useful method fragments
may be ignored. ASEAME is specifically intended to address these issues.

3.2 ASEAME Architecture

EPFC uses the System Process Engineering Metamodel (SPEM 2.0) standard for
method decomposition [17]. In SPEM 2.0, method content is made up of reusable
components that compose processes. Elements are of three types: roles, work
products, and tasks. To organize the components and define them at different le-
vels of abstraction, and also to delimit the sequence of the activities performed,
SPEM 2.0 incorporates the concepts of lifecycle, phase, activity, task, and tech-
nique (in descending order of granularity). As mentioned in [2], we have adopted
SPEM 2.0 in defining the proposed agile method base (used in ASEAME’s
method repository).

Throughout the rest of this section, we present a complete description of
ASEAME, based on the stages of assembly-based SME that it addresses. Fig. 2
and Fig. 3 show the ASEAME screens corresponding to these stages.

3.2.1 Situation Characterization

ASEAME characterizes the project at hand through defining a series of situational
factors for agile methodologies. As shown in Table 1, these factors are organized
in three groups: Application Domain, Project Organization, and Environment.

146 Z.S. Hossein Abad, A. Alipour, and R. Ramsin

A default value is defined for each group. Discussion on how to select these
factors, however, is out of the scope of this paper. The interested reader is referred
to [1, 18, 19, 20].

After these factors have been initialized, the method requirements will be
determined, and the input for the next step (method fragments selection) is
provided.

Table 1 Situational Factors for Agile Methodologies

 Decision Factors Possible Values in ASEAME

E
nv

ir
on

m
en

t Degree of financial constraints Normal / High

Diversity of end-users Wide / Narrow

Time pressure imposed on the project Yes / No

Degree of importance of the project to the
environment

Yes / No

A
pp

li
ca

ti
on

 D
om

ai
n

Degree of formalism required in the metho-
dology

Low / High

Criticality of methodology quality factors Normal / High

Size of the target system Normal / Large

Criticality level of the target system Normal / High

Technology innovation level of the target
system

Normal / High

User-interface dependency of the target sys-
tem

Low / High

P
ro

je
ct

 O
rg

an
iz

at
io

n Degree of developers’ business knowledge Adequate/ Inadequate

Degree of developers’ technical expertise Adequate/ Inadequate

Geographical distribution of development
teams

Yes / No

Distribution of skills among teams and
members

Even / Uneven

Degree of teams’ acquaintance with agile
methodologies

Adequate/ Inadequate

3.2.2 Method Fragments Selection

Once the situational factors are initialized by the method engineer, ASEAME
provides facilities for selecting the appropriate method fragments.

Several approaches exist for method fragments selection: The Map [21]
approach selects method fragments by measuring the similarity between the
requirement’s map and method fragments. However, such calculations may not
provide sufficient distinction between method fragments, and the selected frag-
ments might be similar. Therefore, choosing the appropriate method fragments
may require a higher degree of involvement by the method engineer [20].

An alternative approach uses the Deontic matrix [22] for method fragments
selection. This matrix is a two dimensional array of process elements, spanning
activities, tasks, and techniques. These matrices can be developed at different
process component levels, such as task/activity, task/technique, activity/technique,

Enhancing Tool Support for Situational Engineering of Agile Methodologies 147

and work-product/activity. Cell values specify the connection among these process
components. The matrix can easily become huge if a large number of components
are involved; filling the matrix can therefore become a time-consuming task for
the method engineer.

The activity diagram approach [23, 24, 25] uses UML activity diagrams for
selecting method fragments. Due to its low level of formalism, and the fact that
diagram development heavily depends on the knowledge of the designer,
implementing this approach in CAME-tools has proved difficult [23].

A multicriteria approach is also available [20], which resembles a modified
version of the original assembly approach. Multicriteria techniques are commonly
used in decision making for determining priorities based on the available alterna-
tives. This is the approach used in ASEAME for method fragments selection.

3.2.3 Method Assembly

In [26], Brinkkemper presents techniques for assembling method fragments at
both product and process levels. This approach formalizes the assembly process
by defining rules and guidelines. In [5], Harmsen uses a set of rules in the form
of mathematical axioms and derived corollaries and theorems for assembling
method fragments. These rules focus on situation-independent factors such as
completeness, consistency, efficiency, soundness, and applicability. Learning and
implementing these rules can be very time-consuming for the method engineer. In
addition, correct assembly is dependent on the method engineer’s knowledge of
mathematical formalisms, which might not be adequate. ASEAME supports this
step, which has a strong impact on method consistency, through examining the
selected method fragments from different aspects. ASEAME also provides
guidelines in order to resolve the conflicts arising among rules, and also to address
nonfunctional requirements in the final method.

3.3 Examples of ASEAME Screens

In this section, examples of ASEAME screens are shown. Fig. 2 shows the screen
on which the method engineer will specify the organization situational factors of
the project. ASEAME provides screens for entering other types of situational fac-
tors, including environment situational factors and application domain situational
factors. Fig. 3 shows an example of the final results of ASEAME, consisting of
assembly guidelines and a coherent agile methodology composed of phases,
activities, tasks, techniques, roles, and work products.

4 Analysis of the Proposed Plug-In

The ISO/IEC 9126 quality model [27] will be used in this section for evaluating
ASEAME. This model evaluates software systems by inspecting six main features.
Considering that this model spans a huge number of standards, not all of which are
applicable to CAME tools, an adaptation of ISO/IEC 9126 (introduced in [1]) is
used for evaluating ASEAME.

148 Z.S. Hossein Abad, A. Alipour, and R. Ramsin

Fig. 2 Screen for specifying “project organization” situational factors in ASEAME

Fig. 3 Final agile method constructed by ASEAME for a specific situation

A
SE

A
M

E

A
ss

em
bl

y-
ba

se
d

Si
tu

at
io

na
l E

ng
in

ee
ri

ng
 o

f
A

il
M

th
d

l
i

i
E

li

Enhancing Tool Support for Situational Engineering of Agile Methodologies 149

These characteristics are organized into three main groups: Functionality, Usa-
bility, and Portability. Each characteristic consists of sub-characteristics. Results
of this assessment are presented in Table 2. The evaluation results indicate that
ASEAME adequately provides the features that are expected in a CAME tool.

Table 2 Evaluation of ASEAME based on ISO/IEC 9126

Explanation Support in
ASEAME

Sub-characterization Characterization

Does not cover all SME approaches. _ Suitability

Functionality
Uses exact algorithms for selection and
assembly of method fragments.

 Accuracy

Utilizes SPEM 0.2 as a standard for me-
thod development.

 Functionality
compliance

Uses intelligible interfaces. Understandability

Usability

There is adequate documentation on the
EPFC environment, but formal documen-
tation has not been produced for
ASEAME yet.

_ Learnability

EPFC supports method development
graphical notations.

 Operability

Graphical user interfaces are designed to
enhance ASEAME’s attractiveness.

 Attractiveness

Based on Eclipse Installability
Portability

Based on Eclipse Adaptability

 : Adequately supported
_ : Weakly supported

Fig. 4 depicts ASEAME’s coverage of the generic SME process, and shows
that ASEAME significantly augments the EPFC tool.

We have also compared ASEAME to existing CAME tools. In comparison,
ASEAME offers these advantages:

• ASEAME supports the comprehensive implementation of assembly-based

SME, which is its most important contribution.
• ASEAME significantly reduces the method engineer’s manual burden, as

compared to other CAME tools, through enhancing automation in all the stages
of SME, including requirements engineering, selection of appropriate method
fragments, and method fragments assembly. Additionally, the final assessment
of method fragments consistancy, (which is a very time-consuming undertaking
if performed manually) is executed automatically in ASEAME.

150 Z.S. Hossein Abad, A. Alipour, and R. Ramsin

Fig. 4 Coverage of the generic SME process in ASEAME

• ASEAME provides a comprehensive set of agile method fragments derived
from prominent agile methodologies, including Crystal Clear [11], DSDM
[12], FDD [13], ASD [14], Scrum [15], and XP [16]. In comparison, other
CAME tools lag far behind. The method fragments provided by ASEAME
cover the process aspect as well as the product aspect. ASEAME supports the
process aspect of methods by defining method fragments in terms of activities,
tasks, and phases. The product aspect is supported by defining the related
concepts in accordance with SPEM 2.0, in terms of artifacts, outcomes, and
deliverables. Support for the definition of roles is another important feature of
ASEAME.

Characterization of situation

Selection of method fragments

Plug-in method Decision trees

Assembly of method fragments

guidelines

Project execution

 Method
administration

situational method

characterization

request for
new method fragments

validation

selected
method fragments

updates

request for
adaptation

Method engineer

experiences

methods and
techniques

Enhancing Tool Support for Situational Engineering of Agile Methodologies 151

5 Concolusions and Future Work

Our proposed CAME tool, ASEAME, enhances support for situational method
engineering of agile methodologies in EPFC. Existing tools are limited in their
support for comprehensive implementation of assembly-based SME, and they
need a high degree of manual engagement by method engineers throughout the
method construction process. ASEAME covers all the stages of SME (as defined
in [1]) and reduces the method engineer’s manual involvement through providing
a high degree of automation. Thus, the complexities encountered in method engi-
neering are adequately managed, production time and costs are reduced, and accu-
racy is enhanced.

ASEAME is based on assembly-based SME, and does not support other ap-
proaches, such as paradigm-based and extension-based. Therefore, the next step
in this research is to extend ASEAME with support for other SME approaches.
Method verification and enhancement of the agile method base are other research
tasks that should be taken up.

References

1. Niknafs, A., Ramsin, R.: Computer-Aided Method Engineering: An Analysis of Exist-
ing Environments. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 525–540. Springer, Heidelberg (2008)

2. Shakeri Hossein Abad, Z., Hasani Sadi, M., Ramsin, R.: Towards Tool Support for
Situational Engineering of Agile Methodologies. In: Proc. Asia-Pacific Software Engi-
neering Conference (APSEC 2010), pp. 326–335 (2010)

3. Ralyté, J., Brinkkemper, S., Henderson-Sellers, B.: Situational Method Engineering:
Fundamentals and Experiences. Springer (2007)

4. Haumer, P.: Eclipse Process Framework Composer. Eclipse Foundation (2007)
5. Harmsen, A.F.: Situational Method Engineering. Moret Ernest & Young (1997)
6. Si-Said, S., Rolland, C., Grosz, G.: MENTOR: A Computer-Aided Requirements En-

gineering Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.)
CAiSE 1996. LNCS, vol. 1080, pp. 22–43. Springer, Heidelberg (1996)

7. Saeki, M.: CAME: The first step to automated method engineering. In: Proc. OOPSLA
2003 Workshop on Process Engineering for Object-Oriented and Component-Based
Development, pp. 7–18 (2003)

8. Heym, M., Osterle, H.: A semantic data model for methodology engineering. In: Proc.
Workshop on Computer-Aided Software Engineering, pp. 143–155 (1992)

9. Meta Case Consulting: Method Workbench User’s Guide (2005),
http://www.metacase.com/support/40/manuals/mwb40sr2a4.pdf/

10. Mnkandla, E., Dwolatzky, B.: Agile methodologies selection toolbox. In: Proc. Inter-
national Conference on Software Engineering Advances (ICSEA 2007), pp. 72–72
(2007)

11. Cockburn, A.: Crystal Clear: A Human-Powered Methodology for Small Teams. Ad-
dison Wesley (2004)

12. Stapleton, J.: DSDM: Business Focused Development, 2nd edn. Addison Wesley
(2003)

152 Z.S. Hossein Abad, A. Alipour, and R. Ramsin

13. Palmer, S.R., Felsing, J.M.: A practical guide to feature-driven development. Prentice
Hall (2002)

14. Highsmith, J.: Adaptive Software Development: A Collaborative Approach to Manag-
ing Complex Systems. Dorset House (2000)

15. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
(2001)

16. Beck, K., Andres, C.: Extreme programming explained: Embrace change, 2nd edn.
Addison Wesley (2004)

17. Bendraou, R., Combemale, B., Cregut, X., Gervais, M.: Definition of an executable
SPEM 2.0. In: Proc. Asia-Pacific Software Engineering Conference (APSEC 2007),
pp. 390–397 (2007)

18. Slooten, K.V., Hodes, B.: Characterizing IS Development Projects. In: Proc. IFIP TC8,
WG8.1/8.2 Working Conference on Method Engineering, pp. 29–44 (1996)

19. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art
Review. Universal Computer Science 16(3), 424–478 (2010)

20. Kornyshova, E., Deneckere, R., Salinesi, R.: Method Chunks Selection by Multicrite-
ria Techniques: An Extension of the Assembly-based Approach. In: Ralyte, J., Brink-
kemper, S., Henderson-Sellers, B. (eds.) Situational Method Engineering: Fundamen-
tals and Experiences, pp. 64–78. Springer (2007)

21. Rolland, C., Prakash, N., Benjamen, A.: A Multi-model View of Process Modeling.
Requirements Engineering 4(4), 169–187 (1999)

22. Seidita, V., Ralyté, J., Henderson-Sellers, B., Cossentino, M., Arni-Bloch, N.: A com-
parison of deontic matrices, maps and activity diagrams for the construction of situa-
tional methods. In: Proc. CAiSE 2007 Forum, pp. 85–88 (2007)

23. Cossentino, M., Seidita, V.: Composition of a New Process to Meet Agile Needs Using
Method Engineering. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.)
SELMAS 2004. LNCS, vol. 3390, pp. 36–51. Springer, Heidelberg (2005)

24. Saeki, M.: Embedding Metrics Into Information Systems Development Methods: An
Application of Method Engineering Technique. In: Eder, J., Missikoff, M. (eds.)
CAiSE 2003. LNCS, vol. 2681, pp. 374–389. Springer, Heidelberg (2003)

25. Van De Weerd, I., Brinkkemper, S., Souer, J., Versendaal, J.: A situational implemen-
tation method for web-based content management system-applications: Method engi-
neering and validation in practice. Software Process: Improvement and Practice 11(5),
521–538 (2006)

26. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for Method Engineer-
ing. In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp. 381–400.
Springer, Heidelberg (1998)

27. International Organization for Standardization (ISO), International Electrotechnical
Commission (IEC): ISO/IEC 9126: Software engineering-Product quality. ISO (2004)

	Enhancing Tool Support for SituationalEngineering of Agile Methodologies in Eclipse
	Introduction
	Related Research
	Particulars of ASEAME
	Situation Characterization
	Method Fragments Selection
	Method Assembly

	Analysis of the Proposed Plug-In
	Concolusions and Future Work
	References

