
4 Idioms 

"A what?" he said. 
-An S.E. P." 

"An S...?' 
"... E.P." 

"And whal's that?' 

Douglas Adnms, we, the Unlwrse and Everything 

Idioms are low-level patterns specific to a programmlng language. An 
idlom describes how to lmplement particular aspects of components 
or the relationships between them with the features of the glven 
language. 

In thls chapter we provide an overview of the use of idioms. show how 
they can define a programmlng style, and show where you can find 
idioms. We refer mainly to other people's work instead of 
documenting our own idioms. We do however present the Counted 
Pointer idiom as  a complete idlom description. 



Idioms 

4.1 Introduction 

Idioms represent low-level patterns. In contrast to design patterns, 
which address general structural principles, idioms describe how to 
solve implementation-specific problems in a programming language, 
such as  memory management in C++. Idioms can also directly 
address the concrete implementation of a specific design pattern. We 
cannot therefore draw a clear line between design patterns and 
idioms. Idioms can address low-level problems related to the use of a 
language, such as naming program elements, source text formatting 
or choosing return values. Such idioms approach or overlap areas 
that are typically addressed by programming guidelines. To 
summarize, we can say that idioms demonstrate competent use of 
programming language features. Idioms can therefore also support 
the teaching of a programming language. 

A programming style is characterized by the way language constructs 
are used to implement a solution, such as  the kind of loop statements 
used, the naming of program elements, and even the formatting of the 
source code. Each of these separate aspects can be cast into an idiom, 
whenever implementation decisions lead to a specific programming 
style. A collection of such related idioms defines a programming style. 

As with all patterns for software architecture, idioms ease 
communication among developers and speed up software 
development and maintenance. The collected idioms of your project 
teams form an intellectual asset of your company. 

4.2 What Can Idioms Provide? 

Learning a new programming language does not end after you have 
mastered its syntax. There are always many ways to solve a particular 
programming problem with a given language. Some might be consid- 
ered better style or make better use of the available language features. 
You have to know and understand the little tricks and unspoken rules 
that will make you productive and your code of high quality. 



What Can Idiom Provide? 347 

A single idiom might help you to solve a recurring problem with the 
programming language you normally use. Examples of such 
problems are memory management, object creation, naming of 
methods, source code formatting for readability, efficient use of 
specific library components and so on. 

There are several ways to acquire expertise in solving such problems. 
One is by reading programs developed by experienced programmers. 
This makes you think about their style and encourages you to try to 
reproduce it in your own code. This approach takes a long time, as  
trying to understand 'foreign' code is not always easy. If a set of 
idioms are available for you to learn, it is much easier to become 
productive in a new programming language, because the idioms can 
teach you how to use the features of a programming language 
effectively to solve a particular problem. 

Because each idiom has a unique name, they provide a vehicle for 
communication among software developers. A team of experienced 
engineers who have been working together for some time might share 
experience by thinking in terms of their own idioms. It may be 
difficult for a newcomer to such a team to understand and learn these 
implicit idioms. I t  is therefore a good idea to make idioms and their 
use explicit-for example, try to document and name the idioms you 
use. 

In contrast to many design patterns, idioms are less 'portable' 
between programming languages. For example, the design of 
Smalltalk's collection classes incorporates many idioms that are 
specific to the language. They depend on features not present in C++ 
such as  garbage collection or meta-information. An early C++ class 
library, the NIHCL (GOP901, implemented collection classes for C++ 
programs by mimicking Smalltalk's collections. For example, every 
class that has objects stored in collections must inherit from the 
NIHCL root class O b  j ec t. In addition, memory management relies 
completely on the programmer, which makes the NIHCL collections 
much harder to use than Srilalltalk's collection classes. Modern C++ 
class libraries such as Generic++ ISNI941 abandon this approach and 
implement collection classes differently from NIHCL by using the C++ 
template mechanism. Such template collections can store any kind of 
data of a given type, even non-objects. 



Idioms 

4.3 Idioms and Style 

Experienced programmers apply patterns when doing their work, just 
a s  do other experts. A good program written by a single programmer 
will contain many applications of his set of patterns. Knowing the 
patterns a programmer uses makes understanding their programs a 
lot easier. 

It may be difficult to follow a consistent style, however, even for a n  
experienced programmer. If programmers who use different styles 
form a team, they should agree on a single coding style for their pro- 
grams. For example, consider the following sections of C/C++ code, 
which both implement a string copy function for 'C-style' strings: 

void strcopyRR(char *d, const char *s) { 
while (*d++=*s++) ; 

1 

void strcopyPascal (char d [ I  , const char s [I ) { 
int i ; 
for (i = 0: s[il ! =  ' \ O 1 :  i = i + 1) 
{ 

d[il = s [il ; 
1 
d[i] = I J O 1 ;  / *  always a s e i g n  0 character * /  

1 / *  END of strcopyPasca1 * /  

Both functions achieve the same result-they copy characters from 
string s to string d until a character with the value zero is reached. A 
compiler might even be able to create identical optimized machine 
code from both examples. The function strcopyKR ( ) uses pointers 
a s  synonyms for array parameters, in the terse C style in the tradition 
of Kerninghan and Ritchie [KR88]. The s t  rcopypascal ( ) function 
might have been written by a programmer with a background in a 
language such a s  Pascal, where pointers are intended for use with 
linked data structures. Both implementations follow their own style. 
Which version you prefer, or what your own version would look like, 
depends on your experience, background, taste and many other fac- 
tors. A program that uses a mixture of both styles might be much 
harder to understand and maintain than a program that uses one 
style consistently. It is a prerequisite that we can understand the 



Idioms and Style 349 

Name 

Problem 

Solution 

style of the program, such a s  the strange looking w h i l e  loop in 
strcopyKR ( ) . 

Corporate style guides are one approach to achieving a consistent 
style throughout programs developed by teams. Unfortunately many 
of them use dictatorial rules such a s  'all comments must start on a 
separate line'. This means that they are not in pattern form-they give 
solutions or rules without stating the problem. Another shortcoming 
of such style guides is that they seldom give concrete advice to a pro- 
grammer about how to solve frequently-occurring coding problems. 

We think that style guides that contain collected idioms work better. 
They not only give the rules, but also provide insight into the problem 
solved by a rule. They name the idioms and thus allow them to be 
communicated. For example, it is easier to say and memorize 'you 
should use an  Intention Revealing Selector here' [Bec97] than 'apply 
rule 97-42 and change your method name accordingly'. However, not 
many such style guides exist yet. A further problem is that idioms 
from conflicting styles do not mix well if applied carelessly to a 
program. 

Here is an example of a style guide idiom from Kent Beck's Smalltalk 
Best Practice Patterns [Bec97]: 

Indented Control Flow 

How do you indent messages? 

Put zero or one argument messages on the same lines a s  their 
receiver. 

Put the keyword/argument pairs of messages with two or more 
keywords each on its own line, indented one tab. 

a < b  
ifTrue: [ .  . . ] 
ifFalse: [ .  . . I  

Ll 
Different sets of idioms may be appropriate for different domains. For 
example, you can write C++ programs in an object-oriented style with 
inheritance and dynamic binding. In some domains. quch a s  real- 



time systems, a more 'efficient' style that does not use dynamic 
binding is required. A single style guide can therefore be unsuitable 
for large companies that employ many teams to develop applications 
in different domains. A style guide cannot and should not cover a 
variety of styles. 

A coherent set of idioms leads to a consistent style in your programs. 
Such a single style will speed up development, because you do not 
have to spend a lot of time thinking about the simple problems 
covered by your set of idioms, like how to format a block of code. In 
addition a consistent style also helps during program evolution or 
maintenance, because it makes programs a lot easier to understand. 

4.4 Where Can You Find Idioms? 

It is beyond the scope of this book to cover a programming style for a 
programming language-such styles and idioms could easily fill an  
entire book by themselves. We suggest that you look a t  any good 
language introduction to make a start on collecting a set of idioms to 
use. As an exercise in documenting your own patterns, you can try to 
rephrase the guidelines given in such books to correspond to a 
pattern template. This will help you to understand when to apply the 
rules, so that you can easily determine which problem a guideline 
solves. 

Some design patterns that address programming problems in a more 
general way can also provide a source of idioms. If you look at these 
patterns from the perspective of a specific programming language, 
you can find embedded idioms. For example, the Singleton design 
pattern [GHJV95] provides two idioms specific to Smalltalk and C++: 

Name 

Problem 

Solution 

Singleton (C++) 

You want to implement the Singleton design pattern IGHJV951 in 
C++, to ensure that exactly one instance of a class exists at run-time. 

Make' the constructor of the class private. Declare a static member 
variable theIns tance that refers to the single existing instance of the 



Where Can You Find Idioms? 351 

Example 

Name 

Problem 

Solution 

Example 

class. Initialize this pointer to zero in the class implementation file. 
Define a public static member function qetIns tance ( ) that returns 
the value of theInstance. The first time qetInstance ( )  is called, it 
will create the single instance with new and assign its address to 
theIns tance. 

class Singleton { 
static Singleton *theInstance; 
Singleton ( ) ; 
public: 
static Singleton *getInstance() { 

if ( ! theInstance) 
theInstance = new Singleton; 

return theInstance; 
1 

I ;  
/ / .  . . 
Singleton* Sing1eton::theInstance = 0; 

The corresponding Smalltalk version of Singleton solves the same 
problem, but the solution is different because Smalltalk's language 
concepts are completely distinct from C++: 

Singleton (Smalltalk) 

You want to implement the Singleton design pattern [GHJV95] in 
Smalltalk, to ensure that exactly one instance of a class exists a t  run- 
time. 

Override the class method new to raise a n  error. Add a class variable 
TheInstance that holds the single instance. Implement a class 
method getInstance that returns TheInstance. The first time 
qetInstance is called, it will create the single instance with super 
new and assign it to TheIns tance. 

new 
self error: 'cannot create new object' 

getInstance 
TheInstance isNil ifTrue: [TheInstance := super new]. 
A TheInstance 

CI 



I d i o m  

Idioms that form several different coding styles in C++ can be found 
for example in Coplien's Advanced C++ [CopegZ], Barton and 

an's Scientific and Engineering C++ [BN94] and Meyers' 
Effective C++ [MeygZ] . 
You can find a good collection of Smalltalk programming wisdom in 
the idioms presented in Kent Beck's columns in the Smalltalk Report. 
His collection of Smalltalk Best Practice Patterns is about to be 
published a s  a book [Bec96]. Beck defines a programming style with 
his coding patterns that is consistent with the Smalltalk class library, 
so you can treat this pattern collection a s  a Smalltalk style guide. 
Many of his patterns build on each other, so that in addition to being 
a style guide, his collection can be considered a pattern language. 

You can also look at your own program code, or the code of your 
colleagues, read it and extract the patterns that have been used. You 
can use such 'pattern mining' to build a style guide for your 
programming language that becomes an  intellectual asset of your 
team. By giving a name to each idiom, your style guide provides a 
language for communication between your developers. It can also 
provide a teaching aid for new developers who join your team. 



Counted Pointer 

The Counted Pointer idiom [Cope921 makes memory management of 
dynamically-allocated shared objects in C++ easier. It introduces a 
reference counter to a body class that is updated by handle objects. 
Clients access body class objects only through handles via the 
overloaded operator-> ( )  . 

Example When using C++ for object-oriented development, memory manage- 
ment is an important issue. Whenever an object is shared by clients. 
each of which holds a reference to it, two situations exist that are 
likely to cause problems: a client may delete the object while another 
client still holds a reference to it, or all clients may 'forget' their refer- 
ences without the object being deleted. 

I0bject.o: I I ObJect '0 I 
refers to 1 I refers to 

Object -0: Object *o: 

reference 'K"7 Object .o: 

r r w  J 

another I another 
object object 

should be 
deleted 



Idioms 

Context Memory management of dynamically allocated instances of a class. 

Problem In every object-oriented C++ program you have to pass objects a s  
parameters of functions. It is typical to use pointers or references to 
objects as parameters. This allows you to exploit polymorphism. 
However, passing object references around freely can lead to the 
situations shown in the diagram above-you do not know if 
references are still valid, or even still needed. 

One approach to the problems arising from the use of pointers and 
references is to avoid them completely and pass objects by value, as  
is normally done with integers. C++ allows you to create programs 
that do this, and the compiler will automatically destroy value objects 
that go out of scope. 

This solution does not work well for all kinds of program, however, for 
three reasons. Firstly, if the objects you pass by value are large, 
copying them each time they are used is expensive in run-time and 
memory consumption. Secondly, you might want to create dynamic 
structures of objects, such a s  trees or directed graphs, which is 
almost impossible to do in C++ using value objects alone. Lastly, you 
may want to share an object deliberately, for example by storing it in 
several collections. 

If you have to deal with references or pointers to dynamically 
allocated objects of a class, you may need to address the following 
forces: 

Passing objects by value is inappropriate for a class. 

Several clients may need to share the same object. 

You want to avoid 'dangling' references-references to an  object 
that has been deleted. 

If a shared object is no longer needed, it should be destroyed to 
conserve memory and release other resources it has acquired. 

Your solution should not require too much additional code within 
each client. 

Solution The Counted Pointer idiom eases memory management of shared 
objects by introducing reference counting. The class of the shared 
objects, called Body, is extended with a reference counter. To keep 
track of references used, a second class Handle is the only class 



Counted Pointer 355 

allowed to hold references to Body objects. All Handle objects are 
passed by value throughout the program, and therefore are allocated 
and destroyed automatically. The Handle class takes care of the Body 
object's reference counter. By overloading opera t o r  - > ( ) in the 
Handle class, its objects can be used syntactically a s  if they were 
pointers to Body objects. 

Implementation 

See the Variants section for a variation of this solution that applies 
when Body objects are only shared for performance reasons. 

Body 

int refcounter 

Client 

Handle h 

To implement the Counted Pointer idiom, carry out the following 
steps: 

refers to holds by value - Body *body - 

Make the constructors and destructor of the Body,class private (or 
protected) to prohibit its uncontrolled instantiation and deletion. 

Make the Handle class a friend to the Body class, and thus provide 
the Handle class with access to Body's internals. 

Extend the Body class with a reference counter. 

Add a single data member to the Handle class that points to the Body 
object. 

Implement the Handle class' copy constructor and its assignment 
operator by copymg the Body object pointer and incrementing the 
reference counter of the shared Body object. lmplement the 
destructor of the Handle class to decrement the reference counter and 
to delete the Body object when the counter reaches zero. 

lmplement the arrow operator of the Handle class a s  follows: 

Body * operator->() const { r e t u r n  body; 1 

and make it a public member function. 



Idioms 

7 Extend the Handle class with one or several constructors that create 
the initial Body instance to which it refers. Each of these constructors 
initializes the reference counter to one. 

Sample Code Applying the Counted Pointer idiom results in the following C++ code: 

class Body { 
public : 
/ /  methods providing the bodies functionality to the world 

void service0 ; 
/ /  further functionality ... 

private: 
friend class Handle; 
/ /  parameters of constructor as required 
Body(/*...*/) { / *  ... * /  I 
-Body0 { / *  ... * /  1 
int ref Counter : 

I : 

class Handle { 
public: 

/ /  use Body's constructor parameters 
Handle(/*. . . * / )  { 

body = new Body(/*. . . * / ) ;  
body->refcounter = 1; 

I 
Handle(const Handle &h) [ 

body = h-body; 
body->refcounter++; 

I 
Handle & operator=(const Handle &h) { 

h.body->refcounter++; 
if ( - -body->refcounter) <= 0) 

delete body; 
body= h.body; 
return *this; 

I 
-Handle0 { 

if (--body->refcounter <= 0) 
delete body; 

1 
Body* operator->O { return body; I 

private: 
Body *body; 

1 ; 



Counted Pointer 

/ /  example use of handles . . .  
Handle h(/* some parameter * / )  ; 
/ /  create a handle and also a new body instance 
{ Handleg(h); / /  create just a n e w  handle 

h->service(); g->service(); 
1 / /  g goes out of scope and is automatically deleted 

h->serviceO; / /  still possible 
/ /  after h goes out of scope the body instance is 
/ /  automatically deleted. Cl 

Variants A common application of reference counting, similar to Counted 
Pointer, is used for performance improvement with large Body 
objects. [Cope921 names this variant the Reference Counting Idiom or 
Counted Body in [Cope94a]. In this variant a client has  the illusion of 
using its own Body object, even if it is shared with other clients. 
Whenever an  operation is likely to change the shared Body object, the 
Handle creates a new Body instance and uses this copy for all further 
processing. To achieve this functionality it is not sufficient to just 
overload opera tor - > ( ) . Instead, the interface of the Body class is 
duplicated by the Handle class. Each method in the Handle class 
delegates execution to the Body instance to which it refers. Methods 
that would change the Body object create a new copy of it if other 
clients share this Body object. 

See Also Bjarne Stroustrup (Str911 discusses several ways of extending the 
Handle class. The Handle can be implemented as a template if the 
Body class, passed as a template parameter, cooperates with the 
Handle template class--for example, if the Body class provides the 
Handle class access to the reference counter. 

The solution provided by the Counted Pointer idiom has the drawback 
that you need to change the Body class to introduce the reference 
counter. Coplien and Koenig give two ways to avoid this change. 

James Coplien [Cope921 presents the Counted Pointer idiom and 
several variations. In cases where the Body class is not intended to 
have derived classes, it is possible to embed it in the Handle class. 
Another variation, shown in the diagram that follows, is to wrap 
existing classes with a reference counter class. This wrapper class 
then forms the Body class of the Counted Pointer idiom. This solution 
requires a n  additional level of indirection when clients access the 
Body object. 



refers to 
CountingBody *cb 

cb-xervicefl; 

lnt refcounter 

Andrew Koenig gives a further variation of the theme that allows you 
to add reference counting to classes without changing them IKoe951. 
He defines a separate abstraction for use counts. Then the Handle 
holds two pointers: one to the body object, the other to the use-count 
object. The use-count class can be used to implement handles for a 
variety of body classes. The Handle objects of this solution require 
twice the space of the other Counted Pointer variants, but the access 
is as direct as with a change to the Body class. 

- 7 L q  
refers to 

Int refcounter 

UseCount *count 
Body *body dyplz/) 

refers 
service[) const 
changin Service[) 
-BodY(..f 1 1 


	Chapter 4. Idioms
	4.1 Introduction
	4.2 What Can Idioms Provide?
	4.3 Idioms & Style
	4.4 Where Can You Find Idioms?
	Counted Pointer





