
ORIGINAL ARTICLE

Isabelle Mirbel Æ Jolita Ralyté

Situational method engineering: combining assembly-based
and roadmap-driven approaches

Received: 14 July 2004 / Accepted: 9 September 2005 / Published online: 3 November 2005
� Springer-Verlag London Limited 2005

Abstract Because the engineering situation of each
information system development (ISD) project is dif-
ferent, engineering methods need to be adapted, trans-
formed or enhanced to satisfy the specific project
situation. Contributions, in the field of situational
method engineering (SME), aim at providing techniques
and tools allowing to construct project-specific methods
instead of looking for universally applicable ones. In
addition to the engineering method tailoring, necessary
to fit the project situation, a customization of the engi-
neering method for each engineer participating in the
project is also required. Such a configuration allows a
better understanding of the method by focusing on
guidelines related to the project engineer’s daily tasks.
It also increases his/her involvement in the ISD method
realization. To achieve this twofold objective (ISD method
tailoring and customization), we propose a frame-
work for SME combining an assembly-based approach
for project-specific method construction and a roadmap-
driven approach for engineer-specific method configu-
ration. The first step of our process provides support to
build a new method that is most suitable for the current
ISD project situation, whereas the second step aims at
choosing the most adapted path (roadmap) to satisfy the
requirements of a particular project engineer within the
project-specific method. The two core elements of our
SME framework are the method chunks repository and
the reuse frame. The former concerns reusable method
components definition and storage whereas the latter
deals with the characterization of the project situation
and the project engineer’s profile. In this paper we start

first by presenting our SME framework and its core
elements: the method chunk repository and the reuse
frame. Then we show how to take advantage of them
through our two-step process combining assembly-based
method construction and roadmap-driven method con-
figuration.

1 Introduction

Objectives, problems and requirements as well as the
whole engineering environment vary from one informa-
tion systems development (ISD) project to another.
Besides, each project is governed by a number of orga-
nizational, technical and human factors as complexity,
specificity and novelty of the application domain, degree
of innovation, way of working, team expertise, etc. In
other words, the engineering situation of each ISD pro-
ject is different and requires project-specific methods and
tools for supporting it. Even though traditional ISD
methods claim to be universal and propose a large
number of models and views for system analysis and
specification, they cannot foresee all possible ISD situa-
tions. Moreover, many studies of the use of system
development methodologies in practice have shown that
the ‘cookbook’ approach for system engineering is not
working as expected [7, 12, 13]. Methods are almost
never suited literally and even more there is a wide dif-
ference between the formalized sequences of steps and
stages prescribed by a method and their real application
in practice [7]. This tension between the ‘method-in-
concept’ (the method as formalized in manual) and the
‘method-in-action’ (as interpreted by the developer) is
highlighted in [7, 19]. Although there is a common con-
sensus that ISD methods need to be adapted, trans-
formed, or enhanced to satisfy the development situation
they have to face [3, 7, 10, 16, 33, 37, 46], there is a great
difficulty to change them because of their rigidity and
lack of modularity.

I. Mirbel (&)
Laboratoire I3S, Les Algorithmes, Route des Lucioles,
BP 121, 06903 Sophia Antipolis Cedex, France
E-mail: isabelle.mirbel@unice.fr

J. Ralyté
Centre Universitaire d’Informatique, Université de Genève, 24 rue
du Général Dufour, CH-1211 Genève 4, Switzerland
E-mail: ralyte@cui.unige.ch

Requirements Eng (2006) 11: 58–78
DOI 10.1007/s00766-005-0019-0



To resolve this problem, the discipline of Situational
Method Engineering (SME) focuses on the creation of
new techniques and tools allowing to construct project-
specific methods ‘on the fly’ [18] instead of looking
for universally applicable ones. Most of the SME
approaches promote the construction and adaptation of
new methods by assembling reusable method fragments
[3] or method chunks [33, 34], stored in some method
repository [3, 11, 28, 38, 47]. These approaches lead to
the construction of new modular methods. A modular
method means a collection of interconnected method
fragments/chunks, which are presented and illustrated in
Sect. 2 of this paper. Thanks to this modularity, meth-
ods are more flexible and adaptable. They can be mod-
ified and improved by adding new fragments/chunks or
by removing the unnecessary ones in order to meet the
requirements of a given situation [11, 48].

Another, a somewhat different kind of approach,
called method configuration [16] or process tailoring [46],
claims that many organisations choose one commer-
cially available system development methodology and
focuses on how to adapt this methodology to situational
factors of the project at hand. These approaches intro-
duce the notion of method rationale as a means to sup-
port method evolution. However, they also have to face
the problem of method adaptability and flexibility.

Empirical studies show that method (process) tailor-
ing is difficult in that it involves intensive knowledge
generation and deployment [46]. Indeed, even if methods
are decomposed into fragments through SME, ISD crew
members must apprehend the method as a whole and
understand all its concepts in order to use it, which can
have some negative impact and discourage the ISD crew
member from using methods [2]. Therefore, in addition
to the tailoring of project-specific ISD methods, there is
also a need for the customization dedicated to ISD
project crew members [22, 25, 26]. Finally, existing
approaches emphasize the development process too
much compared to the organizational and human
dimensions [27]. Indeed, each ISD crew member has to
perform specific tasks throughout the project at hand
and thus needs a specific view of the method used for
this project realization.

Therefore, in this paper it is considered that each ISD
project should start with the definition of its proper
method that best fits its situation. Then, the obtained
method can be personalized for each project crew
member according to his/her tasks; only the method
chunks supporting these tasks should be proposed to
him/her.

Method construction starting from existing method
chunks as well as method configuration to suit project
crew member’s situation may be seen as a specific tech-
nique to select and retrieve method components. Exist-
ing approaches supporting the search and retrieval of
software components can be classified into four types
[17, 21]: (1) simple keywords and string search, (2)
faceted classification and retrieval, (3) signature match-
ing and (4) behavioural matching.

Simple keyword searching may result in too many or
too few items retrieved or even unrelated items. Draw-
back of the faceted classification search approaches is
the difficulty in managing the classification scheme when
domain knowledge evolves. Signature matching tech-
niques are dedicated to software components embedding
code and are difficult to apply on components providing
knowledge about requirements and way of working, as it
is in this case. Behavioural matching techniques are
difficult to use when components have complex behav-
iours or involve side-effects. Moreover, it is difficult to
express the required behaviours. Finally, all these tech-
niques do not provide ways to augment or extend query
[50].

Therefore, a need was identified to combine user
intention and application domain information. Recent
approaches [31, 50] propose means to handle and take
into account knowledge about the application domain
through the search and retrieval process. In this
approach, the focus is on the methodology rather than
the application to develop. A specific frame, is proposed
which may be seen as ontology, allowing to define the
meaningful knowledge related to method engineering
activity and to build a method dedicated to the needs of
a specific company or a specific project. This polymor-
phic structure also allows the method engineer to
broadcast methodological ways of working otherwise
than through deliverables. On the other hand, it allows
method users to retrieve method components dedicated
to their specific work inside the project-specific method
without being obliged to understand the whole meth-
odology.

To sum up, the objective of the work is to propose
an approach for SME including both project-specific
ISD method construction and its customization for each
engineer participating in the project. To achieve this
objective, two complementary approaches are combined
(1) the assembly-based approach for project-specific
method construction and (2) the roadmap-driven ap-
proach for method configuration in order to satisfy spe-
cific needs of each ISD crew member. Both approaches
share the same method chunks repository and the com-
mon ISD project development knowledge frame, namely
the reuse frame.

It is clear that projects executed with situation-spe-
cific methods may become incomparable for project
managers who want to predict the cost of ISD projects.
The global framework proposal is a means to reduce the
potential divergence between different project executions
by providing a common frame for all the projects in the
company and by postponing the customization to the
ISD crew member level, that is to say where freedom and
tailoring is still needed for acceptance purposes.

The remainder of this paper is as follows: in Sect. 2 a
framework for SME combining the assembly-based and
roadmap-driven approaches is proposed. The elements
as method chunk and reuse frame shared by the two
approaches are defined and illustrated in this section.
Section 3 details and illustrates the assembly-based

59



approach for project-specific method construction as the
first step of the global SME approach, while Sect. 4 deals
with the roadmap-driven approach for method config-
uration as its second step. The conclusions and discus-
sions about the future preoccupations are proposed in
Sect. 5.

2 Framework for SME

In this section the framework for SME is presented
combining two complementary method engineering
approaches called assembly-based and roadmap-driven.
As shown in Fig. 1 the two approaches represent two
core steps in the situation-specific method construction–
configuration process:

1. The aim of the first step is to build a new method that
is most adapted/suitable for the current ISD project
situation. This step is found on the assembly-based
method engineering approach detailed in Sect. 3.

2. The second step aims at choosing the most adapted/
suitable roadmap within a selected method with
regards to the project and the ISD crew member’s
needs. The roadmap-driven method configuration
approach establishes the basis of this step. This
approach is detailed in Sect. 4 of this paper.

As shown in Fig. 1, both steps share two common
elements: the method chunks repository and the Reuse
Frame. The former concerns the reusable method com-
ponents definition and storage whereas the latter deals
with the characterization of the project situation and the
definition of the requirements for a specific method or a
roadmap in a method. The method chunks repository

contains the effectively reusable method knowledge
defined in terms of method chunks, while the reuse
frame contains the knowledge about the reuse context of
these method chunks and provides criteria for project
and project engineer situation characterization.

Two core actors are identified in the framework
(Fig. 1): the method engineer and the ISD crew member.
Each of them has a specific role in the SME process. The
method engineer is in charge of executing step 1 while
the ISD crew member is responsible for the realization
of the step 2. In other words, the method engineer deals
with the project specific method construction whereas
the ISD crew member selects in this method the road-
map corresponding to his or her tasks in the ISD project
realization.

Besides, the method engineer is responsible for filling
up the method chunks repository, and the definition and
management of reuse criteria in the reuse frame.

2.1 Method chunks repository

One of the core elements in the SME framework is the
repository of method chunks (Fig. 1). The role of this
repository is to store reusable parts of methods as pro-
spective method building blocks.

Based on the observation that any method has two
interrelated aspects, product and process, several
authors propose two types of method components:
process fragments and product fragments [3, 11, 32].
Other authors consider only process aspects and provide
process components [6, 8], or process fragments [22, 26].
In this approach these two aspects are integrated in the
same module that is called method chunk [28, 33, 34, 42].

Fig. 1 A framework for
situational method engineering
combining assembly-based and
roadmap-driven approaches

60



The notion of method bloc proposed by Prakash [29] is
similar to the method chunk as it also combines product
and process perspectives into the same modelling com-
ponent. Both of these notions, method fragment and
method chunk, represent the basic blocks for construct-
ing ‘on the fly’ methods. Generally, they are stored in
some method repository or method base [10, 38, 42, 47].

Van Slooten and Brinkkemper [48] combine method
fragments into route maps. A complete route map rep-
resents a system development method. In this approach,
the step 2 dealing with roadmap-driven method config-
uration uses the notion of the route map to represent the
specific path dedicated to a particular ISD crew member
within a selected method [26], that is to say a subset of
an already combined set of method chunks.

Another kind of SME approach uses generic con-
ceptual patterns for method construction and extension
[39, 40], which capture generic lows governing the con-
struction of different but similar methods. Decision-
making patterns capturing the best practices in enterprise
modelling are proposed by Rolland [41] to support
enterprise knowledge development process. Deneckere
and Souveyet [5] propose domain-specific process and
product patterns for existing method extension.

In line with all these propositions around the notion
of the reusable method component, they are classified
into method chunks, method fragments, patterns and
roadmaps (Fig. 2).

In this approach two types of method components
are used: method chunks and roadmaps. A method
chunk represents a reusable building block for situation-
driven method construction or adaptation whereas a
roadmap represents a path in a method or a specific
sequence of method chunks in a method.

2.1.1 Method chunk

A method is considered as a couple of two interrelated
models: product model and process model. The product
model of a method defines a set of concepts, relation-
ships between these concepts and constraints for a cor-
responding schema construction. The process model

describes how to construct the corresponding product
model. Moreover, a method in this approach is viewed
as a set of loosely coupled method chunks expressed at
different levels of granularity. A method chunk is an
autonomous and coherent part of a method supporting
the realization of some specific ISD activities. Such a
modular view of methods favours their adaptation and
extension. Moreover, this view permits to reuse chunks
of a given method in the construction of new ones.

As a part of this method, a method chunk ensures a
tight coupling of some process part of a method process
model and its related product part. In the product part,
also called product fragment, the product to be delivered
by the method chunk is captured whereas in the process
part, also called process fragment, the guidelines allow-
ing to produce the product are given. For example, the
method chunk providing guidelines (process part) for
the use case model [14] construction should also provide
definitions of the concepts as actor, use case, scenario,
extend relationship, etc. (product part) used in this
model. As shown in Fig. 3 which represents the notion
of the method chunk, the corresponding product and
process parts constitute the body of the method chunk.

The interface of the method chunk captures the reuse
context in which the method chunk can be applied. It is
formalized by a couple <situation, intention>, which
characterizes the situation that is the input of the chunk
process and the intention (the goal) that the chunk
achieves. ‘‘To construct a use case model’’ is an example

Fig. 2 Typology of reusable
method components

Fig. 3 Notion of the method chunk

61



of the intention associated to the method chunk pro-
viding guidelines for the use case model construction;
the ‘‘problem statement’’ specifies the situation in which
this chunk can be applied that is the input product
necessary to start the execution of this method chunk.

Besides, a descriptor is associated to every method
chunk. It extends the contextual view captured in the
chunk interface to define the context in which the chunk
can be reused. The descriptor takes values from the reuse
frame and associates them to the corresponding method
chunk.

Figure 4 shows the meta-model for modular meth-
ods. According to this meta-model, a method is also
viewed as a method chunk of the highest level of gran-
ularity. The body of the method chunk captures a part
of method process model called guideline that can be
considered as autonomous and reusable and a part of its
product model needed to perform the process encapsu-
lated in this guideline.

A guideline is defined as ‘a statement or other indi-
cation of policy or procedure by which to determine a
course of action’ [1]. For us, a guideline embodies
method knowledge to guide the application engineer
in achieving an intention in a given situation. Therefore,
the guideline has an interface, which describes the
conditions of its applicability (the situation) and a body
providing guidance to achieve the intention, that is,
to proceed in the construction of the target product.
As mentioned previously, the interface is a couple

<situation, intention>. A situation represents an input
to the method chunk process and contains one or several
product elements necessary to start its execution in order
to achieve its intention. An intention represents an
engineering goal to be achieved by applying the method
chunk. An intention is expressed following a linguistic
approach proposed by Prat [30] as a clause with a verb
and a target. It can also have several parameters, where
each parameter plays a different role with respect to the
verb. For example, in the intention ‘‘Construct a use
case model following OOSE method advices’’, the verb
‘‘Construct’’ is followed by the target product ‘‘a use
case model’’ and the manner to achieve this intention
‘‘following OOSE method advices’’. It is formalized as
follows: ‘‘ConstructVerb (a use case model)Target (fol-
lowing OOSE method advices)Mannner’’.

The product elements used in the method chunk sit-
uations as well as the verbs and target products specified
in the method chunks intentions are defined in the
method engineering glossary. They are used in addition
to the reuse context during the retrieval process of the
method chunks from the repository.

The body of the guideline details how to apply the
chunk to achieve its intention. The interface of the
guideline is also the interface of the corresponding
method chunk. Guidelines in different methods have
different contents, formality, granularity, etc. In order to
capture this variety, three types of guidelines: simple,
tactical and strategic are identified.

Fig. 4 The meta-model for modular methods

62



A simple guideline may have an informal and textual
content advising on how to proceed to handle the situ-
ation in a narrative form. It can also be a simple exe-
cutable action leading to some transformation of the
product under construction. Figure 5 illustrates a
method chunk with a simple informal guideline pro-
posed by the L’Ecritoire method [44]. The role of this
method chunk is to help the requirements engineer in
scenario writing process by providing him with style
guidelines. The product part of this chunk defines the
‘‘Scenario’’ concept and its structure.

A tactical guideline is a complex guideline composed
of a set of steps. The NATURE process modelling for-
malism [15] is used to define tactical guidelines. This
formalism is based on a tree structure. A high level
guideline is decomposed into a set of more detailed
guidelines, which can also be decomposed until execut-
able actions are obtained. There are two possible types
of decomposition: the choice (a possibility to select one
alternative among several possibilities) and the plan of
steps to realize. Figure 6 illustrates a method chunk with
a tactical guideline for a use case model construction.
This guideline is defined as a plan composed of four
sub-guidelines: ‘‘<(Problem Statement), Identify an
actor>*, <(Problem Statement, Actor), Identify a use
case>*, <(Problem Statement, Use case), Describe
use case> and <(Use case model), Refine use case
model>*’’. Moreover, each of these sub-guidelines is
defined as a plan or a choice of several sub-guidelines.
The ‘star’ mark next to the guideline definition means
that the corresponding guideline can be repeatedN times.

A strategic guideline is a complex guideline called a
map [45] that uses a graph structure to relate its sub-
guidelines. Each sub-guideline belongs to one of the
three types of guidelines. A strategic guideline provides a
strategic view of the development process telling which
intention can be achieved following which strategy. An
Intention is a goal that can be achieved by the perfor-
mance of an activity (automated/semi-automated or
manual). There are two special intentions start and stop
that allow to begin and end the progression in the map,
respectively. An intention is expressed following a lin-

guistic approach mentioned previously [30]. A strategy is
an approach, a manner to achieve an intention. Thus, a
map is a label directed graph in which the nodes are the
intentions and the edges between the intentions are the
strategies.

The map permits to represent a process allowing
several different ways to develop the product. A set of
guidelines is associated to the map. They help the
application engineer to progress in the map and to
achieve the intentions following selected strategies. More
exactly, a map is a composition of a set of sections where
a section is a triplet <Source intention, Target intention,
Strategy>. Every section provides an intention achieve-
ment guideline (IAG) indicating how to achieve the tar-
get intention following the strategy given the source
intention has been achieved. Two other types of guide-
lines, intention selection guideline (ISG) and strategy
selection guideline (SSG), help to progress in the map
that is to select the next intention and to select the next
section, respectively.

To illustrate the strategic guideline it is proposed to
consider the L’Ecritoire approach [43, 44, 51, 52]. This
method chunk provides guidelines to discover functional
system requirements expressed as goals and to concep-
tualize these requirements as scenarios describing how
the system satisfies the achievement of these goals. As
shown in Fig. 7, the corresponding guideline is repre-
sented by a map with three core intentions: ‘‘Elicit a
goal’’, ‘‘write a scenario’’ and ‘‘conceptualize a sce-
nario’’. Several different strategies are provided by the
chunk to achieve these intentions each of them repre-
senting a different manner to do it. This method chunk is
an aggregate one; the IAG of each of its process map
sections is represented by another method chunk of
the lower level of abstraction. For example, the IAG
associated to the map section <Elicit a goal, Write a
scenario, Free prose strategy> is in fact another method
chunk that proposes a set of detailed style and content
guidelines supporting scenario authoring.

As mentioned previously, each method chunk has a
descriptor, which captures the knowledge about its reuse
conditions. In other words, the knowledge contained in

Fig. 5 Example of a method
chunk with a simple informal
guideline

63



the descriptors is used during the method chunks selec-
tion and retrieval from the repository. As shown in
Fig. 8, the two key elements of the descriptor are the
reuse context and the reuse intention. The reuse context
captures a set of criteria taken from the reuse frame and
characterising the corresponding method chunk. For
example, the reuse context of the method chunk pre-
sented in Fig. 7 should specify that this chunk is appli-
cable during the requirements elicitation activity. In the
next section more details are provided about the reuse
frame and how it allows the enhanced retrieval of
method chunks in order to better suit the method engi-
neer’s and ISD crew member’s needs.

The reuse intention expresses the objective that the
method chunk helps to satisfy in the corresponding

engineering activity. The reuse intention has the same
structure as the chunk intention that is defined by a verb,
a target and a set of parameters, which are specified in
the glossary. For example, the reuse intention of the
method chunk presented in Fig. 7 is defined as ‘‘Dis-
coververb (functional system requirements)Target (follow-
ing L’Ecritoire strategy)Manner’’.

Besides, the descriptor contains the name and the ID
of the corresponding method chunk and a narrative
description of its objective. It also specifies the type (i.e.
atomic or aggregate) and identifies the origin of the
chunk (i.e. the method from which this chunk is ex-
tracted). If the method chunk is an aggregate one, its
descriptor specifies its components and vice versa, if the
chunk takes a part of some aggregate chunks its

Fig. 6 Example of a method chunk with a tactical guideline

Fig. 7 Example of a method chunk with a strategic guideline

64



descriptor identifies them. The aggregates/components
relationship allows to navigate from one descriptor to
another during the selection process without looking at
the content of the corresponding chunks. The alternative
and not-compatible method chunks to the given one can
also be specified in the descriptor indicating the degree
of complementarity and incompatibility respectively.
Some application examples and experience reports can
be added in order to facilitate method chunks selection
in the case where several chunks would be retrieved to
satisfy the same intention.

2.1.2 Roadmap

A roadmap is composed of one or several coherent
sequence(s) of method chunks taken from a situational
method described in terms of chunks and corresponding
to the usage of this method by a particular ISD crew
member. It is a customized view of a situational method
to answer the specific need of an ISD crew member.
Three categories of customized view of a situational
method are described:

– The ISD crew member needs help on a specific step of
the ISD method: for instance, he/she looks for the
method chunks dealing with the requirement elicita-
tion activity. In such a case, a set of organized chunks
covering specific required stages of the ISD process is
provided.

– The ISD crew member asks for help on a specific
point of the ISD method: for instance he/she looks for
the guidelines to build a class diagram by using the
UML notation. In this case, a small set of chunks, not
related among them, is provided.

– The ISD crew member wishes the situational method
to be presented from a specific view point: for in-
stance, he/she looks at guidelines related to the fact
that the ISD takes place on top of a legacy applica-
tion. In this case, a large set of chunks covering as
much as possible the ISD process, with regards to the
chosen view point, is provided.

Through the roadmap notion, the goal is not to
provide ISD crew members with full and detailed
description of all the tasks they will have to deal with

during the ISD because spaces of creativity are also
required, but to give them advices when they ask for it
and/or when guidelines about similar situations have
been accumulated in the repository. Roadmaps are used
in the second step of the approach dealing with the
configuration of a situational method for an ISD crew
member. The purpose in this step is not to provide
another way to build a method, but to propose different
ways to make the situation-specific method usable and
useful ‘on the fly’ for a specific ISD crew member.

2.2 Reuse frame

Looking at the way ISD methods are used in practice, it
is noticed that they are always adapted: steps are added
or removed or skipped and so on. Different factors
related to the project, the technology, the team expertise
and the business domain lead to this tailoring. Method
tailoring is supported by the assembly of predefined
method chunks [3, 33]. Dedicated efforts have been
made, in the field of method engineering, to provide
efficient classification and retrieving techniques to store
and retrieve method chunks. Classification and retriev-
ing techniques are currently based on structural rela-
tionships among chunks (specialization, composition,
alternative, etc.) and reuse intention matching.

From this point of view, current classification and
retrieving means do not fully exploit the potential of
breaking down ISD methods into method chunks and
tailoring them. Therefore, the notion of reuse frame is
proposed that is detailed in the following sections.

2.2.1 A reuse frame to handle critical aspects
of information systems

It is believed that knowledge about organizational,
technical and human factors, which is critical knowledge
about ISD [4], should be taken into consideration in
addition to structural knowledge and reuse intention. It
allows to better qualify method chunks when entering
them into the repository and to enable the use of more
powerful matching techniques to retrieve them when
looking at similar ISD methodological problems. It also
allows to better express methodological needs for a

Fig. 8 The descriptor

65



specific ISD project, improving this way the chance to
get adequate and useful method chunks.

Therefore, a reuse frame aggregating different ISD
critical aspects useful to tailor ISD methods with regards
to the organizational, technical and human dimensions
of information systems (IS) is proposed. This polymor-
phic structure allows to construct a faceted classification
of reusable assets dedicated to method engineering. Of
course, method chunks, as well as methodological needs,
may be defined more or less precisely with regards to
ISD critical aspects. Therefore, these three aspects have
to be refined and presented in a way supporting the
required polymorphism, which is the case of our reuse
frame which is a tree of successively refined aspects. By
providing such an ontological structure, the panel of
means is enlarged for method engineers to broadcast
ways of working which is most of the time reduced to
deliverables. And ISD crew members are provided with
additional information to find the most suitable infor-
mation with regards to his/her ISD methodological need
(or problem).

ISD critical knowledge is described in terms of aspect,
belonging to aspect families, which are successive
refinements of the three main factors of IS: human,
organizational and application domain. Starting from
these three basic dimensions, each company may pop-
ulate the reuse frame with its own relevant criteria in
order to let ISD crew members to adapt the project (or
company)-specific method in a meaningful way for the
company. In the global framework, a reuse frame con-
tent is also provided that was built from various works
made on meaningful criteria for method customization.
With regards to the organizational dimension, it was
started from the work of van Slooten and Hodes pro-
viding elements to characterize ISD projects [49]: con-
tingency factors, project characteristics, goals and
assumptions as well as system engineering activities.
With regards to the application domain dimension, it was
started from previous work on JECKO, a context-driven

approach to software development developed in col-
laboration with the Amadeus Company and including a
contribution to define software critical aspects in order
to get suitable documentation to support software
development process [22, 23]. The application domain
dimension also includes aspects related to source system
(as legacy system are more and more present in com-
panies) and application technology, which requires more
and more adapted development processes. And finally,
concerning the human dimension, means are provided to
qualify the different kinds of method users who may be
involved in the ISD project (analysts, developers, etc.)
as well as their expertise level.

All the knowledge about ISD critical aspects is in-
cluded into the reuse frame taking the form of a tree,
where leafnodes are aspects and intermediary nodes are
families. Indeed, nodes close to the root node are seen as
general aspects while nodes close to leaf nodes (including
leafnodes) are seen as precise aspects. The top of the
reuse frame is shown in Fig. 9. Refer to the annex for
detail of each branch.

A leafnode (or aspect) is defined through a name. An
intermediary node (or family) is also defined through a
name and completed by information about relationships
among the different aspects or sub-families belonging to
it. This additional information, aiming at better speci-
fying the way aspects belong to a family, helps in using
them to constitute a coherent context. Two kinds of
information are provided:

– The classified field indicates if direct aspect or sub-
families are classified (cl=yes) or not (cl=no). For
instance, if Code Reuse is a family, Weak Code Reuse,
Medium Code Reuse and Strong Code Reuse are
aspects, which are classified (Weak Code Reuse means
to reuse less code than when Medium Code Reuse is
indicated, which again means less reuse than if Strong
Code Reuse is chosen). It is interesting to indicate
this information because when retrieving chunks

Fig. 9 Reuse frame

66



associated with the Medium Code Reuse aspect for
instance, it may also be interesting to look at chunks
associated with the Weak Code Reuse or Strong Code
Reuse aspects.

– The exclusion field indicates whether direct aspects or
sub-families are exclusive (exc=e) or not (exc=ne).
For instance, there is in the reuse frame an aspect
related to project time pressure. Guidelines may be
given for projects under high time pressure as well as
projects under low time pressure. Therefore, time
pressure is a family and low time pressure and high
time pressure are aspects. These are specified as
exclusive aspects because guidelines associated to high
time pressure projects are not compatible with
guidelines associated with low time pressure projects
and could not be provided in the same project-specific
method or roadmap.

Indeed, the reuse frame, RF, is a tree where:

– the root node is defined as <name=base, exc=ne,
cl=yes, type=root>,

– non-leaf nodes are family defined as <name, exc, cl,
type= family>,

– leaf nodes are aspects defined as <name, type=-
aspect>

where exc= e or ne, respectively for exclusive or non-
exclusive and cl=yes or no for classified or non-classi-
fied.

As critical aspects of ISD may evolve through time,
means have to be provided to make the reuse frame
content evolve too. Method engineers could make the
reuse frame evolve by specifying more deeply existing
aspects by refining them (i.e. transforming aspects into
families grouping new aspects) or by reorganizing
existing families by adding new intermediary nodes.

The reuse frame allows method engineers to drive the
ISD crew members to focus on critical aspect(s) of ISD
whatever the method evolution is and in this way ensure
to always take as much advantage as possible from the
method fragmentation and tailoring mechanisms, as it
has been previously presented as one of the main goals.

2.2.2 Taking advantage of the reuse frame through ISD

As it has been introduced previously, the reuse frame is
used (1) when inserting new method chunks into the
repository in order to improve their specification with
regards to ISD features and enabling more powerful
matching techniques for their retrieval and (2) when
searching for method chunks to answer a specific
methodological need and to retrieve adequate method
chunks in order to build a roadmap dedicated to a
specific ISD crew member.

Therefore, means have to be provided to select from
the reuse frame the pertinent aspects associated to
chunks and methodological need/problem (and its

solutions). It is done through the notion of criterion and
context.

A criterion is fully defined as a path from the root
node base to a node nn of the reuse frame.

Cr ¼ ½base; n1; . . . ; nn� with base; n1; . . . ; nn 2 RF

If nn is a family node, then the exclusion field exc
must be different from e because one of its aspects has to
be chosen inside the family.

if typenn
¼ family, excnn 6¼ e

A context is defined as a set of compatible criteria.

Co ¼ fCr1; . . . ;Crng; 8Cri; Crj 2 Co; Cri comp Crj

From the previous definitions one can deduce that
two criteria are compatible if they do not share in their
definition a common family node ni with an exclusion
field equal to e.

Cr1 comp Cr2; 8ni 2 Cr1 and nj 2 Cr2; if ni

¼ nj then excni 6¼ e

The method chunk reuse context is defined as a set of
at least one compatible criterion taken from the reuse
frame.

MCC ¼ fC1; . . . ;Cng; 8Ci 2MCC; Ci 2 RF ; 8Ci;Cj

2MCC; Ci comp Cj

Method chunks providing general guidelines are
usually associated to general criteria, that is to say paths
ended by nodes from the reuse frame close to the root
node. On the contrary, specific guidelines are provided
in method chunks associated to precise criteria, that is to
say paths ended by nodes from the reuse frame close to
aspect nodes or aspect nodes themselves.

It is up to the method engineer who enters the method
chunk into the repository to select the most meaningful
criteria to qualify the method chunk.

3 Step 1: Assembly-based method construction

The approach for assembly-based method construction
aims at building a method ‘on the fly’ in order to match
as well as possible the situation of the project at hand. It
consists in selecting reusable method components (that
we call method chunks) according to the current project
requirements from the method chunks repository and
assembling them.

According to Gupta and Prakash [9], method engi-
neering is organized into three main phases: method
requirements engineering, method design and method
construction and implementation. This approach for
assembly-based method construction follows the same
way of thinking. As shown in Fig. 10, this approach is
requirement-driven, meaning that the project method
engineer must start by eliciting requirements for the

67



project method. Next, the method chunks matching these
requirements can be retrieved from the method chunks
repository. And finally, the selected chunks are assem-
bled in order to compose a new method or to enhance an
existing one. As a consequence, the three key steps in the
assembly-based method engineering process are: specify
method requirements, select method chunks and assemble
method chunks. This approach provides guidelines sup-
porting the method engineer in each of these steps.

The requirements specification guidelines help to
define the requirements for the project-specific method
in terms of required IS development activities by specify-
ing the type of these activities and the order of their
execution. Goal-driven requirements elicitation, scenario-
based requirements specification and negotiation, con-
ceptual schema definition, interface modelling are the
examples of such activities. The reuse frame is used in
order to characterize project situation and to select the
predetermined activities.

The chunk selection guidelines advise how to retrieve
method chunks from the method repository in order to
satisfy requirements identified in the previous step. The
reuse context of each method chunk is characterized by a
set of criteria defined in the reuse frame. Therefore, the
reuse frame helps to retrieve method chunks from the
method repository.

Finally, the method construction guidelines assist the
method engineer in the selected method chunks assembly
process in order to obtain a homogeneous method. These
three steps are detailed in the following sub-sections.

3.1 Method requirements specification

The specification of method requirements for a parti-
cular ISD project depends on its initial method situation

and the corresponding method engineering (ME) goal.
Two core situations can be identified:

1. The IS development crew is used to follow the same
method for all ISD projects but considers that, in the
current project situations this method must be
adapted.

2. The IS development crew does not posses any regular
method.

In the first case, the goal of the ME is to adapt an
existing method whereas in the second case a brand new
project-specific method must be constructed.

There are different types of method adaptation. In
this approach three of them are distinguished:

– The method in use can be strong in terms of its
product model but weak with respect to its process
model, which will be the subject of adaptation and
enhancement, alternative ways-of-working will be
added in the method to its original one.

– The adaptation can be to simply add a new func-
tionality to the existing method, which is relevant in
its other aspects.

– Vice versa, the project at hand could not need some
functionality offered by the method.

In all these cases, the requirements elicitation process
is driven by the identification of the ME intentions such
as ‘‘add event concept’’, ‘‘complete completeness
checking step’’, ‘‘replace scenario writing guidelines by
the more rich ones’’ etc., which will allow to complete,
enhance or limit the method initially selected. The three
adaptation cases can be combined in the selected method
adaptation.

In the case of a brand new method construction, the
requirements specification is not only to produce the list

Fig. 10 Overview of the
approach for assembly-based
method construction

68



of ME intentions that will permit to adapt the selected
method but to identify the full set of engineering inten-
tions that shall be fulfilled by the new method.

Both of these requirements specification cases lead to
a set of requirements expressed as a map (i.e. strategic
guideline) [45] that is called the requirements map [35]. It
can be supposed that the method engineer has to con-
struct a new method supporting: (1) the elicitation of
functional system requirements in a goal-driven or actor-
driven manner, (2) their conceptualization by using lin-
guistic devices such as scenarios or use cases and (3) their
validation in an animated fashion as prototyping and
other simulation mechanisms. The map represented in
Fig. 11 captures these requirements in three core inten-
tions: ‘‘elicit a requirement’’, ‘‘conceptualize a require-
ment’’ and ‘‘validate a requirement’’ and imagines several
possible strategies to achieve these intentions.

3.2 Method chunks selection

Once the method requirements have been specified, the
selection of the method chunks matching these require-
ments can start. The selection process is based on the
requirements map defined in the previous step. The
objective that the method engineer has to attain in this
step is to select method chunks each satisfying a part of
requirements that is covering at least one strategy of the
requirements map. Otherwise, a selected method chunk
can satisfy all the requirements and cover the whole
requirements map.

The chunk selection queries is formulated by speci-
fying the reuse intention of the method chunk and giving
values to different reuse context criteria specified in the
chunk descriptor [28, 38] as, for example, the system
engineering activity in which the chunk is relevant. The
situation and intention defined in the chunk interface
can also be useful during the chunk selection process.
For example, if a method chunk supporting require-
ments elicitation and specification from initial problem

statement, and specifying requirements in terms of goals
and/or scenarios is needed, these values should be put in
the query as follows:

Reuse_intention.verb = ‘Discover’ AND Reuse
_intention.target = ‘Functional system requirements’
AND Reuse_context.Engineering activity = (‘Require-
ments elicitation’ OR ‘Requirements specification’)
AND Situation = ‘Problem statement’ AND Inten-
tion.Target = (‘Goal’ OR ‘Scenario’)

Each retrieved chunk is validated by evaluating its
degree of matching to the requirements. This is done by
applying similarity measures between the requirements
model and the process model of the selected chunk.
More details about these similarity measures could be
found in [33]. For example, the L’Ecritoire method
chunk shown in Fig. 7 partly satisfies the requirements
captured in the requirements map (Fig. 11). It provides
guidelines for functional system requirements elicitation
in the form of goal hierarchies and requirements con-
ceptualization in the form of scenarios. The ‘‘actor-dri-
ven strategy’’ (Fig. 11) for requirements elicitation can
be covered by a method chunk extracted from the Use
case model, which recommends to identify first the actors
of the system under consideration and the role they have
to play with the system in order to discover the required
use cases. To support animated requirements validation
(Fig. 11) one can select method chunks from RESCUE
method, which uses scenario walkthrough technique for
requirements specification and validation [20].

The chunk selection process also provides different
guidelines allowing to refine the candidate chunk selec-
tion by analysing more in depth if the chunk matches the
requirements. For example, if the selected method chunk
is an aggregate one, i.e. it is composed of several chunks,
the decomposition guideline drives the selection of the
relevant sub-chunks and the elimination of the inade-
quate ones. Vice-versa, if the retrieved chunk matches
partly the requirements, the aggregation guideline

Fig. 11 An example of a
requirements map for a new
method

69



proposes to look for an aggregate chunk containing the
candidate one based on the assumption that the aggre-
gate chunk might provide a solution for the missing
requirements. It is also possible to refine the chunk
selection query by modifying selection parameters.

3.3 Method chunks assembly

When at least two chunks have been selected, the
method engineer can progress in the assembly of these
chunks. We have identified two core types of guidelines
in the method chunks assembly process that is called
assembly by association and assembly by integration [33].

The assembly by association is relevant when the
method chunks to assemble correspond to two different
system engineering functionalities, that is, they allow to
achieve different engineering intentions and the result of
one chunk is used as a source product by the second one.
Such method chunks generally do not have common
elements in their product and process models and the
assembly process is therefore mainly dealing with mak-
ing the bridge between the two chunks. More precisely,
the product models of the chunks must be connected by
defining links between their different concepts whereas
the connection of their process models consists in
defining their execution order.

For example, the method chunk providing guidelines
for object life cycle definition requires that the corre-
sponding object class and its relationships with other
classes have been identified beforehand. Some informa-
tion about the events that could occur during the sys-
tems life cycle and have some impact on this object class
should also be provided. As a consequence, the method
chunks for object model construction and events defi-
nition must be realized before the chunk for object life
cycle definition. The three chunks have complementary
objectives. Their assembly is limited to the connection of
corresponding concepts as ‘‘class’’, ‘‘state’’ and ‘‘event’’
and the identification of the order in which they must be
executed.

The assembly by integration is relevant to assemble
chunks that have similar engineering goals but provide
different ways to satisfy it. In such a case, the process
and product models are overlapping, that is, contain
some identical or similar elements. The assembly process
consists in identifying the common elements in the
chunks product and process models and merging them.
For example, it could be useful to assemble two method
chunks providing different guidelines for requirements
elicitation. The chunk supporting goal-driven require-
ments elicitation combined with the one dealing with
actor-driven requirements elicitation allows one to ob-
tain a new chunk providing guidelines that is more rich
than the two initial chunks used separately.

Both types of guidelines use a set of assembly oper-
ators, operators for product models assembly and
operators for process models assembly [36, 37].

For example, the association of two product models
is mainly based on the AddAssociation and AddClass
operators: a new association is created between the
classes of the initial models in order to connect them into
a new model, it can also be done by adding a new class
and two associations. On the contrary, the integration of
the two product models is based on the application of
the merge operators as MergeClasses, MergeAssocia-
tions, which allow to connect the initial models by
merging similar or identical classes and associations,
respectively. ConnectViaSpecialization and ConnetVia-
Generalization operators define respectively the special-
ization and generalization links between the concepts of
the different product models. Their application is useful
to build a model of the integrated method chunk that is
richer than those of the initial chunks.

In the same manner, the process models of the
selected method chunks are assembled: a new transition
between the two activities can be added in order to
connect two activity-driven models or two activities can
be merged into a new one in the case of the overlapping
process models integration. If the chunks process models
are expressed by using map formalism [45], the Merg-
eIntentions and MergeSections operators are applied.

Fig. 12 Example of the project
specific method obtained by
assembling selected method
chunks

70



Some method chunks adaptation could be required
before their assembly in order to avoid concepts name
ambiguity. This may be done by applying different re-
name operators as RenameClass, RenameAttribute, Re-
nameActivity, etc., as well as Retype operators as
RetypeClass, RetypeAttribute, RetypeIntention etc.

The result of the assembly process is a new method
that is called as project-specific method. This method is
an instance of the meta-model for modular methods
(Fig. 4). Therefore, it is a collection of tightly coupled
method chunks. More exactly, the guideline of this
method is a strategic one where each section of its map
corresponds to a method chunk or a part of a method
chunk.

For example, the selected method chunks (‘‘L’Ecri-
toire approach’’, ‘‘actor-driven use case elicitation’’ and
‘‘RESCUE scenario walkthrough technique’’) can be
assembled by using the integration strategy. These
method chunks contain common elements such as
‘‘scenario’’ and ‘‘goal’’ in their product models and
similar intentions such as ‘‘elicit goal’’ and ‘‘elicit use
case’’ in their process models. The integration of the
product models consists in merging similar concepts or
connecting them via specialization/generalization rela-
tionships. In the similar manner, the process models
integration consists in merging similar intentions or
adding new sections. For example, the method chunk
supporting actor-driven use case elicitation is added to
the L’Ecritoire map as a new section <Start, Elicit a
goal, Actor-driven strategy>. The obtained new method
process model is illustrated in Fig. 12.

4 Step 2: Roadmap-driven method configuration

The approach for roadmap-driven method configuration
aims at customizing the project-specific method ‘on the
fly’ in order to match the possible profile of the ISD crew
member’s job within the project at hand. It consists in
the selection of method chunks satisfying the ISD crew
member’s needs within the frame of the project-specific
method previously built to answer project requirements.

Indeed customization of ISD methods have mainly
been thought for the person in charge of building new
methods, that is, the method engineer, in order to allow
him/her to construct or adapt a method satisfying the
needs of his/her company or the requirements of a spe-
cific ISD project. But there is also a need for custom-
ization dedicated to each ISD crew member, to provide
him or her with guidelines to be followed while per-
forming their daily tasks. ISD crew members also need
to benefit, through reuse and adaptation mechanisms,
from the experiences acquired during the resolution of
previous problems in terms of applying methods in real
ISD projects (i.e. using it).

As it has been highlighted during the assembly-based
method construction step, different ways may be
provided, even inside the same method, to satisfy an
engineering goal. Moreover, the sequence through which

method chunks have to be used is not always predeter-
mined: they may or not be related by precedence rela-
tionships. Therefore, different roadmaps among a set of
method chunks are possible. Through this second step of
the approach for roadmap driven method configuration
different means are provided to find the roadmap, which
is the most suitable for the needs of a particular ISD
crew member.

The roadmap-driven method configuration is based
on three main steps and their underlying techniques: (1)
the specification of the methodological problem of the
ISD crew member, (2) the retrieval of method chunks
matching the problem from the project-specific method
built through the first step of the approach and/or from
the method chunks repository and (3) the completion of
the solution by additional method chunks retrieved from
the repository.

In the following each of these techniques are detailed
first and then the different possible ways are discussed to
use them in order to get a suitable solution to the
methodological problem of an ISD crew member.

4.1 Techniques

4.1.1 Specifying the problem of the ISD crew member

First of all, the ISD project crew member must express
its problem in terms of applying the project-specific
method (resulting from the first step of the approach).
The problem is specified through a problem context (PC)
and eventually a problem intention that the selected
method chunks should match. In the problem context, in
addition to the pertinent criteria, called necessary crite-
ria, one may need to give forbidden criteria, that is, the
aspects which the ISD project crew member is not
interested in. It could be helpful in some cases to be sure
the method chunks including these (forbidden) aspects
will not appear in the solution.

A PC is defined as:

– CN, a set of at least one compatible necessary criteria
and

– CF, a set of compatible forbidden criteria.

All criteria are taken from the reuse frame.

PC ¼\CN ;CF > where CN ¼ fCn1; . . . ;Cnng;
CF ¼ fCf1; . . . ;Cfmg

CN \ CF ¼ ;; 8Cni;Cnk 2 CN ; Cni comp Cnk;

8Cfj;Cfl 2 CF ; Cfj comp Cfl

It is up to the ISD crew member to select the most
suitable criteria to qualify his/her situation and need.
An ISD crew member may for instance search for
chunks dealing with scenario authoring (writing, con-
ceptualizing, validating, etc.). To characterize his/her
current working situation he/she may define the problem
context through the necessary criteria: ‘‘requirement

71



engineering’’ (as he/she is working on the requirement
engineering phase) and ‘‘low time pressure’’ and through
the forbidden criteria: ‘‘analysis phase’’ and ‘‘test phase’’
to be sure that retrieved chunks will be dedicated to
requirement engineering.

4.1.2 Selecting method chunks in the project-specific
method

Thanks to the method chunk descriptor, the selection
from the project-specific method of the method chunks
in which the ISD crew member may be interested can
be done by matching problem context and method
chunk reuse context, as well as problem intention and
method chunk reuse intention. Glossaries are provided
to specify the intention through meaningful set of
verbs, targets and parameters. The situational metric
(ms) is to introduce, to quantify the matching between
the method chunk reuse context and the problem
context [26]. This metric is based on (1) the number of
common criteria between the necessary criteria (from
the problem context) and the method chunk reuse
context, (2) the number of common criteria between
the forbidden criteria (from the problem context) and
the method chunk reuse context, (3) the number of
required necessary criteria (from the problem context).
It is defined as follows:

msðmc; pbÞ ¼ ½cardðMCCmc \ CNpbÞ
� cardðMCCmc \ CFpbÞ�=cardðCNpbÞ

where pb is a problem, CNpb the necessary criteria from
its problem context, CFpb the forbidden criteria from its
problem context; mc is a method chunk, MCCmc its reuse
context.

A positive value indicates that there are more neces-
sary criteria than forbidden ones in the method chunk
under consideration with regards to the problem. On the
contrary, a negative value indicates that there are less
necessary criteria than forbidden ones. The perfect
matching is represented by the value 1.

If one defines his/her problem context for instance
with ‘‘requirement engineering’’ and ‘‘low time pres-
sure’’ as necessary criteria and ‘‘analysis phase’’ and
‘‘test phase’’ as forbidden criteria, then :

– The chunk matching the problem context only
through the ‘‘requirement engineering’’ criterion will
get a 0.5 value as situational metric;

– The chunk qualified through the ‘‘test phase’’ and
‘‘low time pressure’’ criteria will get a situational
metric equal to 0;

– The chunk characterized only through the ‘‘test
phase’’ criterion will get a �0.5 score.

It is a very basic metric that is proposed in order
to compute the correspondence between a method
chunk and a problem context. As method chunk and
problem context contain a small number of criteria

(less than 10), this basic measure is easily and rapidly
computable.

Thanks to this metric, used in addition to problem
intention matching, a set of method chunks corre-
sponding to the ISD project crew member’s profile is
obtained as a result of the search. Indeed, the selected
method chunks may not be related all together: they
may for instance cover two disjoint stages of the method
(at the beginning and the end of the method for instance)
that is, two disconnected sections in the project-specific
method map. So, the result set is in fact made of dif-
ferent subsets of organized method chunks.

4.1.3 Searching for method chunks in the repository

Method chunks could be searched directly inside the
repository using the reuse intention matching and the
situational metrics. It could be useful by itself to search
for chunks directly in the repository without looking at
the project-specific method. One may for instance search
for specific components providing advices on how to
build deployment diagram with the help of the UML
notation to better understand the purpose of the dia-
gram through its use in the company.

An ISD crew member may also for instance feel a
weakness in the project-specific method with regards to
his/her specific work. He/she may search directly in the
repository to look if he/she finds interesting chunks. In a
second time, he/she may ask the method engineer to add
the chunk(s) to the project-specific method to enrich it.

When searching for chunks inside the boundary of
the project-specific method, the coherency among
chunks is ensured by the method itself. When freely
searching for chunks inside the whole repository, the
coherency of the selected method chunks has to be
enforced and means have to be provided to find as much
chunks as possible which may satisfy the ISD crew
member’s needs. In the repository, method chunks are
related to each other as aggregated method chunks,
alternative method chunks or incompatible method chunks
(Fig. 8). ‘‘Elicit a refined goal with refinement discovery
strategy’’ is an example of an aggregate chunk which is
composed of two chunks ‘‘Elicit a refined goal consid-
ering every scenario action as a goal’’ and ‘‘elicit a
refined goal using action completion rules’’ [43]. ‘‘Write
a scenario in free prose’’ and ‘‘write a scenario with a
template’’ are examples of alternative chunks [44]. A
chunk providing advices about object-oriented model-
ling is not compatible with a chunk embedding guide-
lines on how to do relational modelling.

Aggregation and alternative relationships may help in
enriching the set of retrieved chunks in a coherent way.
Incompatibility relationships may help in ensuring the
coherency among the retrieved chunks. Degrees are
associated to these relationships to respectively quantify
the complementarity and the incompatibility. When
selecting method chunks directly from the repository,
alternative method chunks with high degrees have to be

72



added to the solution and noncompatible method
chunks with high degrees have to be removed from the
solution. Indeed, the ISD project crew member gives
alternativity and incompatibility thresholds to tune the
level of coherency he/she wants his/her roadmap to
satisfy. A high alternativity threshold will lead to a
solution in which only very similar method chunks will
be added, while a low one will lead to a solution in which
most of them will be included. A high incompatibility
threshold will lead to the removal of the very incom-
patible method chunks from the solution, while a low
threshold will lead to the removal of most of the
incompatible method chunks.

If the free search in the repository is done to complete
the set of chunks embedded in the project-specific
method, the result search has to be checked: method
chunks which are declared as incompatible with the
method chunks assembled in the project-specific method
have to be removed from the road-map.

Finally, the set of method chunks still kept in each
sequence constitutes the roadmap corresponding to the
methodological need of the ISD project crew member.

4.1.4 Tuning facilities

A critical issue in software component reuse is the pos-
sibility to augment query when searching the repository
[17, 21]. Recent approaches use semantic or natural
language-based means to answer this need [31, 50]. In
this approach, initial begining from the relationships
provided by the application domain and try to use them
in order to enlarge the set of chunks retrieved as the
answer to a specific need.

The reuse frame introduced previously supports dif-
ferent levels of granularity with regards to criterion
definition and use. Criteria with ending node close to the
base nodes are much more generic than criteria with
ending node close to the aspect nodes. Indeed, method
chunks providing general guidelines are usually associ-
ated to general criteria, while specific guidelines are
provided in method chunks associated to precise criteria.

When searching for method chunks, one may be
interested by method chunks having criteria strictly
matching the necessary criteria defined in the problem
context. But method chunks with reuse context associ-
ated to more specific criteria and usually providing more
specific guidelines may also be of interest. They may for
instance cover a bigger part of the methodological
problem that the ISD crew member has to deal with. In
the same way, the ISD crew member may be interested
in method chunks having reuse context associated to
more general criteria and thus providing more general-
purpose guidelines which could also be relevant. One
may for instance search for method chunks dealing with
‘‘requirements validation’’ and therefore be also inter-
ested in method chunk related to ‘‘requirements engi-
neering’’ in general, which may also deal with validation
at some point.

Taking into consideration method chunks with reuse
contexts containing more general and/or more specific
criteria may also be interesting with regards to the for-
bidden criteria given in the problem definition. Indeed,
enlarging the set of forbidden criteria to more general
ones means to forbid full branches of the reuse frame,
while enlarging the set of forbidden criteria to more
specific ones means to forbid method chunks associated
to too specific criteria.

Tuning the selection by allowing or not more general
and/or more specific criteria to be included in the nec-
essary and/or forbidden criteria given in the problem
definition provides a way for the ISD crew member to
reduce or enlarge the number of method chunks included
in the solution of his/her problem. If the ISD crew
member feels that he/she did not retrieve enough method
chunks, he/she may allow more general and/or more
specific criteria in order to find more method chunks. On
the contrary, if the set of method chunks provided as an
answer to his/her problem is too big, he/she may enlarge
the set of forbidden criteria by allowing more general
and/or more specific criteria and this way cutting bran-
ches of the reuse frame and therefore removing from the
solution the method chunks associated to these criteria.

4.2 Roadmap building approaches

Based on the techniques introduced (problem specifica-
tion, method chunk search, selection, and tuning) dif-
ferent ways are proposed to build a roadmap.

The most obvious way to build a roadmap consists in
selecting the suitable method chunks inside the project-
specific method obtained by applying the first step of the
approach. Such a way to build roadmaps is mainly
dedicated to neophytes or ISD crew members who want
to follow carefully the method built for the project
purposes. This way to construct roadmaps is called as
guided roadmap building.

A much more free way consists in searching method
chunks directly in the repository without looking at the
project method map. Such a way to build roadmaps may
be recommended when the ISD crew member is
searching for an answer to a very specific problem
(leading to the selection of two or three specific chunks).

And finally, a balanced way consists in selecting
method chunks from the project-specific method and
then completing the set of selected chunks by additional
ones taken from the repository. Additional chunks could
be relevant if they represent alternatives to the chunks
embedded in the project-specific method built through
the first step of the approach or if they fully answer the
problem intention and context given by the project team
member. After the application of the chunks from the
project-specific method in combination with the addi-
tional chunks, the ISD crew member can then give a
feedback to the method engineer about his/her experi-
ence in applying these additional chunks and ask him/
her to assemble some of them into the project method if

73



he/she feels it could be useful for other ISD crew
members of this project.

In the following, each of these three ways to build
roadmaps are detailed as summarized in Fig. 13.

4.2.1 Guided roadmap building

The guided way (Fig. 13) for the roadmap building
consists in selecting, in a manual way, method chunks
from the project-specific method resulting from the first
step of the approach. In other words, the ISD crew
member selects different sections in the project-specific
method map. It can be supposed that the ISD crew
member responsible for system requirements specifica-
tion will select the method chunks from the project-
specific method shown in Fig. 12. Depending on his/her
experience, the ISD crew member will select different
method chunks. For example, if he/she is novice in goal
formalization and scenario writing, he/she will select the
method chunk supporting goal elicitation with ‘‘actor-
driven strategy’’ instead of ‘‘initial goal discovery strat-
egy’’ and the method chunk for scenario writing ‘‘in free
prose’’ instead of ‘‘template-based strategy’’. The first
one provides detailed content and style guidelines and is
better adapted for the beginners than the second one.

4.2.2 Balanced roadmap building

The balanced way (Fig. 13) for the roadmap building
consists in four steps:

1. Specifying the ISD problem in terms of intention and
context as it has been explained in Sect. 4.1.1.

2. Selecting from the project specific method the method
chunks matching the problem intention and problem

context with the help of the situational metric and
following the tuning parameters given by the ISD
crew member, as it has been explained in Sect. 4.1.2.

3. Selecting from the method chunks repository the
alternative chunks and chunks matching the problem
intention and problem context as it has been ex-
plained in Sect. 4.1.3, including consistency check
between the method chunks from the project-specific
method and the method chunks from the repository.
Tuning facilities may be used through these two last
steps.

4. Finally, the ISD crew member may proceed to an
ultimate selection in a manual way, as suggested in
the guided building way.

For example, instead of using the method chunk for
requirements validation proposed by the project specific-
method Fig. 12 (the RESCUE Scenario walkthrough
technique to validate requirements), the ISD crew
member can select another method chunk from the
method chunks repository supporting requirements
validation in a different manner, for instance, some
prototyping technique.

4.2.3 Free roadmap building

This last way to build roadmaps consists in directly
selecting method chunks from the repository without the
help of the project-specific method. Therefore, such a
process starts by specifying the ISD problem in terms of
intention and context as it has been explained in Sect.
4.1.1. Then, the search is processed directly in the
repository with the help of the situational metrics and
following the tuning parameters given by the project
team member, as it has be explained in Sects. 4.1.2 and
4.1.4.

5 Conclusion

In this paper two perspectives of SME are considered: (1)
project-specific ME, which aims to satisfy specific ISD
project method requirements and (2) engineer-specific
ME dedicated to satisfy requirements of an individual
ISD crew member. It is believed that these two perspec-
tives are complementary and should be combined in
order to support the ISD process at hand.

Therefore, in this work two SME approaches are
combined, the assembly-based approach for project-
specific method construction and the roadmap-driven
approach for engineer-specific method configuration, as
two core steps in the global SME approach. Even
though, each of these approaches has been defined pre-
viously, independently, their integration is possible
thanks to the concept of method chunk shared by both
of them. A method chunks repository represents the
basis of each of the two initial approaches. Besides, the
reuse frame is another common element in both of these
two ME approaches.

Fig. 13 Overview of the roadmap-driven method configuration
approach

74



The approach for assembly-based method con-
struction, which represents the first step in the global
SME approach, focuses on project-specific method
building. This approach provides guidelines for the
specification of method requirements in line with the

situation of the project at hand, the selection of the
method chunks satisfying these requirements and the
assembly of the selected method chunks. The method
requirements specification is based on the criteria
defined in the reuse frame and allowing to characterize

Fig. 14 Reuse frame: human

Fig. 15 Reuse frame:
application domain

Fig. 16 Reuse frame: system
engineering activities

75



the situation of the project at hand. The reuse frame is
also used during the method chunks selection process
together with the product end process elements glossary
in order to support the construction of queries. The
assembly guidelines propose a set of assembly opera-
tors allowing to assemble product and process parts of
the selected method chunks. Moreover, the similarity
measures are provided in order to detect overlapping
method chunks as well as to compare the method
requirements with the solutions proposed by the se-
lected chunks.

The approach for roadmap-driven method configu-
ration represents the second step in the global SME

approach and is dedicated to personalize the project-
specific method defined previously for each ISD project
crew member in order to support his/her specific tasks.
Following this approach, the method chunks are se-
lected from the project-specific method (defined during
the first step) according to the requirements of a par-
ticular engineer and represent the corresponding engi-
neer’s roadmap. If it is necessary, additional method
chunks can be retrieved from the method chunks
repository to complete this roadmap. Finally, in some
specific cases, it could be necessary to select method
chunks only from the repository without using project-
specific method. Guidelines are provided to support the

Fig. 17 Reuse frame:
contingency factors

Fig. 18 Reuse frame: project
management

76



three ways for roadmap construction called guided,
balanced and free way, respectively.

The assembly-based project-specific method building
asks for a considerable knowledge about ISD methods,
meta-modelling, method chunks assembly as well as
capability to evaluate the situation of the entire project
and its method requirements. Therefore, this step should
be realized by the method engineer or the manager of the
current project. On the contrary, the approach for
roadmap-driven method configuration can be executed
by each ISD crew member.

It is evident, that the obtained global SME approach
is richer than the two initial ones as it allows to cover a
large scale of SME requirements. To evaluate this ap-
proach by applying it in real ISD projects is the current
preoccupation. Two prototypes, one for each ME ap-
proach, have been developed. For the moment they are
really simple and only support method chunks storage
and selection but not assembly processes. Our current
objective is to develop software environment integrating
these two approaches.

Besides, it is thought that the ME ontology should be
richer than the reuse frame and glossary. This ontology
is necessary to facilitate method chunks characterization
and formalization, to permit their comparison, to posi-
tion them in the method chunks repository, to define
different relationships between method chunks, and so
on.

6 Annexe: Reuse frame

As it has been presented in this paper, the reuse frame
is a polymorphic structure allowing to do faceted
classification of reusable assets dedicated to method
engineering. In Section 2.2.1 explanation was given on
how one came to the conclusion that IS critical aspects
may always be classified into three main topics: appli-
cation domain, organizational and human. Starting from
this decomposition, each company may populate the
reuse frame with its own relevant criteria in order to let
ISD crew members adapt the project or company-spe-
cific method in a meaningful way for the company. But
in this annexe, a reuse frame content is also provided
that built from various works made on meaningful cri-
teria with regards to method customization [24, 49].
Figures 14 and 15 show the human branch and the
application domain branch respectively. In Figs. 16 and
17 system engineering activities and contingency factors
are presented. Finally, Fig. 18 shows the aspects asso-
ciated to the project management family. The reuse frame
provides qualitative information about meaningful cri-
teria for method customisation. Therefore, scales have
been used instead of numeric values to qualify aspects.
An effort was made to reduce the number of fillers in a
scale as much as possible in order to have a clear and
easily usable set of aspects. When dealing with large
scales (i.e. scales including a lot of fillers) it becomes

difficult to select the right filler inside the scale in order
to qualify a method chunk. For example, it is more
difficult to allocate the right filler to an aspect if its scale
is very detailed as {‘‘very small’’, ‘‘small’’, ‘‘medium’’,
‘‘big’’, ‘‘very big’’, ‘‘huge’’} in comparison if it is only
composed of three fillers {‘‘small’’, ‘‘medium’’, ‘‘big’’}.

References

1. The American Heritage Dictionary of the English Language
(2000) Houghton Mifflin Company

2. Bajec M, Vavpotic D, Kirsper M (2004) The scenario and tool-
support for constructing flexible, people-focused system devel-
opement methodologies. In: Proceedings of the international
conference on information systems development, ISD 2004.
Vilnius, Lithuania

3. Brinkkemper S, Saeki M, Harmsen F (1998) Assembly tech-
niques for method engineering. In: Proceedings of the 10th
international conference on advanced information systems
engineering, CAiSE’98. Pisa, Italy, LNCS 1413. Springer,
Berlin Heidelberg New York

4. Cauvet C, Rosenthal-Sabroux C (2001) Ingénierie des systèmes
d’information. Hermes

5. Deneckère R, Souveyet C (1998) Patterns for extending an OO
model with temporal features. In: Proceedings of the interna-
tional conference on object-oriented information systems,
OOIS’98. Springer, Paris, France

6. Firesmith DG, Henderson-Sellers B (2002) The OPEN process
framework—an introduction Addison-Wesley, Harlow

7. Fitzgerald B (1997) The use of systems development method-
ologies in practice: a field study. Inf Sys J 7(3):201–212

8. Graham I, Henderson-Sellers B, Younessi H (1997) The OPEN
process specification. Addison-Wesley, Harlow

9. Gupta D, Prakash N (2001) Engineering methods from method
requiremnets specifications. Requirments Eng J 6(3):135–160

10. Harmsen AF (1997) Situational method engineering. Moret
Ernst & Young, Utrecht

11. Harmsen AF, Brinkkemper S, Oei H(1994) Situational method
engineering for information system projects. In: Olle TW,
Verrijn Stuart AA (eds) Methods and associated tools for the
information systems life cycle, Proceedings of the IFIP WG 8.1
working conference CRIS ’94. North-Holland, Amsterdam, pp
169–194

12. Iivari J, Maansaari J (1998) The usage of systems development
methods: are we stuck to old practice? Inf Sys Technol
40(9):501–510

13. Introna LD, Whitley EA (1997) Against methodism: exploring
the limits of method. Inf Technol People 10(1):31–45

14. Jacobson I, Christenson M, Jonsson P, Oevergaard G (1992)
Object oriented software engineering a use case driven
approach. Addison-Wesley, Harlow

15. Jarke M, Rolland C, Sutcliffe A, Domges R (1999) The
NATURE requirements Engineering. Shaker Verlag, Aachen

16. Karlsson F, Ågerfalk PJ (2004) Method configuration: adapt-
ing to situational characteristics while creating reusable assets.
Inf Softw Technol 46(9):619–633

17. Khayati O (2002) Components retrieval systems reuse in object-
oriented information systems design. OOIS workshop, Mont-
pellier

18. Kumar K, Welke RJ (1992) Method engineering, a proposal for
situation-specific methodology construction. In: Cotterman W,
Senn J (eds) Systems analysis and design: a research agenda.
Wiley, New York, pp 257–268

19. Lings B, Lundell B (2004) Method-in-action and method-
in-tool: some implications for case. In: Seruca I et al (eds)
Proceeedings of the 6th international conference on enterprise
information systems (ICEIS 2004). Insticc Press, pp 623–628

20. Maiden NAM, Jones SV, Manning S, Greenwood J, Renou L
(2004) Model-driven requirements engineering: synchronising

77



models in an air traffic management case study, Proceedings
CAISE’04. Springer, Berlin Heidelberg New York, LNCS 3084,
pp 368–383

21. Mili H, Valtchev P, Di-Sciullo A, Gabrini P (2001) Automating
the indexing and retrieval of reusable software components. In:
Proceedings of the 6th international workshop NLDB, June
28–29, Madraid, Spain, pp 75–86

22. Mirbel I, de Rivieres V (2002) Adapting analysis and design to
software context: the JECKO approach. In: Proceedings of the
international conference on object-oriented information sys-
tems (OOIS’02), Montpellier, France, pp 223–22

23. Mirbel I, de Rivieres V (2003) Conciliating user interface and
business domain analysis and design. In: Proceedings of the 9th
international conference on object-oriented information sys-
tems, OOIS’03, Geneva

24. Mirbel I, de Rivieres V (2003) Towards a UML profile for
building on top of running software. In: UML and the Unified
Process. IRMA Press, Hershey

25. Mirbel I (2004) A polymorphic context frame to support sca-
lability and evolvability of information system development
processes. In: Proceedings of the international conference on
enterprise information systems, ICEIS’04, Porto, Portugal

26. Mirbel I (2004) Rethinking ISD methods: fitting project team
members profiles. I3S technical report I3S/RR-2004-13-FR

27. Nilsson A, (2004) Information systems development—past,
present and future trends. In: Invited talk in the international
conference on information systems development, ISD’04. Vil-
nius, Lithuania

28. Plihon V, Ralyté J, Benjamen A, Maiden NAM, Sutcliffe A,
Dubois E, Heymans P (1998) A reuse-oriented approach for the
construction of scenario based methods. In: Proceedings of the
international software process association’s 5th international
conference on software process (ICSP’98), Chicago, Illinois

29. Prakash N (1999) On method statics and dynamics. Inf Syst
34(8):613–637

30. Prat N (1997) Goal formalisation and classification for
requirements engineering. In: Proceedings of the 3rd interna-
tional workshop on requirements engineering: foundations of
software quality REFSQ’97, Barcelona, pp 145–156

31. Pujalte V, Ramadour P (2004) Réutilisation de composants: un
processus interactif de recherche. Majecstic’05 Calais

32. Punter HT, Lemmen K (1996) The MEMA model: towards a
new approach for method engineering. Inf Softw Technol
38(4):295–305

33. Ralyté J, Rolland C (2001a) An assembly process model for
method engineering. In: Proceedings of the 13th international
conference on advanced information systems engineering
(CAISE’01), Interlaken, Switzerland, LNCS 2068. Springer,
Berlin Heidelberg New York, pp 267–283

34. Ralyté J, Rolland C (2001b) An approach for method reengi-
neering. In: Proceedings of the 20th international conference on
conceptual modeling (ER2001), Yokohama, Japan, LNCS
2224. Springer, Berlin Heidelberg New York, pp 471–484

35. Ralyté J (2002) Requirements definition for the situational
method engineering. In: Proceedings of the IFIP WG8.1
working conference on engineering information systems in the
internet context (EISIC’02). Kluwer, Kanazawa, pp 127–152

36. Ralyté J, Rolland C, Deneckère R (2004) Towards a Meta-tool
for change-centric method engineering: a typology of generic
operators. In: Proceedings of the 16th international conference

CAISE’04, Riga, Latvia. Springer, Berlin Heidelberg New
York

37. Ralyté J, Rolland C, Plihon V (1999a) Method enhancement
with scenario based techniques. In: Proceedings of the 11th
international conference on advanced information system
engineering (CAISE’99), LNCS 1626. Springer, Berlin Heidel-
berg New York, Germany, pp 103–118

38. Ralyté J (1999b) Reusing scenario based approaches in
requirement engineering methods: CREWS method base. In:
Proceedings of the 10th international workshop on database
and expert systems applications (DEXA’99), 1st international
workshop on the requirements engineering process—innovative
techniques, models, tools to support the RE process (REP’99),
Florence, Italy. IEEE Computer Society, pp 305–309

39. Rolland C, Plihon V (1996) Using generic chunks to generate
process models fragments. In: Proceedings of the 2nd IEEE
international conference on requirements engineering, ICRE
’96, Colorado Spring

40. Rolland C, Prakash N (1996) A proposal for context-specific
method engineering. In: Proceedings of the IFIP WG 8.1 con-
ference on method engineering. Chapman & Hall, Atlanta, pp
191–208

41. Rolland C, Nurcan S, Grosz G (2000) A decision making
pattern for guiding the enterprise knowledge development
process. J Inf Softw Technol 42:313–331

42. Rolland C, Plihon V, Ralyté J (1998) Specifying the reuse
context of scenario method chunks. In: Proceedings of the 10th
international conference on advanced information system
engineering (CAISE’98), Pisa, Italy, LNCS 1413. Springer,
Berlin Heidelberg New York, pp 191–218

43. Rolland C, Souveyet C, Ben Achour C (1998a) Guiding goal
modelling using scenarios. IEEE Trans Softw Eng 24(12):1055–
1071

44. Rolland C, Ben Achour C (1998b) Guiding the construction of
textual use case specifications. Data Knowl Eng J 25(1):125–160

45. Rolland C, Prakash N, Benjamen A (1999) A multi-model view
of process modelling. Requirements Eng J 4(4):169–187

46. Rossi M, Ramesh B, Lyytinen K, Tolvanen J (2004) Managing
evolutionary method engineering by method rationale. J Assoc
Inf Syst 5(9):356–391

47. Saeki M, Iguchi K, Wen-yin K, Shinohara M, (1993) A meta-
model for representing software specification & design
methods. In: Proceedings of the IFIP̈WG8.1 conference on
information systems development process, Come, pp 149–166

48. van Slooten K, Brinkkemper S (1993) A method engineering
approach to information systems development’’. In: Prakash N,
Rolland C, Pernici B (eds) Information systems development
process. Elsevier, North-Holand, pp 167–186

49. van Slooten K, Hodes B (1996) Characterizing IS development
projects. In: Proceedings of the IFIP WG 8.1 conference on
method engineering. Chapman and Hall, pp 29–44

50. Sugumaran V, Storey VC (2003) A semantic-based approach to
component retrieval. The database for advances in information
systems, vol.34, No 3

51. Tawbi M, Souveyet C, Rolland C (1998) L’ECRITOIRE a tool
to support a goal-scenario based approach to requirements
engineering. Inf Softw Technol J

52. Object Management Group (2004) Unified modelling language
(UML), version 1.5. Available at http://www.omg.org/tech-
nology/documents/formal/uml.htm

78


	Sec1
	Sec2
	Sec3
	Fig1
	Sec4
	Fig2
	Fig3
	Fig4
	Fig5
	Fig6
	Fig7
	Sec5
	Sec6
	Sec7
	Fig8
	Fig9
	Sec8
	Sec9
	Sec10
	Fig10
	Sec11
	Fig11
	Sec12
	Fig12
	Sec13
	Sec14
	Sec15
	Sec16
	Sec17
	Sec18
	Sec19
	Sec20
	Sec21
	Sec22
	Sec23
	Fig13
	Fig14
	Fig15
	Fig16
	Fig17
	Fig18
	Sec24
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52

