Homework 8: Stochastic Optimization

Mohammad Hossein Rahmati *

October 19, 2016

1. Transition Functions: Let

$$\Pi = \left[\begin{array}{ccc} 1-\gamma & \alpha\beta & \beta\gamma \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

be a transition matrix associated with a 3-state Markov chain. Further, let $\alpha, \beta, \gamma, \in (0, 1)$ and $\alpha + \beta = 1$

- (a) What is the stationary probability distribution associated with the above transition matrix?
- (b) How many ergodic sets are there? What are they?
- 2. Consider a household which can be located on one of three islands in a given period. Label the islands i = 0; 1; 2. The household enjoys utility u^i if it is located on island i in a given period. Assume that $u^0 = 0$ and that $u^i > 0$ for i = 1; 2. The household lives forever and discounts at a rate of β with $0 < \beta < 1$.

Households are restricted in terms of their movement between islands. If the household is located on island i in the current period, the probability of being on island j in the next period is given by π_{ij} . Assume that the household is unable to go directly from island i = 1; 2 to island j = 1; 2, for $i \neq j$ without going through island 0. Thus a household on island i = 1; 2 in period t remains on that island or switches to island 0 for period t + 1.

- (a) Write down a transition matrix describing the evolution of the household from one period to the next. What is the probability that a household on island 1 in the current period is on island 2 two periods from now?
- (b) Write down the system of equations (the Bellman equations) which describe the value of being on each of the three islands. To do so, let V^i be the value of being on island i = 0; 1; 2.
- (c) Explain in words why an increase in u^1 will increase V^0 , V^1 and V^2 .
- (d) Suppose that, in addition to the assumptions made above, $\pi_{10} = \pi_{20} = 0$. Further suppose that $u^2 > u^1$. Prove that $V^2 > V^1$. Provide conditions such that V^0 is greater than V^1 . Explain these conditions.
- 3. Consider an exchange economy with two infinitely-lived consumers with identical preferences given by:

$$E\left(\sum_{t=0}^{\infty}\beta^t log(c_t)\right)$$

^{*}Sharif University of Technology, rahmati@sharif.edu

Both of the consumers have random endowments that depend on an (exogenous) sequence of state variables $\{s_t\}_{t=0}^{\infty}$. The s_t 's are statistically independent random variables with identical probability distributions. Specifically, for each t, $s_t = H$ with probability π and $s_t = L$ with probability $1 - \pi$, where π does not depend on time or on the previous realization of states. If $s_t = H$, then the first consumer's endowment is 2 and the second consumer's endowment is 1; if $s_t = L$, then the first consumer's endowment is 1 and the second consumer's endowment is 0. Markets are complete.

- (a) Carefully define a competitive equilibrium with date-0 trading for this economy. (Assume that consumers make decisions before observing the realization of the state in period 0.)
- (b) Determine the competitive equilibrium allocation in terms of primitives.
- (c) Determine the prices of the Arrow securities in terms of primitives.
- (d) Use your answer from part (c) to determine the average rate of return on a (oneperiod) riskless bond in this economy.
- 4. Consider the following investment problem faced by a firm. The firm's revenues are given by $R(K_t, Z_t)$ and there are costs of adjusting its capital holdings $C(K_{t+1}, K_t)$ where K_t is the capital stock at the beginning of period t, $K_{t+1} \ge 0$ is capital chosen at the beginning of period t to come on line in t + 1, Z_t is a technology innovation, and $K_0 > 0$ is given. Gross investment is given by $I_t = K_{t+1} (1 \delta)K_t$ and the relative price of investment goods in terms of consumption goods is p_t . Firms discount the future at rate $\beta \in (0, 1)$. The firm's problem is:

$$\max_{\{K_{t+1}\}_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^t \{R(K_t, Z_t) - C(K_{t+1}, K_t) - p_t[K_{t+1} - (1-\delta)K_t]\}\right]$$

We will assume the following:

$$R(K_t, Z_t) = Z_t K_t, \quad C(K_{t+1}, K_t) = \frac{\gamma}{2} \left(\frac{I_t}{K_t}\right)^2 K_t, \quad and p_t = p, \forall t.$$

There are 4 parts to this question.

- (a) What are the first order conditions? Interpret them in terms of the marginal cost of adding capital versus the marginal benefit
- (b) Assume that $Z_t = 1$ for all t. Solve for the decision rule $K_{t+1} = G(K_t)$. Hint: Conjecture $G(K_t)$ is a linear function and verify it satisfies the f.o.c.
- (c) Assume that $Z_t \in \{Z_1, Z_2\}$ follows a two-state Markov process and that $\delta = 1$.
 - a) Is the decision rule still a linear function of K_t (i.e. is $K_{t+1} = H(Z_t)K_t$ consistent with firm optimization)? State the system of equations that characterize the decision rules as a time invariant function of each shock.
 - b) In addition, denote the value of the firm (i.e. the value function) by

$$V(K_t, Z_t) = E_t \left[\sum_{j=0}^{\infty} \beta^j \{ R(K_{t+j}, Z_{t+j}) - C(K_{t+j+1}, K_{t+j}) - pK_{t+j+1} \} \right].$$

If $K_{t+1} = H(Z_t)K_t$, is the value function linear in K_t ? In that case, is the marginal value of capital (sometimes called "marginal q" and given by $\frac{\partial V(K_t, Z_t)}{\partial K_t}$ equal to the average value of capital (sometimes called "average Q" and given by $\frac{V(K_t, Z_t)}{K_t}$?

(d) Assume that Z_t follows $Z_t = (1 - \rho) + \rho Z_{t?1} + \epsilon_t$ where ϵ_t is an i.i.d. shock drawn from a continuous distribution with mean zero and constant variance. Again, let $\delta = 1$. Find the linearized decision rule $\hat{K_{t+1}} = \gamma_{kk}\hat{K_t} + \gamma_{kz}\hat{Z_t}$ where $\hat{X_t}$ denotes the deviation of X_t from a steady state.