Homework 5: Dynamic Programming & Speed of Convergence

Mohammad Hossein Rahmati *

October 17, 2015

1. (Adjustment cost model) Consider the following discrete-time dynamic programming problem in sequence formulation;

$$\max_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} [h(x_{t}) - a(x_{t+1} - x_{t})]$$

where x_0 given. Assume that $h^{''}(x) \leq 0$ all $x \in R$, that there is a unique x^* such that $h^{'}(x^*) = 0$, and that $a^{''}(z) \geq 0$ for all $z \in R$ and that $a^{'}(z) = a(z) = 0$ only for z = 0.

- (a) Write down the Bellman equation for this problem. Write down explicitly the period return function in terms of h and a. Use x for the current state and y for next period state. Use v for the value function.
- (b) Let F(x, y) the period return function used in (a). Answer true or false, and give a short proof or counter-example.
 - i. Is F(x, y) increasing in x for all the values of y?
 - ii. Is F(x, y) concave in (x, y)?
- (c) Let v the value function. Just answer true or false, and give a short proof or counterexample.
 - i. Is v(x) concave?
 - ii. Is v(x) increasing?
- (d) Assuming differentiability of v, write down the first order conditions for the problem. Use y = g(x) for the optimal decision rule.
- (e) Use the envelope to write down an expression for the derivative of the value function v. Use y = g(x) for the optimal decision rule.
- (f) Let $\bar{x} = g(\bar{x})$ denote a steady state. Use your answer to (e) and (f) to show that $\bar{x} = x^*$ is the unique steady state (2 lines maximum).
- (g) First order conditions and shape of the optimal decision rule g.
 - i. Let F(x, y) be the period return function for this problem. Plot the function $?F_y(x, y)$ (in terms of derivatives of h and a) for a fixed value of x with $x < x^*$, and $\beta v^*(y)$ with y in the horizontal axis. Indicate in the horizontal axis the value of x and the value of y that corresponds to g(x).
 - ii. In the same plot used for (i) draw the function $F_y(x', y)$ for a higher value of x, i.e. for $x < x' < x^*$. Make sure to identify the new value of g(x') in your plot.

^{*}Department of Economics, Sharif University of Technology, rahmati@sharif.edu

iii. Given your answer to (i) and (ii) is g(x) increasing or decreasing in x? [one word].

(h) Roots of Euler Equation

Let $F_y(x, g(x)) + \beta F_x[g(x), g(g(x))] = 0$ be the Euler equation for an arbitrary dynamic programing problem with period return F(x, y) concave and differentiable and optimal policy y = g(x). Assume that the state x is one dimensional and that g is differentiable.

- i. Differentiate the expression for the Euler equation w.r.t. x. Make sure that each of the derivatives is evaluated at the correct arguments [one line].
- ii. Evaluate the expression in (i) at the steady state values $\bar{x} = g(\bar{x})$ [one line].
- iii. Assuming that $F_{yx}(\bar{x}, \bar{x}) \neq 0$, divide the resulting expression in (ii) by this quantity and write down a quadratic function on the variable λ whose zeros are solved by $g'(\bar{x})$. Denote this quadratic expression by $Q(\lambda)$ where

$$Q(\lambda) = 1 + b\lambda + \beta\lambda^2$$

and

$$b \equiv \frac{F_{yy}(\bar{x}, \bar{x}) + \beta F_{xx}(\bar{x}, \bar{x})}{F_{yx}(\bar{x}, \bar{x})}$$

- (i) Speed of Convergence:
 - i. Write down an expression for each of the following derivatives: $F_{xx}(\bar{x}, \bar{x}), F_{xy}(\bar{x}, \bar{x})$, and $F_{yy}(\bar{x}, \bar{x})$ for the problem with adjustment cost using the functions h and a as well as $x = x^*$. Write down an expression for b in terms of the derivatives of h and a evaluated at the steady state values.
 - ii. Write down the quadratic equation $Q(\lambda)$ derived in (h-iii) for the problem of adjustment cost [this should be a function of λ and parameters a'(0), β and $h''(x^*)$ only]
 - iii. Compute the values of $Q(\lambda)$ for $\lambda = 0$, $\lambda = 1$, $\lambda = \frac{1}{\beta}$ and λ^* , where λ^* is such that $Q'(\lambda^*) = 0$. Is $\lambda^* > 1$? What is the sign of $Q'(\lambda)$ in $\lambda \in (0, 1)$? What is the limit $\lim_{\lambda \to \infty} Q(\lambda)$?
 - iv. Plot $Q(\lambda)$ with λ in the horizontal axis. Make sure to identify $\lambda = 0$, $\lambda = 1$, $\lambda = \lambda^*$ and $\lambda = \frac{1}{\beta}$ as well as the corresponding values of $Q(\lambda)$. Make sure you label the smallest root of Q, and denote it by λ_1 . How does λ_1 depend on b?
 - v. Draw a second quadratic function, denoted as $\hat{Q}(\lambda)$, that corresponds to a problem with a larger value of $-\frac{h^{''}(x^*)}{a^{''}(0)} = |\frac{h^{''}(x^*)}{a^{''}(0)}|$. How does $|\frac{h^{''}(x^*)}{a^{''}(0)}|$ relate to b? Denote the smallest root of this equation by $\hat{\lambda}_1$. How is $\hat{\lambda}_1$ compared with λ_1 ?
 - vi. Recall that if $|\lambda_1| < 1$, then $g'(\bar{x}) = \lambda_1$. How does the speed of convergence of $\{x_t\}$ depend on $-\frac{h''(x^*)}{a''(0)} = |\frac{h''(x^*)}{a''(0)}|$? What is the economic intuition for this dependence? (Explain the intuition for each of the parameters: $|h''(x^*)|$ and |a''(0)|).
- 2. Here is a problem facing a monopolist. He faces a demand curve each period given by q = (1-p), That is, if the price is p he can sell the quantity q. Production is costless but at each period in time the monopolist faces a capacity constraint, q = c, where c is the upper bound on his production. Capacity can be increased with a one period time delay according to the cost function $(c'-c)^2$, where $c' \ge c$ is the level of capacity that the monopolist chooses for next period. The monopolist faces the time-invariant gross interest rate r.
 - (a) Formulate the monopolist dynamic programming problem.
 - (b) Is the value function strictly increasing? If so, outline an argument.

- (c) Is the value function strictly concave? If so, outline an argument.
- (d) Is the value function differentiable? If so, outline an argument.
- (e) Using the guess and verify technique, provide a closed-form solution for the Value and Policy functions.
- 3. Consider a representative household in an infinite horizon endowment economy. Time is discrete; $y_t = y$ is the endowment at date t, which can be divided into consumption of a perishable good, c_t , and investment in a durable good, d_t^x . The durable depreciates at the rate $\delta \in (0, 1)$, but it is not directly productive. The stock of durables at any date, d_t , produces a flow of services that enters the utility function. Thus, the problem faced by the representative household with initial stock d_0 is:

$$\max_{\{c_t, d_t, d_t^x\}} \sum_{t=0}^{\infty} \beta^t \{ u(c_t) + v(d_t) \}$$

subject to

$$c_t + d_t^x \leq y$$

$$d_{t+1} \leq d_t^x + (1 - \delta)d_t$$

$$c_t, d_t \geq 0, \quad d_0 \quad given$$

where both u and v are strictly increasing and continuous.

(a) Write an equivalent problem in the following form:

$$\max_{\{d_{t+1}\}} \sum_{t=0}^{\infty} \beta^t \{ F(d_t, d_{t+1}) \}$$

subject to

$$\begin{array}{rcl} d_{t+1} & \in & \Gamma(d_t) \\ & & d_0 & given \end{array}$$

where $\Gamma(d_t) \subset \mathbb{R}^+$.

What is F? What is the correspondence Γ ? Justify your answer.

- (b) Write the Bellman equation for this problem and argue that there exists a unique continuous value function, h(d).
- (c) State additional conditions on u and v such that the value function is both strictly increasing and strictly concave. Prove these two properties.For the remaining questions, assume that both u and v satisfy the Inada conditions and are continuously differentiable.
- (d) State the Benveniste-Scheinkman condition and the FOC for the functional equation problem in (b).
- (e) Let c(d) and d' = g(d) be the corresponding policy functions for consumption and durables, respectively. Show that there is a unique steady state value of the stock, d^* , such that $d^* = g(d^*) > 0$.
- (f) Show that the policy functions are increasing in d.