Homework 4: Theory of Dynamic Programming

Mohammad Hossein Rahmati *

October 17, 2016

1. SLP 1 Exercise 5.3 (correction $k^* = argmax_{k \geq 0}[\beta f(k) - k])$

2. (A Tree-Cutting Problem) SLP Exercise 5.5

3. Consider the following model economy in which capital depreciates fully after two periods, but does not depreciate at all before this. Preference are

$$\sum_{t=0}^{T} \beta^t ln(c_t)$$

The technology constraint is

$$c_t + x_t \le x_{t-1} x_{t-2}$$

where x_{t-1} are the investments (new machines) made in period t-1. Thus in period t+1, the machines accumulated in t-2 have disappeared from the world. Use the D.P. algorithm to solve for value functions V_0, V_1, \cdots and their policy function.

4. Show that the Bellman Equation of problem 3 is Contraction.

^{*}Sharif University of Technology, rahmati@sharif.edu

¹Stokey, Lucas, Prescott, Recursive Method in Economic Dynamics, 1989