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Theoretical Model for the Kramers-Moyal Description of Turbulence Cascades
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We derive the Kramers-Moyal equation for the conditional probability density of velocity increments
from the theoretical model recently proposed by V. Yakhot [Phys. Reéy7,EL737 (1998)] in the limit
of the high Reynolds number. We show that the higher ordex (3 ) Kramers-Moyal coefficients
tend to zero and the velocity increments are evolved by the Fokker-Planck operator. Our results are
compatible with the phenomenological description, developed for explaining recent experiments by
R. Friedrich and J. Peinke [Phys. Rev. L&, 863 (1997)]. [S0031-9007(99)08500-2]

PACS numbers: 47.27.Ak, 05.40.—-a, 47.27.Eq, 47.27.Gs

The problem of scaling behavior of longitudinal velocity locity increments to be a Markovian process in terms of
differenceU = u(x;) — u(x,) in turbulence and the prob- length scales. By fitting the observational data they have
ability density function ofU, i.e., P(U), attracts a great succeeded in finding the different Kramers-Maoyal (KM)
deal of attention [1-7]. Statistical theory of turbulencecoefficients, and they find that the approximations of the
has been brought forward by Kolmogorov [8] and furtherthird and fourth order coefficients tend to zero, whereas
developed by others [9—-12]. The approach is to modeihe first and second coefficients have well-defined limits.
turbulence using stochastic partial differential equationsThen by addressing the implications dictated by [23] theo-
Kolmogorov conjectured that the scaling exponents areem they have gotten a Fokker-Planck evolution operator.
universal, independent of the statistics of large-scale flucAs an evolution equation for the probability density func-
tuations and the mechanism of the viscous damping, whetion of velocity increments, the Fokker-Planck equation
the Reynolds number is sufficiently large. However, re-has been used to give information on the changing shape
cently it has been found that there is a relation betweenf the distribution as a function of the length scale. By
the probability distribution function (PDF) of velocity and using this strategy the information on the observed inter-
those of the external force (see [13] for more details). Immittency of the turbulent cascade is verified. In their de-
this direction, Polyakov [1] has recently offered a field the-scription and based on simplified assumptions on the drift
oretic method to derive the probability distribution or den-and diffusion coefficients, they have considered two pos-
sity of states i1 + 1) dimensions in the problem of the sible scenarios in order to indicate that both the Kol-
randomly driven Burgers equation [14,15]. In one dimen-mogorov 41 and 62 scalings are recovered as possible
sion, turbulence without pressure is described by the Burgsehaviors in their phenomenological theory.
ers equation [see also [16] concerning the relation between In this paper we derive the Kramers-Moyal equation
the Burgers equation and the Kardar-Parisi-Zhang (KPZjrom the Navier-Stokes equation and show how the higher
equation]. In the limit of the high Reynolds number, usingorder = 3) Kramers-Moyal coefficients tend to zero in
the operator product expansion (OPE), Polyakov reducee high Reynolds number limit. Therefore, we find the
the problem of computation of correlation functions in theFokker-Planck equation from first principles. We show
inertial subrange, to the solution of a certain partial dif-that the breakdown of the Galilean invariance is respon-
ferential equation [17,18]. Yakhot recently [13,19] gen-sible for the scale dependence of the Kramers-Moyal co-
eralized the Polyakov approach in three dimensions andfficients. Finally, using the path-integral expression for
found a closed differential equation for the two-point gen-the PDF we show how small-scale statistics is affected by
erating function of the “longitudinal” velocity difference PDF'’s in the large scale and this is confirmed by Lan-
in the strong turbulence (see also [20] about the closedau’s remark that the large-scale fluctuations of turbulence
equation for the PDF of the velocity difference for two production in the integral range can invalidate the Kol-
and three-dimensional turbulence without pressure). Omogorov theory [9,10].
the other hand, recently [21,22] from a detailed analysis Our starting point is the Navier-Stokes equations,
of experimental data of a turbulent free jet, Friedrich and

Pienke have been able to obtain a phenomenological de- v, + (v - V)v = Vv — Vp + f(x,1),
scription of the statistical properties of a turbulent cascade p
using a Fokker-Planck equation. In other words, they have V-v=0 (1)

seen that the conditional probability density of velocity
increments satisfies the Chapman-Kolmogorov equatiorfor the Eulerian velocity(x, r) and the pressurg with
Mathematically this is a necessary condition for the ve-iscosity », in N dimensions. The forcd(x,r) is the
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external stirring force, which injects energy into thea nontrivial effect in the dynamics of the NS equation.
system on a length scale. More specifically, one can Proceeding to find a closed equation for the generating
take, for instance, a Gaussian distributed random forcdunction of the longitudinal velocity difference/, the
which is identified by its two moments, dissipation and pressure terms in Eq. (1) give contribu-
tions, and the longitudinal part of the dissipation term
(fux 0f (1) = k(0)8(r = Nkuy(x = x'), (2)  renormalizes the coefficient in front @¥(%) in the equa-
tion for Z [13]. Also, it generates a term with the order of

O(U) which can be written in terms of asA%~. Taking
into account all the possible terms and using the symme-

and (fu(x,1)) =0, where u,v = xi,x,...,xy. The

correlation functionk,,(r) is normalized to unity at the

origin and decays rapidly enough wheréecomes larger : .

orgqual to the i%tegrgl s%:a[e g g try of the PDI_:, |.e.,f’(U, r) = P(—=U, —r), the following
The force-free NS equation is invariant under space-tim&'0S€d equation foz can be found [13]:

translation, parity, and scaling transformation. Also itis 9>Z By 92 A 97

9z ) 25
invariant under the Galilean transformation— x + Vt  g)ar A 9r  r oA C)‘ﬁ 30Nz, Q)

andv — v + V, whereV is the constant velocity of the where th rameters. Bo. and C are determined from
moving frame. Both boundary conditions and forcing can ere e parameters, bo, a are dete ed tro

violate some or all of the symmetries of the force-free NSthe theory. Also W'“T _ﬁyppose Ehhf‘g’ f;as the structure
equation. However, it is usually assumed that in the highus (ri ;) = k(0)[1 — Fir 8,,, — —“2] with k(0) =

Reynolds number flow all symmetries of the NS equa-l and r;; = x; — x;. The Gaussian assumption for
tion are restored in the limit — 0 and r > 7, where  “single-point” probability density fixes the value of the
n is the dissipation scale where the viscous effects becoefficientC = 7 and theC term corresponds to the
come important. This means that in this limit the root-breakdown of G invariance in the limited Polyakov's

mean square velocity fluctuations,, = +/(v2), which ~ sense [1].

are not invariant under the constant sHift cannot en-  In the limit » — 0 the equation for the probability
ter the relations describing moments of velocity differencedensity is derived from Eq. (3) as

Therefore, the effective equations for the inertial-range ve- 5 oP P A 9 Upms 02

locity correlation functions must have the symmetries of—ﬁ oy BT T U0 UP + . 902 UP.
the original NS equation. For many years this assump- @)
tion was the basis of turbulence theories. But based on

the recent understanding of turbulence, some of the con- Using the exact result§; = —%er in the small scale
straints on the allowed turbulence theories can be relaxe@ is the mean energy dissipation rate) one finds=
[13]. Polyakov’s theory of the large-scale random force#l whereB = —B, > 0 [13]. It is easy to see that

driven Burgers turbulence [1] was based on the assumpeq. (4) can be written as),P = (—ayU — By)~' X
tion that weak small-scale velocity difference fluctuations| —(4 /r)a,, U + (ums/L)3%U]P, and so its solution can

(e, [v(x + r) — v(x)| < ums andr < L), whereLis  obviously be written as a scalar-ordered exponential [23],
the integral scale of the system, obey thénvariant dy- T L (U

namic eq_uation,_ meaning that the integral scale and the PWU,r) = T[er” P(U, 1],
single-pointu,,, induced by random forcing cannot enter . . )

the resulting expression for the probability density. Ac-WheréLkm can be obtained formally by computing the in-
cording to [13] it has been shown how thg,, enters Verse operator. Using the properties of scale-ordered ex-
the equation for the PDF and therefore breaksGhi-  Ponentials the conditional probability density will satisfy
variance in the limited Polyakov’s sense. We are interih® Chapman-Kolmogorov equation. Equivalently we de-
ested in the scaling of the longitudinal structure function’V€ that the probability density and, as a result, the con-
Sy = (ux + r) — u(x)}?) = (U7, whereu(x) is the x ditional probability density of velocity increments satisfy
component of the three-dimensional velocity field, ang @ KM evolution equation,

the displacement in the direction of theaxis. Let us de- > n
! _ ar XIS P n 9" o

fine the generating functiaf for the longitudinal structure vl D> (-1 W[D (r,U)P], (5)
functionZ = (e*V). According to [13] in the spherical co-

ordinates the advective term in Eq. (1) involves the termgyhere p(r, U) = U™ + B,U""!. We have found

2% 4 4
O(E,"A—Ei), 0(%), O(f—f,), 0(%) [20]. Itis noted thatthe that the coefficientsa, and B, depend onA, B,
advection contributions are accurately accounted for in the,,s, and the integral length scale which are given
equation ofZ, but it is not closed due to the dissipation andby the recursion relations— >r #L;)v a, = %,
pressure terms. Using Polyakov’'s OPE approach, Yakhot <m m! By = (Y m(m—1) We ' scale the
has shown that the dissipation term can be treated easily <"~! ("=m" " g7 (mtB) " _
while the pressure term has an additional difficulty. Thevelocities as U = 5= and introduce a logarith-
pressure contribution leads to effective energy redistribumic length scaleA = In(;) which varies from zero

tion between components of the velocity field, and it hado infinity as » decreases fromL to 5. Thus the
1681
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form of DW(T,r) and D@(U,r) in the equivalent be written in terms of Ii/. It is an easy way to see

description would be DY(T,r) = —(%)f] and how the large scala — 0 Gaussian probability density

X0V N A ~ r ) \7 i i

DO, r) = (W)Uz _ (_z)z/3urms((2TB)U- Ocoan (;Ihange its sht:;\pe when gotlng_ tto sn:flll tscbalﬁs _
The drift and diffusion coefficients for various scales of ® @nd consequently give rise 10 Intermittent benhavior.

), determined in the theory of Yakhot, show the samgnsteéad of working with the probability functional of
functional form as the calculated coefficients from theVelocity increments, the formal solution of Fokker-Planck

experimental data [21,22]. equation, as a scale-ordered exponential [24], can be
In comparison with the phenomenological theory ofconverted to an integral representation for the probability

Friedrich and Pienke we are able to construct a KM equa€asure of velpglt_y increments wheb' = —a,(A)U

tion for velocity increments that is analytically derived @MdD~ = a2(V)U*, i.e.,

from the Yakhot theory which is based on just general un- o 7o)

~+oo
derlying symmetries and OPE conjecture. FurthermoreP (U, A) = el e WYl (Ger M=) gs,
this viewpoint on Eq. (4) gives the expressions for scale my(A) J - 7
dependence of the coefficients in the KM equation. The ™
. . o \

overion i e e s rovas retomay AMETET0) = il-a1a) + 2051 ancy (1) -

rms . : —a;(A) + 3ax(A)]dA and y(A) = [ aa(A)dN

between the breakdown ¢f invariance and the scale de- oL : 2 o ; 0

pendence of the KM coefficients in the equivalent theoryand¢(U) Is the probability measure in the integral length

The two unknown parameters and B in the theory are scaJesiA __>m%)2 ] we .conS|der the Gagss!an distribution
reduced to 1 by fitting the; = 1, so all the scaling ex- pU) =e in the integral scale which is a reasonable

ponents and>™’s are described by one paramet&: choice (experimental data show that up to third moments

Considering the results in [13,21] on which the valuthe PDF in the integral scale is consistent with the Gauss-

of B is obtained we have used the valBe= 20 and 'an distribution [13]), and we derive the dependence of
have calculated ’the numerical values of the KM Coefﬁ_the variance of the probability density on the scale in the
cients. Ratios of the first three coefficients and 3 limit when the original distribution satisfies the condition

are a3'/a2 — 0.04, ag/ar = 0.001, Ba/ B = 0.04 an’a m < 1. The result shows an exponential dependence

- : h asm — me?¢, where = 3a, — a;. The consis-
/B> = 0.001. From the comparison of numerical val- SYCN ¢ L 2 ! -
Eésﬂgf higher order coefficienltos we find that the seried®Nt Picture with the shape change of probability measure

can be cut safely after the second term, and a good al}’l_nder the scale is that whengrows, the width decreases

proximation for the evolution operator of velocity incre- and vice versa. . Moreover, we should em|_oha5|_ze that the
ments is a Fokker-Planck operator. According to [13]shape 'chan_ge IS Some£‘9‘f¥ complt_ax W.h'Ch. gives some
the value of the parameteB, = 20 is calculated numeri- corrections in orderO(m_ u?) even in th|_s simplifying
cally in the limit of infinite Reynolds numbers. Using !'m't’ e, m < 1. Start_lng with a Gaussian measure at
this value for the calculation of the numerical values Oflntegral scales and using t_he calculated scale mqlepen-
DD andH@ we find that the contribution of scale depen_dent Fokker-Planck coefficients, we have numerically

dent terms is essentially negligible. As it is well known, calculated the PDF's for fully developed turbulence and

the Fokker-Planck description of probability measure iBurgers turbulence in different length scales from which

. : . e 4 their plots in Figs. 1 and 2 are completely compatible
equivalent with the Langevin description written as [23]’With ezperimentgl and simulation resul?s [13y21 22? The

W O DO i
ax = DV(0.2) + YD, 1) (1), where (A) is @ eyireme case of Burgers problem (i.B.= 0) shows the
white noise and the diffusion term acts as a multiplica-g, o, localizing behavior as if in the limit of — = goes

tive noise. By considering the Ito prescription and using, 5 pirac delta function which again is consistent with
the path-integral representation of the Fokker-Planck equgy,, knowledge about Burgers problem [6,13]. Clearly

tion, we can give an expression for all the possible pathgqs - (4) and (5) give the same result for the multifractal
in the configuration space of velocity differences and thu%xponent of structure function, i.eS,(r) = A,ré is
’ . n - n

demonstrate the change of the measure under the Changgrived to beg, — (B+B)n [13]
n " 3(n+B) '

of sc~ale, |.e~., In summary, we have constructed a theoretical bridge
P(Uz, A2 | Uy, Ay) between two recent theories involving the statistics of lon-
~ = [ AL BT AR /4D gitudinal velocity increment in fully developed turbulence.

= | D[UJe 'n . (6)  On the basis of the recent theory proposed by Yakhot we

showed that the probability density of longitudinal veloc-
When calculating, the measure of the path integral isty components satisfies a Kramers-Moyal equation which
meaningful when some form of discretization is choserencodes the Markovian property of these fluctuations in
[23], but we have written it in a formal way. Using a necessary way. We are able to give the exact form of
the forms of D! and D? and approximating them with Kramers-Moyal coefficients in terms of a basic parameter
scale independent ones in the infinite Reynolds numben the Yakhot theoryB. The qualitative behavior of drift
limit, one can easily see that the transition functional carand diffusion terms are consistent with the experimental
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FIG. 1. Schematic view of the logarithm of PDF in terms of

lieve that it would be possible to derive the Kramers-Moyal
description for the statistics of energy dissipation [28].
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