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Chapter 4
Motion In Two and Three
Dimensions

v 4.01 Draw two-dimensional and three-dimensional
position vectors for a particle, indicating the
components along the axes of a coordinate system.

v 4.02 On a coordinate system, determine the
direction and magnitude of a particle’s position
vector from its components, and vice versa.

v 4.03 Apply the relationship between a particle’s
di _&Iacement vector and its initial and fmal pOSItI




4.2 Position and Displacement




The position vector
p is drawn every second.

\




Motion In Two Dimensions

Using + or — signs is not always sufficient to fully
describe motion in more than one dimension

® \ectors can be used to more fully describe motion

Still interested in displacement, velocity, and
acceleration




Displacement

The position of an
object Is described
by its position vector,
1

The displacement of
the object Is defined
as the change in its
position

Path of
particle

X




Velocity

The average velocity is the ratio of the
displacement to the time interval for the
displacement

—

T —
At

The instantaneous velocity is the limit of the
average velocity as At approaches zero

® The direction of the instantaneous velocity is
along a line that is tangent to the path of the
particle and in the direction of motion

o s T e




Velocity

7 =xi +yj + zk,

The result is the same in three dimensions: v is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for 7 from Eq.4-1:

dy s dz

— d oS 2 A dx a ~
V—E(x|+y] + zk) = T i+ dtj+ i k.
This equation can be simplified somewhat by writing it as
V=vi+vj+ vk, (4-11)

o = % (4-12)




Example

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time ¢ (seconds) are given by

x=—0317+72t+28 (4-5)
and y = 0224 — 9.1¢ + 30. (4-6)

(a) Att = 15 s, what is the rabbit’s position vector 7 in unit-
vector notation and in magnitude-angle notation?




Calculations: We can write

T(1) = x(t)i + y(1)j. (4-7)
(We write 7(f) rather than 7 because the components are
functions of f,and thus 7 is also.)
At = 15 s, the scalar components are

x = (—031)(15) + (7.2)(15) + 28 = 66 m
and  y=(0.22)(15)* — (9.1)(15) + 30 = —57 m,

SO T = (66 m)i — (57 m)j, (Answer)

which is drawn in Fig. 4-2a.To get the magnitude and angle
of 7, notice that the components form the legs of a right tri-
angle and r is the hypotenuse. So, we use Eq.3-6:

r=Vx2+y? = V(66m)’ + (—57 m)’
= 87 m,

(Answer)

= -IL= -1 ﬂ): — o
and 6 =tan e tan ( 6m 41°. (Answer)

WILEY t)

40 40
t=0
To locate the =
20 rabbit, this is the 20
41| X component.
74 x(m) x(m)

0N/ 2 | 40 | 60] 80

105

15%

(a) _50( ___________ (b

This is the y component.

This is the path with
various times indicated.

Check: Although # = 139° has the same tangent as —41°,
the components of position vector 7 indicate that the de-
sired angle is 139° — 180° = —41°.

(b) Graph the rabbit’s pathfort =0tof=25s.

Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of f and then plot the results. Figure 4-2b shows
the plots for six values of f and the path connecting them.

PLUS Additional examples, video, and practice available at WileyPLUS




A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of

time f (seconds) are given by

=—0312+72t+ 28
y = 0222 — 9.1¢ + 30.

and

(4-5)
(4-6)

(a) Att =15 s,what is the rabbit’s position vector 7 in unit-
vector notation and in magnitude-angle notation?

For the rabbit in the preceding sample problem, find the
velocity v attime f = 15s.

v="Vvl+12=V(-21mis) + (2.5 m/s)?

=33m/s (Answer)
v =2t
e s and 6=tan'— = tan! (—_;f 2;:)
We can find v by taking derivatives of the components of — tan-11 ;9 - —130° (Answer)

the rabbit’s position vector.

Calculations: Applying the v, part of Eq. 4-12 to Eq. 4-5,

Check: Is the angle —130° or —130° + 180° = 50°?

we find the x component of ¥ to be Al
dx _d -
=—=—(-0312 + 7.2t +
=T (—0.31¢ 2t + 28) |
= —0.62t + 7.2. (4-13)
At t = 15 s, this gives v, = —2.1 m/s. Similarly, applying the % 50 40 N6 8
v, part of Eq.4-12 to Eq. 4-6, we find
_dy _d 2 =
= 4 = d@ (0.22¢* — 9.1t + 30)
= 044t — 91 (4-14) =
At t =15 this gives v, = —2.5 m/s Equation 4-11 then yields _53\_“
V = (—21m/s)i + (—2.5mls)j, (Answer)
L i . . These are the xand y
which is shown in Fig. 4-5, tangent to the rabbit’s path and in components of the vector
the direction the rabbit is running at f = 15 s. at this instant.

To get the magnitude and angle of ¥, either we use a
vector-capable calculator or we follow Eq. 3-6 to write

Figure 4-5 The rabbit’s velocity v at t = 15 s.




4.4 Acceleration

The average acceleration is defined as the rate at
which the velocity changes

Av

At

The instantaneous acceleration is the limit of the
average acceleration as At approaches zero

a =

- . Av
a=lim—
At—0 At




(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

We can write Eq. 4-16 in unit-vector form by substituting Eq.4-11 for ¥ to obtain

We can rewrite this as
@ =a,i+ a,j + axk, (4-17)
where the scalar components of @ are

dv

These are the xand y
components of the vector
¥ at this instant.




Ways an Object Might Accelerate

- . Av
a=lim—
At—0 At

The magnitude of the velocity (the speed) can
change

The direction of the velocity can change
Even though the magnitude is constant




Example

For the rabbit in the preceding two sample problems, find
the acceleration @ at time t = 15 s

KEY IDEA

We can find @ by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the a, part of Eq. 4-18 to Eq. 4-13,

we find the x component of @ to be
dv d
=2 =" (- = - 2
a,=— 7 (—0.62t + 72) 0.62 m/fs%.

Similarly, applying the a, part of Eq. 4-18 to Eq. 4-14 yiclds
the y component as

dv, d
a, (044t — 9.1) =044 m/s2.

We sce that the acceleration does not vary with time (it is a
constant) because the time variable f does not appear in the
expression for either acceleration component. Equation 4-17
then yields
@ = (—062m/s)i + (04 m/s)]. (Answer)

which is superimposed on the rabbit’s path in Fig 4-7.

To get the magnitude and angle of @, cither we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

a=Val+al=\V(-082mls) + (0.4 mi)y

= 0.76 m/s®. (Answer)
For the angle we have
et Oy _|(0.44mls’ )=_
# = tan . tan =TS 35°.

However, this angle, which is the one displayed on a calcula-
tor, indicates that @ is directed to the right and downward in
Fig. 4-7. Yet, we know from the components that @ must be
directed to the left and upward. To find the other angle that

has the same tangent as —35° but is not displayed on a cal-
culator, we add 180°:
—35% + 180° = 145°. (Answer)

This is consistent with the components of @ because it gives
a vector that is to the left and upward. Note that @ has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant. That means that
we could draw the very same vector at any other point
along the rabbit’s path (just shift the vector to put its tail at
some other point on the path without changing the length
or oricntation).

This has been the second sample problem in which we
needed to take the derivative of a vector that is written in
unit-vector notation. One common error is to neglect the unit
vectors themselves, with a result of only a set of numbers and
symbols. Keep in mind that a derivative of a vector is always
another vector.

y{m)

These are the xand y
components of the vector
at this instant.

Figure 47 The acceleration @ of the rabbit at £ = 15 s The rabbit
happens to have this same acceleration at all points on its path.




4-4 Projectile Motion

An object may move in both the x and y
directions simultaneously (i.e. in two
dimensions)

The form of two dimensional motion we will
deal with is called projectile motion

We may:
ignore air friction

ignore the rotation of the earth

Wlth these assumptions, an object in prOJect' T
otion will foIIow a| parabolic path







Notes on Projectile Motion:

once released, only gravity pulls on the
object, just like in up-and-down motion

since gravity pulls on the object
downwards:

v’ vertical acceleration downwards
v' NO acceleration in horizontal direction




~<

T

Vertical
fall

AN Projectile
Ny  motion

| €

Richard Mecgna/Fundamental Photographs



Demonstration

http://physics.wfu.edu/demolabs/demos/avimov/
bychptr/chptrl_motion.html

FIGURE 3-27 Examples of
projectile motion: a boy jumping,
and glowing lava from the volcano
Stromboli.




Rules of Projectile Motion

Introduce coordinate frame: y Is up

The x- and y-components of motion can be
treated independently

Velocities (incl. initial velocity) can be
broken down into its x- and y-components

The x-direction Is uniform motion
a, =0

The y-direction Is free fall
lay[= g




Some Details About the Rules

V., =V,cos0, =V, =constant

x-direction
o aX:
® x=v 1

© 2002 Brooks Cole Publishing - a division of Thomson Learning

This is the only operative equation in the x-direction
since there is uniform velocity in that direction




More Detalls About the Rules

Vo =V, SING, o

L)
/o
v

I
b
)

x0
X
/8,
Y0 v

y § d | rec t | on ot e i g€ i e g

® take the positive direction as upward
® then: free fall problem
only then: a, = -g (in general, |a,|= g)

® uniformly accelerated motion, so the motion
equations all hold




Velocity of the Projectile

The velocity of the projectile at any point of its
motion is the vector sum of its x and y components
at that point

v
V= \/vi +v; and @=tan"' >
v

X




Examples of Projectile

Motion:
An ObjeC t may be ?2002 Brooks Cole Publishing - a division of Thomson Learning
. -Z n || - 4().0 M/
fired horizontally Eﬁ x
The initial velocity is
all in the x-direction SN
X
* v,=v,andv,=0 ce
All the general rules .
of projectile motion
B apply




Non-Symmetrical Projectile
Motion

Follow the general
rules for projectile
motion

Break the y-direction
Into parts
® up and down

® symmetrical back to
Initial height and then
the rest of the height

uoIsIAp e - Bulysiiqnd 2|09 $3001g Z00Z ©




Example problem:

An Alaskan rescue plane drops a package of
emergency rations to a stranded party of
explorers. The plane is traveling horizontally
at 40.0 m/s at a height of 100 m above the
ground.

Where does the package strike the ground
relative to the point at which it was released?

1. Introduce coordinate frame:
Given: Oy: y is directed up
Ox: x 1s directed right

velocity: v=40.0 m/s _ o
height: h=100 m 2. Note: v, =v=+40m/s

Vo= 0 m/s

. _ [2100m) _
3 anced=? or. t= T’n/sz—451s

Ox:x=v_t,s0 x=(40m

© 2002 Brooks Cole Publishing - a division of Thomson Learning

170 m ‘\

Y

o
v







Demonstration

http://physics.wfu.edu/demolabs/demos/avimov/
bychptr/chptrl_motion.html




Example

The velocity of the projectle (red
arrows) changes in direction and
magnitude, but its acceleration

(purple arrows) remains constant. J
Target QO ¥
» < P | ]
T
£ § o7 | L2
:‘. < o ”~ - | -‘2- g-t
= |
s e~ -~
g - . w—'—
S z - Point of \'4T
£ Gun O 9; collision Ny
L N
- J e xr -
© > |
2 X , i
3 H ¥ =——1
S

Figure 4.12 (Example 4.8) (a) Multiflash photograph of the projectile-target demonstration. If the gun
is aimed directly at the target and is fired at the same instant the target begins to fall, the projectile will
hit the target. (b) Schematic diagram of the projectile—target demonstration.




mstant acceierauon in e y airecuon anda a parucie

i

2

D yr=yr+(0)t—3gt> = xrtan @, — 3

(2) yp - er + Uﬁpt - % - = 0+ ('U,'p SiﬂO,’)t — % <= ('U,'p Sinﬂ,)t — % 2

Xp = Xip T Ugpt = 0 + (;p cos 0;)t = (v;p cos 6,)1

= =
U;p COS 0,‘
3) % = (v sinG-)( == ) — g1 = x, tan @, — 3gt°
iP ! U;p COS 6:’ 2 I 2

t when the x coordinates of the projectile and target are the same—that is,
Lquations (1) and (3) are the same and a collision results.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

rwhen v;p sin 6; = Vgd/2, where dis the initial elevation of the target above
he projectile strikes the floor before reaching the target.




(a) Wagon reference frame




(a) Wagon reference frame

(b) Ground reference frame



Projectile Motion Analyzed

vy, =0 at this point

| Vor = VoCOS 6 and vy, = vy sIn 6. '



X — Xg = Vo,l. X — Xo = (vycos 6y)t.

— o



_ 1
Y = Yo = Vot — 58t
— (Vo SIn Ho)t — %gtz,
Vv, = VySsin 6, — gt

V= (v sin 6y — 28(y — ).

2

gX

y = (tan HO)X (trajectory).

2(v, cos 6)?




Vo=

|
o O

y = 0 again here
(where x = R)




The Horizontal Range

The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched). To find range R, let us put x — x; = R in Eq. 4-21 and y — y, =0 in
Eq.4-22, obtaining

R = (vycos Gy)t

and 0 = (vysin 6y)t — %gtz.

Eliminating f between these two equations yields
22
R = Asin 0, cos 0,,.
Using the identity sin 26, = 2 sin 6, cos 6, (see Appendix E), we obtain

2
R = % sin 26, (4-26)

This equation does not give the horizontal distance traveled by a projectile when
the final height is not the launch height. Note that R in Eq. 4-26 has its maximum
value when sin 26, = 1, which corresponds to 26, = 90° or 6, = 45°.

W

The horizontal range R is maximum for a launch angle of 45°.







4.5 Uniform Circular Motion




Av=v2—v1

(b)




. Ay
a=]im=—
At—0 At







=}

Uniform Circular Motion an

(a)

Zz’:ﬁ:( v dyp)§+(idxp)j. (5)

2 ) 2 )
a= (_v_ Ccos O)i + (_VT sin O)j.




2

2 2
a= Va§+a§=VT\/(COSO)2+(sin0)2=vT 1=v7,

_a  —(Vr)sing
tan ¢ a, —(v¥r)cosé tan 6.

Y
] e
// - \
Rl
“,‘I ”,‘,' B /
\ / The velocity \’;
\\ S/ vector is always
" N tangent to the path.




Example

[ Example 4.6 ] The Centripetal Acceleration of the Earth

What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

SOLUTION

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth as a
particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 4.15,
however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and the
radius of the Earth’s orbit around the Sun, which is 1.496 X 10" m.
=l
T ) _4m’r

2

Combine Equations 4.14 and 4.15: a=—= 72

r
continued
l 4.6 cont. l
2 1 1 2
Substitute numerical values: a, = SR leO m)( L ) = 593 X 107* m/s*
(1yr) 3.156 X 107 s

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Finalize This acceleration is much smaller than the free-fall acceleration on the surface of the Earth. An important

technique we learned here is replacing the speed v in Equation 4.14 in terms of the period T of the motion. In many
problems, it is more likely that T'is known rather than v.



Non-uniform circular
motion

Hurricane Katrina
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4-8 (9) Relative Motion in
One (two) Dimension(s)







v = 1.80 m/s




+—120 m —




Main road

downhill







Frame A Frame B
/ / or
Vpy  *pB
| o 1
= T 1 X *
XpA xpg

Xpy = Xpg T Xpgu-

d d d

Vpa = Vpg t Vpa.




Relative Motion in Two
Dimensions

— = —
rpa = Tpg T T'pa.




Example:

N This is the plane's actual
direction of travel.

———————————
E
N
This is the plane's 20° B
orientation. e
This is the wind

direction.




N ?)

—
Vpw Ywe
x F\

The actual direction

is the vector sum of

the other two vectors
(head-to-tail arrangement).

)




Example

In Fig. 4-20a, a plane moves due east while the pilot points
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity v py relative
to the wind, with an airspeed (speed relative to the wind)
of 215 km/h, directed at angle # south of east. The wind
has velocity Vwg relative to the ground with speed
65.0 km/h, directed 20.0° east of north. What is the magni-
tude of the velocity Vp; of the plane relative to the ground,
and what is 67

N This is the plane's actual
direction of travel.

This is the plane's
orientation.

This is the wind
direction.




Calculations: First we construct a sentence that relates the

three vectors shown in Fig. 4-20b:

velocity of plane _ velocity of plane | velocity of wind
relative toground  relative towind  relative to ground.
(PG) (PW) (WG)
This relation is written in vector notation as
Vpc = _V.pw + VWG- (4-46)

We need to resolve the vectors into components on the co-
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by
axis. For the y components, we find

VPGy = VPwy T Vwey
or 0= —(215km/h) sin @ + (65.0 km/h)(cos 20.0°).
Solving for @ gives us

__, (65.0 km/h)(cos 20.0°)
n 215 km/h

Similarly, for the x components we find

6=s = 16.5°. (Answer)

VPG = VPWx: T VWG x

Here, because —v'p(; is parallel to the x axis, the component
Vpi, is equal to the magnitude vpg;. Substituting this nota-
tion and the value # = 16.5°, we find

vp = (215 km/h)(cos 16.5%) + (65.0 km/h)(sin 20.0°)
= 228 km/h. (Answer)

WILEY

US Additional examples, video, and practice available at WileyPLUS

N This is the plane's actual
direction of travel.

P E
N a
This is the plane's '270'/_.
orientation. G
This is the wind
direction.

(a)

y Vrg
. b
Vpw Vue
X

The actual direction

is the vector sum of

the other two vectors
(head-to-tail arrangement).

(B)
Fgure 4-20 A plane flying in a wind.




Example

EXAMPLE 3-10 | Heading upstream. A boat’s speed in still water is vgy =
1.85 m/s. If the boat is to travel north directly across a river whose westward current has
speed vys = 1.20 m/s, at what upstream angle must the boat head? (See Fig. 3-29.)
APPROACH If the boat heads straight across the river, the current will drag
the boat downstream (westward). To overcome the river’s current, the boat
must have an upstream (eastward) component of velocity as well as a cross-stream
(northward) component. Figure 3-29 has been drawn with vgg, the velocity of
the Boat relative to the Shore, pointing directly across the river because this is
where the boat is supposed to go. (Note that Vgg = Vg + Vys.)

SOLUTION Vector vgw points upstream at angle # as shown. From the diagram,

vys  120m/s 186
Vgw 1.85m/s 0. ’
Thus 8 = 40.4°, so the boat must head upstream at a 40.4° angle.

sinfl =

FIGURE 3-29 Example 3-10.




- Example

| EXAMPLE 3-11 | Heading across the river. The same boat (vgy = 1.85m/s)
now heads directly across the river whose current is still 1.20 m/s. (@) What is the velocity
(magnitude and direction) of the boat relative to the shore? (b) If the river is 110 m
wide, how long will it take to cross and how far downstream will the boat be then?

FIGURE 3-30 Example 3-11.
A boat heading directly across a
river whose current moves at
1.20 m/s.




FIGURE 3-30 Example 3-11.
A boat heading directly across a
river whose current moves at
1.20 m/s.

- Example

EXAMPLE 3-11 | Heading across the river. The same boat (vgy = 1.85m/s)
now heads directly across the river whose current is still 1.20 m/s. (a) What is the velocity
(magnitude and direction) of the boat relative to the shore? (b) If the river is 110 m
wide, how long will it take to cross and how far downstream will the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3-30. The boat’s velocity with respect to
the shore, vgs, is the sum of its velocity with respect to the water, ¥gyw, plus the
velocity of the water with respect to the shore, Vws: just as before,

VN = va + sz.
SOLUTION (a) Since vy is perpendicular to vy, we can get vgg using the
theorem of Pythagoras:

ves = VVhw + Vs = V(1.85m/s)’ + (1.20m/s)> = 221 m/s.

We can obtain the angle (note how @ is defined in Fig. 3-30) from:

tanf = wvys/vgy = (1.20m/s)/(1.85m/s) = 0.6486.
A calculator with a key INV TAN or ARCTAN or TAN ' gives 8 = tan '(0.6486)
= 33.0°. Note that this angle is not equal to the angle calculated in Example 3-10.

(b) The travel time for the boat is determined by the time it takes to cross the
river. Given the river’s width D = 110 m, we can use the velocity component in the
direction of D, wgy = D/t. Solving for t, we get t = 110m/1.85 m/s = 59.5s.
The boat will have been carried downstream, in this time, a distance

d = vyst = (1.20m/s)(59.5s) = 714m = 71lm.

NOTE There is no acceleration in this Example, so the motion involves only
constant velocities (of the boat or of the river).




Example

«+20 @ In Fig. 4-32, particle A
moves along the line y = 30m
with a constant velocity v of mag-
nitude 3.0 m/s and parallel to the
x axis. At the instant particle A
passes the y axis, particle B leaves
the origin with a zero initial speed
and a constant acceleration @ of
magnitude 0.40 m/s>. What angle ¢
between @ and the positive direc-
tion of the y axis would result in a
collision?

FAgure 4-32 Problem 20.




Example

15. [E0 A firefighter, a distance d from a burning building,
directs a stream of water from a fire hose at angle 6; above
the horizontal as shown in Figure P4.15. If the initial speed

of the stream is v;, at what height & does the water strike the
building?

Figure P4.15




29.

Example

e B T il

Review. The 20-g centrifuge at NASA’s Ames Research
Center in Mountain View, California, is a horizontal, cylin-
drical tube 58 ft long and is represented in Figure P4.29.
Assume an astronaut in training sits in a seat at one end,
facing the axis of rotation 29.0 ft away. Determine the rota-
tion rate, in revolutions per second, required to give the
astronaut a centripetal acceleration of 20.0g.

29 ft >

Figure P4.29




Example

42. A farm truck moves
due east with a constant
velocity of 9.50 m/s on
a limitless, horizontal
stretch of road. A boy
riding on the back of
the truck throws a can of Flgure P4.42
soda upward (Fig. P4.42)
and catches the projectile at the same location on the truck
bed, but 16.0 m farther down the road. (a) In the frame of
reference of the truck, at what angle to the vertical does
the boy throw the can? (b) What is the initial speed of the
can relative to the truck? (c) What is the shape of the can’s

trajectory as seen by the boy? An observer on the ground

watches the boy throw the can and catch it. In this observ-
er’s frame of reference, (d) describe the shape of the can’s

path and (e) determine the initial velocity of the can.



Example

52. B0 As some molten metal splashes, one droplet flies off to
the east with initial velocity v; at angle 6; above the horizon-
tal, and another droplet flies off to the west with the same
speed at the same angle above the horizontal as shown
in Figure P4.52. In terms of v; and 6;, find the distance
between the two droplets as a function of time.

Figure P4.52




Example

68. B} A person standing at the top of a hemispherical rock of
radius RKkicks a ball (initially at rest on the top of the rock)
to give it horizontal velocity V; as shown in Figure P4.68.

Fgure P4.68

(a) What must be its minimum initial speed if the ball is
never to hit the rock after it is kicked? (b) With this initial
speed, how far from the base of the rock does the ball hit

the ground?




Example

71. An enemy ship is on the east side of a mountain island as
shown in Figure P4.71. The enemy ship has maneuvered
to within 2 500 m of the 1 800-m-high mountain peak and
can shoot projectiles with an initial speed of 250 m/s. If
the western shoreline is horizontally 300 m from the peak,
what are the distances from the western shore at which
a ship can be safe from the bombardment of the enemy
ship?

Figure P4.71
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A)pHysics appLiED [EXAMPLE 3-9] A punt. Suppose the football in Example 3-6 was punted,

Sports | and left the punter’s foot at a height of 1.00 m above the ground. How far did
the football travel before hitting the ground? Set x; = 0, y, = 0.
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EXAMPLE 3-9| A punt. Suppose the football in Example 3-6 was punted,
and left the punter’s foot at a height of 1.00 m above the ground. How far did
the football travel before hitting the ground? Set x; = 0, y, = 0.

APPROACH The only difference here from Example 3-6 is that the football hits
the ground below its starting point of y, = 0. That is, the ball hits the ground at
y = —1.00m. See Fig.3-26. Thus we cannot use the range formula which is valid
only if y (final) = y. Asin Example 3-6, w = 20.0m/s, 8, = 37.0°.
SOLUTION With y = —1.00m and vy, = 12.0 m/s (see Example 3-6), we use
the y version of Eq. 2-11b with ay = —g,

y = o+ vyt — 18t

and obtain

-1.00m = 0+ (120 m/s)t — (4.90 m/s%)¢%
We rearrange this equation into standard form (ax? + bx + ¢ = 0) so we can
use the quadratic formula:

(490 m/s?)¢* — (120 m/s)t — (1.00m) = 0.
The quadratic formula (Appendix A-4) gives

120 m/s + \/(—12.0m/s)* — 4(4.90 m/s?)(—1.00 m)
2(4.90 m/s%)
= 253s or —0.081s.

The second solution would correspond to a time prior to the kick, so it doesn’t
apply. With ¢ = 2.53s for the time at which the ball touches the ground, the
horizontal distance the ball traveled is (using vyq = 16.0 m/s from Example 3-6):

x = vt = (16.0m/s)(2.53s) = 40.5m.
Our assumption in Example 3-6 that the ball leaves the foot at ground level

would result in an underestimate of about 1.3 m in the distance our punt traveled.



Example

23. (IT) A fire hose held near the ground shoots water at a
speed of 6.5 m/s. At what angle(s) should the nozzle point
in order that the water land 2.5 m away (Fig. 3-36)? Why
are there two different angles?
Sketch the two trajectories.

FIGURE 3-36 ’F

Problem 23. fe—2.5 m—+|




Example

43. (IT) A person in the passenger basket of a hot-air balloon
throws a ball horizontally outward from the basket with
speed 10.0 m/s (Fig. 3—44). What initial velocity (magni-
tude and direction) does the ball have relative to a person
standing on the ground (a) if the hot-air balloon is rising
at 3.0 m/s relative to the ground during this throw, (b) if
the hot-air balloon is descending at 3.0 m/s relative to the
ground?

FIGURE 3-44
Problem 43.




Example

58. (a) A long jumper leaves the ground at 45° above the
horizontal and lands 8.0m away. What is her “takeoff”
speed vy ? (b) Now she is out on a hike and comes to the
left bank of a river. There is no bridge and the right bank
is 10.0 m away horizontally and 2.5 m vertically below. If
she long jumps from the edge of the left bank at 45° with
the speed calculated in (a), how long, or short, of the
opposite bank will she land (Fig. 3-50)?

10.0 m

FIGURE 3-50 Problem 58.



Example

56. Romeo is throwing pebbles gently up to Juliet’s window,
and he wants the pebbles to hit the window with only a
horizontal component of velocity. He is standing at the
edge of a rose garden 8.0 m below her window and 8.5m
from the base of the wall (Fig. 3-49). How fast are the
pebbles going when they hit her window?

FIGURE 3-49
Problem 56.



Example

67. Spymaster Chris, flying a constant 208 km/h horizontally
in a low-flying helicopter, wants to drop secret documents
into her contact’s open car which is traveling 156 km/h on
a level highway 78.0 m below. At what angle (with the hori-
zontal) should the car be in her sights when the packet is
released (Fig.3-55)?

208 km/h
T
"\—\ ———————————————— 3
\\\/é
TSl 78.0m
156 km/h

FIGURE 3-55 Problem 67.



Example

66. At serve, a tennis player aims to hit the ball horizontally.
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0 m from the server if the ball is
“launched” from a height of 2.50 m? Where will the ball
land if it just clears the net (and will it be “good™ in the
sense that it lands within 7.0 m of the net)? How long will
it be in the air? See Fig. 3-54.

fe 150m >t 7.0 m—~
FIGURE 3-54 Problem 66.




Example

72. A rock is kicked horizontally at 15 m/s from a hill with a
45° slope (Fig. 3-58). How long does it take for the rock to
hit the ground?

FIGURE 3-58 Problem 72.



Summary

Review & Summary

Position Vector The location of a particle relative to the ori-
gin of a coordinate system is given by a position vector r, which in
unit-vector notation is

F=xi+ yj + zlz. (4-1)
Here xi» yj, and zk are the vector components of position vector 7,
and x, y,and z are its scalar components (as well as the coordinates
of the particle). A position vector is described either by a magni-
tude and one or two angles for orientation, or by its vector or
scalar components.

Displacement If a particle moves so that its position vector
changes from 7, to 7>, the particle’s displacement AT is

AF =7, — 1. (4-2)

The displacement can also be written as
A7 = ( — x)i + (32— »)j + (22— 2K (43)
= Axi + Ayj + Azk. (44)

Average Velocity and Instantaneous Velocity If a parti-
cle undergoes a displacement A7 in time interval Az, its average ve-
locity V , for that time interval is

. A7
Vavg - T (4—8)

As Arin Eq. 4-8 is shrunk to 0, V“g reaches a limit called either the
velocity or the instantaneous velocity v:

- dr
v = A 4-10
i (4-10)
which can be rewritten in unit-vector notation as
V =i+ vj+ vk, (4-11)

where v, = dx/dt, v, = dyldt, and v, = dz/dt. The instantaneous
velocity v of a particle is always directed along the tangent to the
particle’s path at the particle’s position.

Average Acceleration and Instantaneous Acceleration
If a particle’s velocity changes from v, to v, in time interval At, its
average acceleration during At is

- Vo—v; AV

L v VE (4-15)
As At in Eq. 4-15 is shrunk to 0, @,,, reaches a limiting value called
either the acceleration or the instantaneous acceleration a:
dv

dt

a=

(4-16)
In unit-vector notation,
(4-17)

a=ald+ay +ak,

where a, = dv,/dt, a, = dv,/dt, and a, = dv_/dt.



Projectile Motion Projectile motion is the motion of a particle
that is launched with an initial velocity v,. During its flight, the par-
ticle’s horizontal acceleration is zero and its vertical acceleration is
the free-fall acceleration —g. (Upward is taken to be a positive di-
rection.) If V; is expressed as a magnitude (the speed v,) and an an-
gle #, (measured from the horizontal), the particle’s equations of
motion along the horizontal x axis and vertical y axis are

x — xg = (v COS )1, (4-21)
Y — Yo = (vpsin )t — 38, (4-22)
v, = v, sin 6, — gt, (4-23)
vZ = (vgsin 6,)* — 2g(y — yo)- (4-24)

The trajectory (path) of a particle in projectile motion is parabolic
and is given by
g’

y = (tan 6p)x — (v 05 o)

(4-25)
if xp and y, of Eqs. 4-21 to 4-24 are zero. The particle’s horizontal
range R, which is the horizontal distance from the launch point to
the point at which the particle returns to the launch height, is

2

R = 2 sin 2, (4-26)
g

Uniform Circular Motion If a particle travels along a circle or
circular arc of radius r at constant speed v, it is said to be in uniform
circular motion and has an acceleration @ of constant magnitude

(4-34)

The direction of @ is toward the center of the circle or circular arc,
and ¢ is said to be centripetal. The time for the particle to complete
a circle is

T="1 (4-35)

T is called the period of revolution, or simply the period, of the
motion.

Relative Motion When two frames of reference A and B are
moving relative to each other at constant velocity, the velocity of a par-
ticle P as measured by an observer in frame A usually differs from that

measured from frame B.The two measured velocities are related by
Vpa = Vpg T Vpa,

(4-44)

where v, is the velocity of B with respect to A. Both observers
measure the same acceleration for the particle:

= dpp. (4-45)



