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Abstract Using the Markovian method, we study the stochastic nature of electrical dis-
charge current fluctuations in the Helium plasma. Sinusoidal trends are extracted from the
data set by the Fourier-Detrended Fluctuation analysis and consequently cleaned data is
retrieved. We determine the Markov time scale of the detrended data set by using likeli-
hood analysis. We also estimate the Kramers-Moyal’s coefficients of the discharge current
fluctuations and derive the corresponding Fokker-Planck equation. In addition, the obtained
Langevin equation enables us to reconstruct discharge time series with similar statistical
properties compared with the observed in the experiment. We also provide an exact de-
composition of temporal correlation function by using Kramers-Moyal’s coefficients. We
show that for the stationary time series, the two point temporal correlation function has
an exponential decaying behavior with a characteristic correlation time scale. Our results
confirm that, there is no definite relation between correlation and Markov time scales. How-
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ever both of them behave as monotonic increasing function of discharge current intensity.
Finally to complete our analysis, the multifractal behavior of reconstructed time series us-
ing its Keramers-Moyal’s coefficients and original data set are investigated. Extended self
similarity analysis demonstrates that fluctuations in our experimental setup deviates from
Kolmogorov (K41) theory for fully developed turbulence regime.

Keywords Turbulence · Markov processes · Plasma fluctuations

1 Introduction

Many natural phenomena are identified by a degree of stochasticity. Turbulent flows, seismic
recordings and plasma fluid are a few examples of such phenomena [1–28]. Interpretation
and estimation of physical and chemical properties of plasma fluid have been one of the
main research areas in the science of electromagnetic hydrodynamics. It is well-known that
discharge current fluctuations in the plasma often exhibits irregular and complex behavior
[27, 28]. Fluctuations happening commonly in the plasmas of gas discharges are responsi-
ble for a significant aliquot part of physical and chemical properties of plasma and reveal
many interesting manner of plasma dynamics, energy carrier, neutrality and shielding areas
form microscopic as well as macroscopic points of view. Generally, fluctuations arising in
plasma can be classified as: fluctuations in the electron temperature, fluctuations in the local
plasma space-potential which is assumed to be periodic and fluctuations in the local random
electrical current in the plasma [2]. It is supposed that, these kinds of fluctuations can be
characterized according to the following main properties. The statistics of time series are
roughly homogeneous and isotropic, the spatial correlation length scale is shorter than the
background charge density and temperature flow characteristic length scales. The autocorre-
lation function of such process is also demonstrated as anti-correlated behavior (see e.g. [6,
27, 28]). The phase space of relevant factors which influence the trajectory of current fluc-
tuations measured by Langmuir probe in the plasma is enormously large. Therefore, there is
no remedy to use stochastic tools for investigating their statistical properties. In the presence
of complexity as well as non-linearity in a typical plasma fluctuations, traditional methods
in data analysis encounter with spurious or at least give unreliable results for explanation of
plasma dynamics.

It is impossible to consider all physical features of plasma fluctuations as a turbulent
transport in the context of deterministic methods. Also finding a good agreement between
properties of plasma discharge fluctuations and that of for a turbulence regime can play an
important role to track the dissipation of energy transfer at different scale in the plasma fluid
for various values of current intensity by means of multiplicative cascade model.

There are many stochastic analysis devoted to study the plasma fluctuations. Fluctuations
of electric and magnetic fields of plasma, spectral density, logistic mapping and nonlinear-
ity of ionization wave have been investigated in Refs. [2–6, 29–31]. For example, Carreras
et al., have demonstrated that plasma fluctuations behave as a multifractal process with non-
linearity comparable to the fluid turbulence [32]. Also Budaev et al., [33, 34] by using the
scaling behavior of structure function and wavelet transform modulus maxima (WTMM),
showed that the anomalous transport of particles in the plasma has multifractal nature. The
universality of stochastic properties of different plasma with various experimental equip-
ments as well as different physical and chemical operating regimes, have also been explored
in some previous studies. These universality which can be determined in experiment are led
to insights through the understanding of plasma dynamics. Universality in power spectrum
of plasma fluctuations for various plasma has been investigated in [35].
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Although the analysis of fluctuations in plasma has a long history, there are, nevertheless,
some important issues, such as stochastic features and most important characteristic time and
length scales in the presence of nonstationarity and trends have remained unexplained so far.
Recently a robust statistical method has been developed to explore an effective equation that
can reproduce stochastic data with an accuracy comparable to the measured one [7–11,
36–40]. As in many early researches has been confirmed, one may utilize it to:

(1) reconstruct the original process with similar statistical properties, and
(2) understand the nature and properties of the stochastic process [7–24, 36]. One of a main

task in the evolution of plasma fluctuations is to quantify most relevant statistical prop-
erties such as structure function, characteristic time and length scales, drift and diffusion
coefficient. In addition, deriving a reliable stochastic model to reconstruct the data mea-
sured by Langmuir probe will be of interest in the simulation of plasma fluctuation.

Actually, data measured by Langmuir probe integrate fluctuations in plasma quantities
such as number density of charge carriers, electron temperature, floating potential, heat
transport and so on, consequently the statistical characteristics of probe fluctuations can
be used to obtain information from physical and chemical points of view. For these purpose
we use a robust methods in the complex systems namely, Markovian method to analyze the
plasma fluctuations during steady state plasma discharge.

Due to the many limitations in an experimental setup for measuring desired fluctuations,
the original fluctuations may be influenced by some trends and nonstationarities. In addition,
the following necessary conditions should be satisfied to infer valuable statistical results:

(i) The length of measured fluctuations must be large enough.
(ii) The contribution of superimposed trends and nonstationarities on the recorded data must

be small enough in comparison to intrinsic fluctuations or at least distinguishable.

Unfortunately in many cases of practical measurements, above necessary conditions cannot
be specified. Identifying trends and foundation of proper detrending operations are impor-
tant step toward robust analysis. Meanwhile, unfortunately, there is no unique definition of
trend and any proper method for extracting it from underlying data sets in the presence of
nonstationarities [41–46]. On the other hands, trend in a real world data series especially
for non-stationary one, is an intrinsic function imposed by the nature on data set [47]. To
recognize the trend on a data set, one can investigate the series in whole domain or on some
specific span of domains. Singular value decomposition (SVD) as a filtering procedure has
also been introduced to detrend of signals [48–50]. The other method for detrending is so-
called Fourier Detrended Fluctuation Analysis (F-DFA). This method behaves like a high
pass filter and useful for removing expected sinusoidal trends embedded in underlying data
set.

In our previous study concerning plasma fluctuations [6], we found that the plasma fluc-
tuations in the various discharge current intensities, behave as anti-correlated signals. For
highly ionized fluid each large deviation from the electrostatic equilibrium is shielded by a
cloud of oppositely-charged particles [51–54]. This also may be related to the fast dissipa-
tion of turbulent kinetic energy in plasma [34].

In this paper, we would like to extend our previous analysis and open a new insight to
reconstruct the stochastic fluctuations and examine the turbulent feature of underlying data
sets. The study of the universality, non-Gaussianity, multifractality and scaling behavior of
structure function also will be other aims in this study. At first we should remove trends due
to electronic instrumental systematic noises, alternative current oscillation and the fluctu-
ations of striation areas near the anode and cathode plates. As discussed in details in [6],
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we compute power spectrum of series using the method proposed in [46]. Now it is easy to
track the influence of dominant sinusoidal trends represented as peaks in the spectral density
versus frequency. By removing these coefficients, actually we diminish their contributions
in the reconstruction of fluctuations. If this part has been done well, the crossovers in the
fluctuations function given by multifractal detrended fluctuations analysis for reconstructed
series will be disappeared and finally the cleaned data sets for further investigations will be
retrieved. The minimum number of coefficients in the Fourier space should be eliminated
to remove dominant sinusoidal trends is approximately 400. It is worth noting that to find
cross-correlation between two different series Singular Value Decomposition could be used
to guarantee the synchronization. Here using the Markovian method, we explore the statis-
tical properties of detrended discharge current fluctuations. Then a Fokker-Planck evolution
operator and Langevin equation will be found [7–11]. To complete our analysis we will in-
vestigate the multifractal exponent derived by Markovian method and compare it with that
of computed by extended self similarity method. In addition, we discuss about the different
sources of the multifractality in discharge current fluctuations.

The rest of this paper is organized as follows: In Sect. 2, we give an explanation of our
experimental set up used for recording plasma fluctuations. Section 3 is devoted to a brief
summary of the most important notions and theorems on Markovian method and their ap-
plication to the analysis of empirical data. Using the likelihood statistics, we determined
Markov time scale. Section 4 contains the main results of our analysis and estimate the
Fokker-Planck and Langevin equations which govern the probability density function and
stochastic variable (discharge current), respectively. An exact decomposition equation for
computing temporal correlation function and distinguishing between Markov and correla-
tion time scale are explained in detail in Sect. 4. Non-Gaussianity and multifractality nature
of original and reconstructed time series are also given in Sect. 5. Section 6 closes with a
discussion and conclusion of the present results.

2 Experimental Equipment

To explore the complex nature of the discharge current fluctuations in a typical plasma, we
constructed an experimental setup as indicated in Fig. 1. The plasma chamber has two cop-
per electrodes attached to the ends of discharge glass tube, 80 mm in diameter and 110 cm
in length. One of these electrode is the anode (a flat copper plate as a positive pole), while

Fig. 1 The sketch of the experimental setup used to record the discharge current fluctuations in the tube
filled with Helium, with (1) Power supply; (2) Glass tube; (3) Resistance; (4) Ampere meter; (5) A/D card
and PC; (6) Anode plate; (7) Hot cathode; (8) Single Langmuir probe
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Fig. 2 Typical detrended
electrical discharge current
fluctuations in the plasma as a
function of time

the other one represents the cathode (as a negative pole and electron propagator). The base
pressure is 0.1 up to 0.8 Torr and the discharge tube is filled with Helium as the working
gas under voltage of 400–900 V. The pressure, voltage and current should be fine tuned
for ensuring the stability of the plasma. Using a resistor which was connected to an oper-
ational amplifier impedance converter, discharge current fluctuations are monitored. In this
setup, we fixed the pressure and examined how the statistical properties of plasma change
for various values of current. The fluctuations of the discharge current measured by single
Langmuir probe were digitized and cleaned with a filter that omitted direct current. Finally,
the fluctuation of the discharge were recorded by using an analog to digital card for several
values of the electrical discharge current intensity, namely, 50, 60, 100, 120, 140, 180, and
210 mA at frequency equal to 44100 Hz. The resolution of recorded data is 12 bits. The
typical size of the recorded data sets for each current intensity is about 106. Cleaned data
were constructed by applying the Fourier-Detrended Fluctuation analysis. Figure 2 shows
typical detrended discharge current fluctuation.

3 Markovian Nature of Data Set

As mentioned in the introduction, we use the Markovian method to explore the stochasticity
nature of discharge current fluctuations in plasma. To investigate the Markovian nature of
data, we briefly summarize the conceptions and theorems which will be importance for our
statistical analysis of cleaned data set. For further details on Markov processes we refer the
reader to the references [38, 39, 55–60].

We represent the discharge current fluctuations as a function of time by X(t) and de-
fine x(t) = X(t)/σ , where σ is the standard deviation of discharge current fluctuations.
Fundamental quantities related to the Markov processes are conditional probability density
functions. The conditional probability density function (CPDF), p(x2, t2|x1, t1), is defined
as

p(x2, t2|x1, t1) = p(x2, t2;x1, t1)

p(x1, t1)
(1)

where p(x2, t2;x1, t1) is the joint probability density function (JPDF), describing the proba-
bility of finding simultaneously, x1 at scale(time), t1, and x2 at scale(time), t2. Higher order
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conditional probability densities can be defined in an analogous way

p(xN, tN |xN−1, tN−1; . . . ;x1, t1) = p(xN, tN ; . . . ;x1, t1)

p(xN−1, tN−1; . . . ;x1, t1)
(2)

where p(xN, tN ;xN−1, tN−1; . . . ;x1, t1) is N -point joint probability density function. Intu-
itively, the physical interpretation of a Markov process is that it “forgets its past,” or, in other
words, only the most nearby conditioning, namely xN−1 at tN−1, is relevant to the probabil-
ity of finding a fluctuation xN at tN . Hence, in the Markov process the ability to predict the
value of xN will not be enhanced by knowing its values in the steps prior to the most recent
one. So an important simplification that is made for a Markov process is that, the condi-
tional multivariate joint PDF is written in terms of the products of simple two parameter
conditional PDF’s [55–57] as

p(xN, tN ;xN−1, tN−1; . . . ;x2, t2|x1, t1) =
N∏

i=2

p(xi, ti |xi−1, ti−1) (3)

To investigate whether underlying signal is a Markov process, one should tests the (3).
But in practice for large values of N , is beyond the current computational capability. For
N = 3 (three points or events), however, the condition will be

p(x3, t3|x2, t2;x1, t1) = p(x3, t3|x2, t2) (4)

which should hold for any value of t2 in the interval t1 < t2 < t3. A process is then Markovian
if the (4) is satisfied for a certain time separation t3 − t2, in which case, we define the Markov
time scale as tMarkov = t3 − t2. For simplicity, we let t2 − t1 = t3 − t2. Thus, to compute the
tMarkov we use a fundamental theory of probability according to which we write any three-
point PDF in terms of the conditional probability functions as

p(x3, t3;x2, t2;x1, t1) = p(x3, t3|x2, t2;x1, t1)p(x2, t2;x1, t1) (5)

Using the properties of Markov processes to substitute (5), we obtain

pMar(x3, t3;x2, t2;x1, t1) = p(x3, t3|x2, t2)p(x2, t2;x1, t1) (6)

To determine the Markov time scale by means of joint probability density function ((5)
and (6)), we use Bayesian statistics [61]. We introduce measurements and model parame-
ters as {X } : {p(x3, t3;x2, t2;x1, t1)} and {�} : {tMarkov}, respectively. Based on the Bayesian
theorem, the conditional probability of the model parameters given data set (observation) is
so-called posterior probability and is given by:

P (tMarkov|X ) = L(X |tMarkov)P (tMarkov)∫
L(X |tMarkov)P (tMarkov)dtMarkov

(7)

here L(X |tMarkov) is the so-called Likelihood and P (tMarkov) contains all initial constraints
regarding to model parameters, so-called prior distribution expressed the degree of belief
about the model. If we have no any extra information for model free parameters, the posterior
function, P (tMarkov|X ) is proportional to the Likelihood function. Usually one can consider
the various measurements to be independent of each other, so according to the central limit
theorem, Likelihood function reads as:

L(X |tMarkov) ∼ exp

(−χ2(tMarkov)

2

)
(8)
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where:

χ2(tMarkov) =
∫

dx1dx2dx3[p(x3, t3;x2, t2;x1, t1)

− pMar(x3, t3;x2, t2;x1, t1)]2/
[
σ 2

3-joint + σ 2
Mar

]
(9)

σ 2
3-joint and σ 2

Mar are the variances of p(x3, t3;x2, t2;x1, t1) and pMar(x3, t3;x2, t2;x1, t1), re-
spectively. Evidently, when, for a set of values of the parameters, the χ2(tMarkov) is mini-
mized, the probability will be maximized. The minimum value of χ2

ν (tMarkov) (χ2
ν (tMarkov) =

χ2(tMarkov)/N , with N being the number of degree of freedom) corresponds to the best
value of tMarkov for different value of electrical discharge current intensities.

The value of error-bar at 1σ confidence interval of tMarkov for each current intensity is
determined by the Likelihood function according to:

68.3% =
∫ +σ+

−σ−
L(X |tMarkov)dtMarkov (10)

The values of Markov time scales, tMarkov in terms of discharge current intensity have
been plotted in Fig. 3. It must be pointed out that, the unit of tMarkov reported in this figure
has been changed to the units of microsecond (μs) by using the rate of digitalization in the
experimental setup, 44100 sample/sec.

One can write (6) as an integral equation, which is well-known as the Chapman-
Kolmogorov (CK) equation

p(x3, t3|x1, t1) =
∫

dx2 p(x3, t3|x2, t2) p(x2, t2|x1, x1) (11)

We have checked the validity of the CK equation for describing the time scale separation
of t1 and t2 being equal to the Markov time scale. This is shown in Fig. 4 (for the data set
with electrical current intensity, I = 50 mA). In this figure, the upper panel shows the con-
tour plot of identification of the left (solid line) and right (dashed line) sides of (11) for two
levels, 0.080 (inner contour) and 0.005 (outer contour). The conditional PDF p(x3, t3|x1, t1),
for x1 = ±1.25σ , are shown in the lower panel. All the scales are measured in unit of the
standard deviation of the discharge current fluctuations. We must point out that if all situ-
ations to be same as our experimental setup such as pressure, current intensity and so on,
one can expect that all values derived by Markov analysis would be repeated. The value of

Fig. 3 Markov and correlation
time scales as a function of
discharge current intensity. The
unit of vertical axis is
microsecond
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Fig. 4 Upper panel shows contour plots of the conditional PDF, p(x3, t3|x1, t1). The solid and dashed line
correspond to the left and right hand side of (11) for t3 − t1 = 2 × tMarkov, respectively. Inner contours are
a cutting of PDF at 0.08 level and outer contours correspond to 0.005 level. Lower panel corresponds to the
cuts through the conditional PDF for x1 = ±1.25σ

Markov time scale increases as discharge current intensity increases (see Fig. 3). It seems
that by increasing the current intensity, charges become more energetic, therefore their ef-
fective cross-section will decrease and hence increasing their memory.

Up to now we determined the Markov time scale for each cleaned data set over which
time series behaves as a Markov process. In the next section we will turn to the deriving
master and stochastic equations governing the evolution of probability density function and
fluctuation itself, respectively.
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4 The Langevin Equation: Evolution Equation to Describe the Plasma Discharge
Current Fluctuations

The Markovian nature of the plasma electrical discharge fluctuations enables us to derive
a Fokker-Planck equation—a truncated Kramers-Moyal equation—for the evolution of the
PDF p(x, t), in terms of time t . The Chapman-Kolmogorov (CK) equation, formulated in
differential form, yields the following Kramers-Moyal (KM) expansion [55–57]

∂

∂t
p(x, t) =

∞∑

n=1

(
− ∂

∂x

)n

[D(n)(x, t)p(x, t)] (12)

where D(n)(x, t) are called as the Kramers-Moyal’s coefficients. These coefficients can be
estimated directly from the moments, M(n), and the conditional probability distributions as

D(n)(x, t) = 1

n! lim
�t→0

M(n) (13)

M(n) = 1

�t

∫
dx ′(x ′ − x)np(x ′, t + �t |x, t) (14)

For a general stochastic process, all Kramers-Moyal’s coefficients are different from zero.
According to the Pawula’s theorem, however, the Kramers-Moyal expansion stops after the
second term, provided that the fourth order coefficient D(4)(x, t) vanishes. In that case, the
Kramers-Moyal expansion reduces to a Fokker-Planck equation (also known as the back-
wards or second Kolmogorov equation) [55–57]

∂

∂t
p(x, t) =

{
− ∂

∂x
D(1)(x, t) + ∂2

∂x2
D(2)(x, t)

}
p(x, t) (15)

Also the evolution equation for conditional probability density function is given by the above
equation except that p(x, t) is replaced by p(x, t |x1, t1). Here D(1) is known as the drift term
and D(2) as diffusion term which represents the stochastic part. The Fokker-Planck equation
describes the evolution of probability density function of a stochastic process generated by
the Langevin equation (we use the Itô’s definition) [55–57]

∂

∂t
x(t) = D(1)(x, t) +

√
D(2)(x, t)f (t) (16)

where f (t) is a random force, i.e. δ-correlated white noise in t with zero mean and Gaussian
distribution, 〈f (t)f (t ′)〉 = 2δ(t − t ′). Using (13) and (14), for collected data sets, we cal-
culate drift, D(1), and diffusion, D(2), coefficients, shown in Fig. 5. It turns out that the drift
coefficient D(1) is a linear function in x, whereas the diffusion coefficient D(2) is a quadratic
function. For large values of x, our estimations become poor, the uncertainty increases, so
we truncate our estimations up to 3σ of fluctuations as indicated in Fig. 5.

The functional feature of drift and diffusion coefficients for different electrical discharge
data sets are reported in Table 1. To ensure that Kramers-Moyal expansion (12) reduces to
a Fokker-Planck equation (15), we compute fourth-order coefficient D(4). In our analysis,
D(4) � 10−1D(2). One must point out that, however the fourth-order Kramers-Moyal’s coef-
ficient is not so small, but in the current analysis, this doesn’t make measurable uncertainty
in our results (see below). Furthermore, using (16), it becomes clear that we are able to
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Fig. 5 Drift, D(1)(x), diffusion and D(2)(x) coefficients for data set with I = 50 mA

Table 1 The values of
Kramers-Moyal coefficients for
data set at different discharge
current intensities

D(1)(x) D(2)(x)

50 mA −0.160 x 0.090 + 0.003 x + 0.070 x2

60 mA −0.058 x 0.026 + 0.002 x + 0.030 x2

100 mA −0.052 x 0.026 + 0.002 x + 0.026 x2

120 mA −0.028 x 0.013 + 0.001 x + 0.014 x2

140 mA −0.017 x 0.008 + 0.001 x + 0.009 x2

180 mA −0.017 x 0.008 + 0.001 x + 0.009 x2

210 mA −0.016 x 0.009 + 0.001 x + 0.008 x2

separate the deterministic and the noisy components of the fluctuations in terms of the coef-
ficients D(1) and D(2). According to the values of the Kramers-Moyal’s coefficients reported
in Table 1, it is possible to reconstruct discharge current fluctuations at arbitrary current
intensity using (15) and (16) [7–10].

Now let us have a comparison of the statistical properties of reconstructed data using (16)
with the original fluctuations. For this purpose, we rely on the solution of Fokker-Planck
equation for conditional probability function (same as (15) for infinitesimally small step τ )
which is given by [55–57]

p(x2, t + τ |x1, t) = 1

2
√

πD(2)(x1, t)τ
exp

(
− (x2 − x1 − D(1)(x1, t)τ )2

4D(2)(x1, t)τ

)
(17)

Left panel of Fig. 6 shows conditional probability density function computed by the
above equation and directly calculated from the original detrended data set for I = 50 mA.
The plot from left to right correspond to x1 = −0.5σ , x1 = 0.0 and x1 = +0.5σ level, re-
spectively. We also compute the conditional probability using reconstructed fluctuations via
(16) and compare it with the same one for original cleaned data at three mentioned levels
for x1. We took τ = tMarkov for all plots in Fig. 6. According to (17) and based on Fig. 6 we
find a good agreement between stochastic model for reconstructed plasma fluctuations and
original fluctuations.

According to the definition of Markov time scale, there is no systematic relation be-
tween Markov and autocorrelation time scales, however one can decompose the temporal
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Fig. 6 Left panel corresponds to the conditional probability density function determined by analytical for-
mula, (17) (solid line) and directly computed by original cleaned data (symbol) for I = 50 mA. Right panel
shows the comparison between the conditional probability density function determined by generated data
using (16) (triangle symbol) and our initial cleaned data (circle symbol). In each panel, the plots from left
to right correspond to the cut for x1 = −0.5σ , x1 = 0.0 and x1 = +0.5σ level, respectively. To make more
obvious, we shifted the value of x2 for each plot. We took τ = tMarkov, where tMarkov is the Markov time
scale of data set

correlation function of an arbitrary stationary Markov processes according to the formalism
introduced by Medvedev [62]. To this end, we introduce temporal correlation function as:

C(x1(t1), x2(t2)) = 〈x1(t1)x2(t2)〉 (18)

here the sign 〈.〉, shows the ensemble averaging. We have set the mean of time series equal
to zero. For a stationary time series the correlation function depends on only the separation
time scale, which means that

C(τ ) ≡ C(x1(t1), x2(t2)) = 〈x1(t1)x2(t1 + τ)〉 (19)

In the presence of any trends and nonstationarity, correlation function depends not only to
the time separation (t2 − t1), but also to the starting and finishing times, namely t1 and t2,
respectively. As demonstrated in [6], the underlying detrended data for discharge current
behaves as a stationary signal. The temporal correlation function for plasma detrended data
with I = 50 mA is plotted in the left hand side of the Fig. 7. This figure confirms the
underlying data sets behave as an anti-correlated series which has been confirmed in [6]
using another method. We also present the same plot for a pure random white noise data,
i.e. with Hurst exponent H = 0.5, in the right hand side of the Fig. 7 for comparison. As
explained before the evolution of a typical stationary Markov process is governed by Master
equation (12), so the temporal correlation function of this process can be written as:

〈x(t + τ)x(t)〉 =
∞∑

m=0

|τ |m
m! 〈xF mx〉 (20)

here F = ∑∞
n=1

D(n)(x,t)

n!
∂n

∂xn . To calculate temporal correlation function of a Markov process,
we should compute probability density of data set. The solution of (15) is:

p(x, t) = const.√
D(2)(x, t)

exp

(
−

∫
D(1)(x, t)

D(2)(x, t)
dx

)
(21)
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Fig. 7 Normalized temporal correlation function for plasma cleaned data for discharge current with
I = 50 mA (left panel) and for completely random data (right panel)

If one use the following parameterizations for

D(1)(x, t) = ax(t) and D(2)(x, t) = b + cx(t) + dx2(t),

then can find:

p(x, t) = const.√
D(2)(x, t)

exp

(
a ln[b + cx(t) + dx2(t)]

2d
−

ac arctan
(

c+2dx(t)√
4bd−c2

)

d
√

4bd − c2

)
(22)

The constant coefficient could be determined by normalization procedure. Obviously for
c, d = 0 above probability density function behaves as a Gaussian distribution. According
to the Kramers-Moyal coefficients reported in Table 1 for the plasma fluctuations, we ex-
pect the probability density functions for various discharge current intensity deviate from
exact Gaussian function. As an example, one can simply show that the temporal correlation
function of a stochastic variable, x(t), governed by the Langevin equation

ẋ(t) = −γ x(t) + η(t)

behaves as:

〈x(t + τ)x(t)〉 ∼ e−γ τ (23)

consequently one can introduce temporal correlation scale as γ −1 while for this process,
Markov length scale equates to unity [62]. This shows that for our data set the correla-
tion time scale is greater or equal to the Markov time scale. In Fig. 3, we estimate the
temporal correlation scale at stationary case of plasma fluctuations by using D1(x, t) re-
ported in Table 1. In addition for a scaling behavior of autocorrelation function, namely
〈x(t + τ)x(t)〉 ∼ τ−κ , in terms of Hurst exponent, one can find out the scaling exponent for
autocorrelation function as κ = 2 − 2H . Then by increasing Hurst exponent, κ decreased
and degree of correlation to be increased (see e.g. [6]). Our results show that Markov time
scale is almost an increasing function versus discharge current intensity which directly re-
flects the memory in the stochastic current fluctuations produced in plasma measured by
Langmuir probe.
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5 Non-Gaussianity and Multifractality of Plasma Fluctuations

In this section we investigate the Gaussian nature of the PDFs of reconstructed and de-
trended time series as well as its multifractal exponent derived by Markovian approach. For
a Gaussian distribution, all the even moments are related to the second moment through
〈x2n〉 = 2n!

2nn! 〈x2〉n (e.g., for n = 2, 〈x4〉 = 3〈x2〉2), while the odd moments are zero identi-
cally. We can directly check the relation between the higher moments for the plasma fluctua-
tions data at different value of discharge current intensities with second moment. The values
of moments and their variances calculating directly from data are summarized in Table 2.

Let us examine the predictions for the moments of the plasma fluctuations via the Fokker-
Planck equation, and compare their values with the direct evaluation represented in the Ta-
ble 2. Using the general Kramers-Moyal expansion, (12), which is also valid for the proba-
bility density p(x, t), differential equations for the n-th order moments can be derived. By
multiplication of the both side of (12) with xn and integration with respect to x, we can
obtain evolution of different moments of data set as:

d

dt
〈xn(t)〉 =

∞∑

k=1

(−1)k

∫ +∞

−∞
xn

(
∂

∂x

)k

D(k)(x, t)p(x, t)dx

=
n∑

k=1

n!
(n − k)!

∫ +∞

−∞
xn−kD(k)(x, t)p(x, t)dx

=
n∑

k=1

n!
(n − k!)

〈
xn−kD(k)(x, t)

〉
(24)

We put n = 4 in the above equation and find the equation for the fourth moment as follows

d

dt
〈x4(t)〉 = 4〈D(1)(x)x3(t)〉 + 12〈D(2)(x)x2(t)〉

+ 24〈D(3)(x)x(t)〉 + 24〈D(4)(x)〉 (25)

Table 2 The values of moments,
〈xn〉, and their errors for data set
at different discharge current
intensities

〈x2〉 × 10+5 〈x3〉 × 10+9 〈x4〉 × 10+9

50 mA 2.483 ± 0.001 −0.395 ± 0.417 1.842 ± 0.062

60 mA 2.415 ± 0.001 −3.330 ± 0.123 1.532 ± 0.001

100 mA 2.879 ± 0.001 −17.500 ± 1.990 4.140 ± 0.318

120 mA 2.600 ± 0.001 −3.140 ± 0.179 1.858 ± 0.008

140 mA 2.095 ± 0.001 −5.770 ± 0.380 1.431 ± 0.030

180 mA 1.617 ± 0.001 −7.220 ± 2.850 2.002 ± 0.765

210 mA 1.383 ± 0.001 −0.458 ± 0.139 0.811 ± 0.335
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Table 3 The values of third and
fourth Kramers-Moyal
coefficients for data set at
different discharge current
intensities

D(3)(x) D(4)(x)

50 mA −0.007 − 0.073 x 0.009 + 0.009 x + 0.010 x2

−0.019 x3 −0.001 x3 + 0.001 x4

60 mA −0.024 x − 0.002 x2 0.001 − 0.020 x + 0.010 x2

−0.010 x3 +0.001 x3 + 0.003 x4

100 mA −0.025 x − 0.001 x2 0.002 + 0.001 x + 0.013 x2

−0.009 x3 +0.002 x4

120 mA −0.013 x − 0.005 x3 0.001 + 0.006 x2 + 0.001 x4

140 mA −0.008 x − 0.003 x3 0.0009 + 0.003 x2 + 0.001 x4

180 mA −0.007 x − 0.003 x3 0.0007 + 0.002 x2 + 0.001 x4

210 mA −0.009 x − 0.002 x3 0.0008 + 0.005 x2

Table 4 The values of α’s
coefficients and their variances,
σ ’s, for data set at different
discharge current intensities

α2 σ2 α3 σ3

50 mA 3.14 0.38 0.18 0.21

60 mA 3.81 0.70 −1.17 0.51

100 mA 2.86 0.53 −3.68 0.66

120 mA 2.77 0.98 2.25 0.96

140 mA 3.05 0.56 −2.09 0.35

180 mA 3.67 0.85 −0.01 0.28

210 mA 3.08 0.95 −4.18 0.95

The third and fourth Kramers-Moyal’s coefficients for the data set are reported in Table 3.
We should point out that the values of |D(3)| and |D(4)| are less than |D(2)|. For the stationary
case, all the moments of fluctuations are time independent and the left-hand side of (25)
vanishes, so

〈x4〉 = [α2(I ) ± σ2(I )]〈x2〉2 + [α3(I ) ± σ3(I )]〈x3〉
√

〈x2〉 (26)

where α2(I ) determines the coefficient of kurtosis quantity and σ2(I ) shows its variance.
Also α3(I ) determines the coefficient of skewness and σ3(I ) indicates its error. The skew-
ness measures the asymmetry of probability density function and kurtosis determines the
statistic of rare events in the processes. In generally they may depend to the discharge cur-
rent intensity, I . Using the results represented in the Table 3, for each case of fluctuations
αn(I ) and its variance are given in the Table 4.

As we mentioned before, for exact Gaussian process, we should have

α2(I ) = 〈x4〉
〈x2〉2

= 3.0 (27)

α3(I ) = 0.0 (28)

If α2(I ) > 3.0 means that probability density function has fat tail and rare events have more
chance to occur (with respect to the Gaussian process). While for α2(I ) < 3.0, the tails of
probability density function is heavy than the Gaussian distribution. According to the val-
ues of α2(I ) and α3(I ), we find that probability density function of data set is deviated
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Fig. 8 Probability density
function of reconstructed
increment data set (filled
symbols) and a typical Gaussian
function (solid line) for
I = 50 mA and τ = 1

from Gaussian. This deviation can be characterized by skewness as well as kurtosis coeffi-
cients [63]. Table 4 demonstrates that there is no monotonous behavior for deviations from
Gaussianity as a function of discharge current intensity [64, 65]. Subsequently the properties
of probability density function appears almost independent of the plasma conditions [66].
In this case, we expect that the increment of signals also may reveal the non-Gaussianity
properties. To this end, we introduce increment series as �x(τ) ≡ x(t + τ) − x(t), where
τ is time delay. We do the same computation to determine whether this new data set has
Markovian nature. Our analysis demonstrate that Markov time scale of �x(τ) for all dis-
charge current intensity is 136+90

−45 μs. Figure 8 shows the probability density of reconstructed
increment data set with a typical time lag equates to τ = 1 for I = 50 mA. If the probability
density function to be fatter than Gaussian function hence the probability of observing fluc-
tuations far exceeding the average amplitude are not ignorable. This phenomenon can affect
on usual transport in the plasma.

To check the multifractal nature of reconstructed time series, we investigate the Marko-
vian nature of the increments of profile which is defined as: �x(τ) ≡ y(t + τ)−y(t), where
y(t) = ∑t

i=0 x(i). For convenience, hereafter we rename y(t) by x(t). According to the
mentioned procedure, we can determine the Markov time scales for the increments and cal-
culate the Kramers-Moyal’s coefficients. Likelihood analysis confirms that, the increment
of profile signal for all electrical current intensities are also Markov processes.

The Fokker-Planck equation for probability density function of the increment is given by
[38, 67]

−τ
∂

∂τ
p(�x, τ) =

{
− ∂

∂�x
D(1)(�x, τ) + ∂2

∂�x2
D(2)(�x, τ)

}
p(�x, τ) (29)

the negative sign of the left-hand side of (29) is due to the direction of the cascade from
large to smaller time scales τ . The corresponding Langevin equation can be read as

−τ
∂

∂τ
�x(τ) = D(1)(�x, τ) +

√
D(2)(�x, τ)f (τ ) (30)

where f (τ) is the same as random function in (16). For time series with scaling correlations
the drift and diffusion coefficients of increment are formulated as [38, 67, 68]

D(1)(�x, τ) � −H�x
(31)

D(2)(�x, τ) � b�x2



Markov Properties of Electrical Discharge Current Fluctuations 163

Using (29) and (31) we obtain the evolution of structure functions as: (Sq(τ ) ≡
〈|�x(τ)|q〉 = 〈|x(t + τ) − x(t)|q〉) as follows

−τ
∂

∂τ
〈|�x(τ)|q〉 = q〈|�x(τ)|q−1D(1)(�x, τ)〉

+ q(q − 1)〈|�x(τ)|q−2D(2)(�x, τ)〉 (32)

by substituting the (31) in (32) we find

τ
∂

∂τ
〈|�x(τ)|q〉 = [qH − bq(q − 1)]〈|�x(τ)|q〉 (33)

the above equation implies scaling behavior for moments of increments, structure function
as

Sq(τ ) ≡ 〈|�x(τ)|q〉 = 〈|x(t + τ) − x(t)|q〉 ∼ τ ξ(q). (34)

According to (33) and (34), the corresponding scaling exponent in general case can be
read as

ξ(q) = qH − bq(q − 1) (35)

For mono- and multi-fractal processes the exponent ξ(q) have linear and non-linear behavior
with q , respectively. It must point out that H is nothing except the underlying fluctuations’s
Hurst exponent [69–72]. The obtained expression for D(1)(�x, τ) and D(2)(�x, τ) (to avoid
the overissue we just report the results of data for I = 50 mA) are as follows

D(1)(�x, τ) = −(0.45 ± 0.03)�x
(36)

D(2)(�x, τ) = (0.04 ± 0.01)�x2

consequently, using (36) and (35), the scaling exponent is determined as

ξ(q) = (0.45 ± 0.03)q − (0.04 ± 0.01)q(q − 1) (37)

To check the consistency of estimated scaling exponent ξ(q), (37), with that of deter-
mined by original time series we use the extended self similarity (ESS) method [73, 74].
Extended Self Similarity is a method to find an extended range of scaling behavior of under-
lying stochastic fluctuations. The prediction of Kolmogorov (K41) theory for the velocity
field of fully developed turbulence namely in the inertial regime is Sq(τ ) ∼ τ ξq with ξq = q

3
and shows a nonofractal behavior [75]. The deviation from this prediction have been re-
ported experimentally and theoretically, due to the energy dissipation fluctuations (see [74,
76–80]). In the context of Extended Self Similarity, the self similarity expressed above to
be changed to a new scaling relation according to Sq ∼ S

ζq

3 in which not only the scaling
regime for self similarity behavior to be extended even further from inertia range, but also
the statistical uncertainty for determining scaling exponent decreases. In the Extended Self
Similarity method, the log-log plot of Sq(τ ) as a function of specific order of structure func-
tion, namely S3(τ ), usually shows an extended scaling regime

Sq(τ ) ∼ S3(τ )ζ(q) (38)
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Fig. 9 Upper panel indicates the structure function versus τ . Lower left panel shows the scaling exponent
of Sq(τ) as a function of moment for original cleaned plasma fluctuations (filled symbol) and solid line
corresponds to the fitting formula derived by Kramers-Moyal’s coefficients for multi-fractal anti-correlated
signal with H = 0.42 (see (37)). Also in this panel, dashed line corresponds to a mono-fractal anti-correlated
series. Lower right panel indicates ζ(q) versus q . Here we chose the data set with I = 50 mA

For any Gaussian process, the exponent in the above equation is given by ζ(q) = q/3 [73,
74]. Any deviation from this relation can be interpreted as a deviation from Gaussianity.
Figure 9 shows the log-log plot of structure function in terms of time scaling (upper panel),
exponents ξ(q) (left lower panel) and ζ(q) (right lower panel) for the plasma fluctuations
with I = 50 mA. The present results are in agrement with our previous results derived that
the plasma time series have multi-fractal nature [6].

As shown in the lower left panel of Fig. 9, (37) for ξ(q) (solid line) with the shaded area
corresponds to 68.3% confidence interval derived by Markovian analysis of increment of
profile has an acceptable confidence level to experimental results (filled symbol).

6 Summary and Conclusion

Many methods have been devoted to study the fluctuations in the plasma [81–85]. Since,
discharge current fluctuations can serve as a quantitative indicator of plasma disturbances,
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consequently any tantalizing statistical evidences give new insight throughout plasma fluctu-
ations. We have studied the stochastic nature of the electrical discharge current fluctuations
in the Helium plasma as a working gas. As mentioned before, fluctuations measured by
Langmuir probe assimilate stochastic phenomena occurred in a typical plasma fluid. There-
fore it can reveal many interesting feature which can not investigated by common methods
in data analyzing. We have applied the Fourier-Detrended Fluctuations Analysis method to
extract sinusoidal trend and used clean data set for further analysis [6].

Here we used the novel approach i.e. the Markovian method to investigate many statis-
tical properties of the current fluctuations in the plasma. We showed that how the mathe-
matical framework of Markov processes can be applied to develop a successful statistical
description of the plasma fluctuations. We have analyzed detrended data via Markovian
method. The Markov time scale, as the characteristic time scale of the Markov properties
of the electrical discharge current fluctuations, was obtained. According to the theory of the
stochastic process, the electrical discharge fluctuations at time scales larger than the Markov
time scale can be considered as a Markov process. This means that the data located at the
separations larger than the Markov time scale can be described as a Markov chain. It is
found that Markov time scale, tMarkov increases by increasing the current intensity in the
plasma. This means that the memory of charged particles in the plasma increase as current
intensity increases. It is due to the fact that particles become more energetic, therefore they
can penetrate deeper in the plasma without considerable deviation from the initial trajectory.
In other words, by increasing discharge current density the electron impact ionization cross
section almost decreases, consequently it is statistically expected that memory of electrons
at this mesoscale for energy transfer to be decreased causing the drift as well as diffusion
coefficients of current fluctuations to be reduced [86–88].

Using the Markovian nature of fluctuations, we demonstrated that, the probability density
function of fluctuations satisfies a Fokker-Planck equation. Based on this equation one can
do averaging to extract relevant observable quantities of plasma fluctuations. The so-called
Kramers-Moyal’s coefficients by using conditional moments (14) have been determined.
The Langevin equation, governing the evolution of current fluctuations has also been given.
To check the consistency of statistical properties of regenerated data set with original cleaned
series, we compare conditional probability density function derived by (17) with that of
computed by original data in Fig. 6.

By using exact decomposition of temporal correlation function for stationary Markov
processes, we gave an expression (20) to determine correlation function of plasma fluctua-
tions. For the stationary time series, we calculated correlation time scale which in principle
differs from Markov characteristic time scale. We argued that there is no systematic relation
between Markov and correlation time scales. It must point out that, Markov time scale is
potentially related to energy transfer in mesoscale dynamics. Also here based on Markovian
method we gave an equation for evolution of various moments of structure function (24).
As we expected from (22), a deviation from Gaussianity has been observed. This might
give a hint toward the multifractality nature of plasma fluctuations in our set up. Our results
confirm that plasma fluctuations in all range of current intensity prepared in our set up be-
have as non-Gaussian processes. To extend the scaling behavior of Sq(τ ) versus τ , we relied
on Extended Self Similarity method. Extended Self Similarity approach confirmed that, the
scaling exponents of the discharge current fluctuations didn’t follow the Kolmogorov (K41)
scaling exponents. It means that there is no constant energy cascade form large scales (time
or space) to small one and there exists energy dissipation fluctuations in the plasma.
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61. Colistete, R. Jr., Fabris, J.C., Goņcalves, S.V.B., de Souza, P.E.: Int. J. Mod. Phys. D 13(4), 669 (2004)
62. Medvedev, S.Y.: Radiophys. Quantum Electron. 20(8), 863–865 (1977)
63. Dynkin, E.B.: J. Funct. Anal. 55(3), 344–376 (1984)
64. Primak, S., Lyandres, V., Kontorovich, V.: Phys. Rev. E 63(6), 061103 (2001)
65. van Milligen, B.P., Sánchez, R., Carreras, B.A., Lynch, V.E., LaBombard, B., Pedrosa, M.A., Hidalgo,

C., Gonçalves, B., Balbin, R.: Phys. Plasmas 12, 052507 (2005)
66. Sattin, F.: arXiv:0903.2189
67. Renner, C., Peinke, J., Friedrich, R.: Physica A 298(3–4), 499–520 (2001). arXiv:cond-mat/0102494v2

(2000)
68. Waechter, M., Riess, F., Schimmel, Th., Wendt, U., Peinke, J.: Eur. Phys. J. B 41(2), 259 (2004)
69. Hurst, H.E., Black, R.P., Simaika, Y.M.: Long-Term Storage: An Experimental Study. Constable, London

(1965)
70. Eke, A., Herman, P., Kocsis, L., Kozak, L.R.: Physiol. Meas. 23(1), R1 (2002)
71. Koscielny-Bunde, E., Roman, H.E., Bunde, A., Havlin, S., Schellnhuber, H.J.: Philos. Mag. B 77(5),

1331 (1998)
72. Koscielny-Bunde, E., Bunde, A., Havlin, S., Roman, H.E., Goldreich, Y., Schellnhuber, H.J.: Phys. Rev.

Lett. 81(3), 729 (1998)
73. Benzi, R., Biferale, L., Ciliberto, S., Struglia, M.V., Tripiccione, R.: Physica D 96(1–4), 162 (1996)
74. Bershadskii, A., Sreenivasan, K.R.: Phys. Lett. A 319(1–2), 21 (2003)
75. Kolmogorov, A.N.: Dokl. Akad. Nauk SSSR 31, 538 (1941)
76. Anselmet, F., Gagne, Y., Hopifinger, E.L., Antonia, R.A.: J. Fluid Mech. 140, 63 (1984)
77. Benzi, R., Paladin, G., Parisi, G., Vulpiani, A.: J. Phys. A 17, 3521 (1984)
78. Meneveau, C., Sreenivasan, K.R.: Nucl. Phys. B, Proc. Suppl. 2, 49 (1987)
79. Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., Succi, S.: Phys. Rev. E 48, R29–R32

(1993)
80. Ghasemi, F., Kaviani, K., Sahimi, M., Rahimi Tabar, M.R., Taghavi, F., Sadeghi, S., Bijani, G.: Comput.

Sci. Eng. 8(2), 54 (2006)
81. Gentle, K.W.: Rev. Mod. Phys. 67(4), 809 (1995)
82. Krommes, J.A.: Phys. Rep. 360(1–4), 1 (2002)
83. Oberman, C.R., Williams, E.A.: In: Galeev, A.A., Sudan, R.N. (eds.) Basic Plasma Physics, vol. 1. North-

Holland, Amsterdam (1983)
84. Taylor, E.C., Comisar, G.G.: Phys. Rev. 132(6), 2379 (1963)
85. Hazeltine, R.D., Mahajan, S.M.: Phys. Plasmas 11(12), 5430 (2004)
86. Schappe, R.S., Walker, T., Anderson, L.W., Lin, C.C.: Phys. Rev. Lett. 76, 4328 (1996)
87. Bernshtam, V.A., Ralchenko, Yu.V., Maron, Y.: J. Phys. B, At. Mol. Opt. Phys. 33(22), 5025–5032

(2000)
88. Ichimaru, S.: Statistical Plasma Physics, Condensed Plasmas, vol. II (2004). Westview Press

http://arxiv.org/abs/arXiv:0903.2189
http://arxiv.org/abs/arXiv:cond-mat/0102494v2

	Markov Properties of Electrical Discharge Current Fluctuations in Plasma
	Abstract
	Introduction
	Experimental Equipment
	Markovian Nature of Data Set
	The Langevin Equation: Evolution Equation to Describe the Plasma Discharge Current Fluctuations
	Non-Gaussianity and Multifractality of Plasma Fluctuations
	Summary and Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


