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a b s t r a c t

The electronic transmission and conductance of a gapped graphene superlattice were calculated by
means of the transfer-matrix method. The system that we study consists of a sequence of electron-
doped graphene aswells and hole-doped graphene as barriers.We show that the transmission probability
approaches unity at some critical value of the gap. We also find that there is a domain around the critical
gap value for which the conductance of the system attains its maximum value.

Crown Copyright© 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Graphene, a single atomic layer of crystalline carbon on
the honeycomb lattice that consists of two interpenetrating
triangular sublattices A and B, has opened up a new field for
fundamental studies and applications [1–5]. Peculiar electronic
properties of graphene give rise to the possibility of overcoming
the limitations of the silicon-based electronic structure [6]. The
electronic spectrum in graphene contains two zero energy at K+
and K− points of the Brillouin zone, which are called the valleys
or Dirac points. The massless Dirac-like carriers in graphene have
almost semi-ballistic transport behavior with small resistance, due
to the suppression of the back-scattering process [7]. The mobility
of the carriers in graphene is quite high [8–11] and is much
higher than the electron mobility revealed in the semiconductor
hetrostructures [12,13].
In graphene sheets the type of particle (electrons or holes)

and the density of the carriers can be controlled by tuning a gate
bias voltage [2,14,15]. In a gapless graphene electrical conduction
cannot be switched off by using the control voltages [16], which
is essential for the operation of conventional transistors. One can
overcome such difficulties by generating a gap in the electronic
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spectrum. The band gap is a measure of the threshold voltage and
the on–off ratio of the field effect transistors [17,18]. Therefore, it is
essential to induce a band gap at theDirac points in order to control
the transport of the carriers and integrating graphene into the
semiconductor technology. Consequently, band gap engineering in
graphene is a current topic of much interest with fundamental and
applied significance [19].
In the literature several routes have been proposed and applied

to induce and to control a gap in graphene. One of them is using
quantum-confined geometries, such as quantum dots or nanorib-
bons [20–24]. It has been shown that the gap values increase by
decreasing the nanoribbon width. An alternative way is spin–orbit
coupling whose origin is due to both intrinsic spin–orbit interac-
tions, or the Rashba interaction [25–28]. Yet another method to
generate a gap in graphene sheets is through an inversion symme-
try breaking of the sublattice, when the number of the electrons on
A and B atoms are different [29–32], e.g., graphene placement on
proper substrates [33–40].
Graphene superlattices, on the other hand, may be fabricated

by adsorbing adatoms on the graphene surface by positioning and
aligning impurities with scanning tunnelingmicroscopy [41], or by
applying a local top gate voltage to graphene [42]. The transition
of hitting massless particles in a clean [43] or disordered [44]
graphene-based superlattice structure has been studied. It is
shown that the conductivity of the system depends on the
superlattice structural parameters. Furthermore, the superlattice
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structure of the graphene nanoribbons was recently studied by
using first-principle density-functional theory calculations [45].
These calculations showed that the magnetic ground state of
the constituent ribbons, the symmetry of the junction, and their
functionalization by adatoms represent structural parameters to
the electronic andmagnetic properties of such structures. It would,
therefore, be worthwhile to investigate how the conductance of
graphene superlattice junctions is affected by a gap opening at the
Dirac points.
In this paper we consider the sublattice symmetry-breaking

mechanism due to the fact that the densities of the particles
associated with the on-site energy for A and B sublattices
are different or, equivalently, consider the intrinsic spin–orbit
interaction for a gap opening in a clean graphene superlattice.
We investigate the transmission probability of the Dirac fermions
through the system. In the cases of a single barrier and double
barrier, exact analytical analyses are carried out for calculating the
transmission probability. In addition,we show that the group delay
time is different from the dwell time for a system that consists of a
gap opening.
The rest of the paper is organized as follows. The theory and

method are discussed in Section 2. The numerical results and
discussions are given in Section 3. A brief summary is given in
Section 4.

2. The superlattice model

We consider a graphene with a peculiar gap opening due
to the sublattice symmetry breaking, where the 2D massive
Dirac fermions at low energy are described by noninteracting
Hamiltonian [46] Ĥ = h̄vFσ ·k+mv2Fσz . There are two eigenvalues

±Ek, where Ek =
√
h̄2 v2Fk

2
F +1

2 is the particle dispersion relation

with energy gap 1 = mv2F . Moreover, the Fermi velocity, vF ≈
106 ms−1, the Fermi momentum of electron is kF and σi, where
i = x, y and z, are Pauli matrices. We consider a sequence of
electron doped-graphene as wells, and hole-doped graphene as
barriers, a schematic of which with the associated potential is
illustrated in Fig. 1. The growth direction is taken to be the x
axis, which is designed as the superlattice axis. The coordinate
of the ith interface is labeled by li where, li = integer[ i2 ]D +
integer[ i−12 ]L. The schematic diagram of the electronic spectrum
of the gapped graphene is shown in Fig. 1 (top graph) as well. Due
to the difference between the Fermi energy and the band structure
between two graphene strips, the potential profile of the system is
the multiple quantum well structure which is described by

V (x) =
{
V0, if l2i−1 < |x| < l2i;
0, otherwise. (1)

To solve the transport problem in a graphene superlattice, we
assume that the incident electron propagates at angleφ along the x
axis (see Fig. 1) with energy E = 2πvF/λ, andwith the wavelength
λ across the barriers, in such a way that the Fermi level lies in the
conduction band outside the barrier and the valence band inside
it. Throughout the paper, we consider the Klein zone in which
1 < E < V0 − 1. The Dirac spinor components that are the
solutions to the Dirac Hamiltonian are expressed as

ψ1(x, y) = (aieikixx + bie−ikixx)eikyy

ψ2(x, y) = si(aieikixx+iϕi − bie−ikixx−iϕi)eikyy (2)

where ai and bi are the transmission amplitudes. Here si = sgn(E−
V (x)), k2x = (E2 − 12)/ h̄2 v2F − k

2
iy, and, q

2
x = ((E − V0)2 − 12)

/ h̄2 v2F − k
2
y , with, kix being kx or qx. Moreover, ϕi is either φ or θ

for the well and the barrier, respectively. kx = kF cosφand ky =
Fig. 1. Model of gapped graphene superlattices.

kF sinφ are the wave vector components for the outside region of
the barriers.
To calculate the transmission coefficients, we use the transfer-

matrix method. To this end, we apply the continuity of the wave
functions at the boundaries and construct the transfer matrices as
follows:(
1
r

)
=

1
sin(αk) cos(φi)

MS(x)N aN (3)

where

M =
(
ρ2η1e−iφ − ρ1η2eiθ ρ2η1e−iφ − ρ1η2e−iθ

ρ2η1eiφ − ρ1η2eiθ ρ2η1eiφ − ρ1η2e−iθ

)
,

N =

e
ikx lN

(
ρ1

ρ2
e−iθ −

η1

η2
eiφ
)/
[2eiqx lN cos θ ]

eikx lN
(
ρ1

ρ2
eiθ +

η1

η2
eiφ
)/
[−2eiqx lN cos θ ]


s(x = li) =

(
t11 t12
t21 t22

)
, S(x) = s(l2)s(l3) . . . s(lN−1) (4)

and r and aN are the reflection and the transmission coefficients of
the system that consists ofN barriers.We have defined parameters
ρ1 = cos(αk/2), η1 = sin(αk/2), ρ2 = sin(άk/2), and, η2 =
cos(άk/2). The angles αk and άk are determined by tan(αk) =
h̄vF(k2x + k

2
y)
1
2 /1 and tan(άk) = h̄vF(q2x + k

2
y)
1
2 /1, respectively.

The elements of smatrix have the form

t11 = ei(kix−k(i−1)x)li−1
[
−
ηi

ηi−1
eiϕi +

ρi

ρi−1
e−iϕi−1

]/
2 cos(ϕi−1) (5)

t12 = ei(−kix−k(i−1)x)li−1
[
ηi

ηi−1
e−iϕi +

ρi

ρi−1
e−iϕi−1

]/
2 cos(ϕi−1)

t21 = ei(kix+k(i−1)x)li−1
[
−
ηi

ηi−1
eiϕi +

ρi

ρi−1
eiϕi−1

]/
2 cos(ϕi−1)

t22 = ei(−kix+k(i−1)x)li−1
[
−
ηi

ηi−1
e−iϕi +

ρi

ρi−1
eiϕi−1

]/
2 cos(ϕi−1).

The angle dependence of the transmission probability T = |aN |2

is obtained by solving Eq. (3) for a given N . It should be noted
that the transmission coefficients for the gapless graphene [44]
is revealed by setting 1 = 0 in Eqs. (2)–(5). After the
transmission coefficients are obtained, the conductivity of the
system is computed by means of the Büttiker formula [47], taking
the integral of T (E, φ) over the angle,

G = G0

∫ π
2

−
π
2

T (E, φ) cos(φ)dφ (6)

where G0 = e2mevFw/ h̄2 withw being the width of the graphene
strip along the y direction.
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2.1. Exact analysis for single- and double-barrier systems

Let us first consider a system composed of a single barrier. The
wave functions in the different regions can be written as

ψ1(x, y) = e(ixkx+yky)
(
ρ1
eiφsη1

)
+ rei(−xkx+yky)

(
ρ1

ei(π−φ)sη1

)
ψ2(x, y) = aei(xqx+yky)

(
ρ2
eiθ s′η2

)
+ be−i(xqx+yky)

(
ρ2

ei(π−φ)s′η2

)
ψ3(x, y) = tei(xkx+yky)

(
ρ1
eiθ sη1

)
. (7)

It should be noted that since the interface is located along the y,
due to the conservation of the momentum we have, ky = qy. After
some straightforward calculations, the electronic transmission
probability, T (φ), through the barrier is obtained, resulting in

T (φ) =
cos2 θ cos2 φ

cos2 φ cos2 θ cos2 Dqx + sin2 Dqx
(
sinφ sin θ + C

2B

)2 (8)

where C/B = tanαk/2 tanαk′/2+ cotαk/2 cotαk′/2.
It is useful to investigate the conditions under which the

transmission probability approaches unity. We find from Eq. (8)
that when Dqx = nπ (n is an integer), the barrier becomes entirely
transparent and does not depend on the parameter φ. The same
condition at the normal incidence was obtained in [48].
For a double-barrier system, the calculation of the transmission

would be difficult. In this case we restrict the calculations to the
case,φ = 0. The electronic transmission expression for the double-
barrier system at normal incidence takes the form

T (φ = 0) =
64(ρ1η1ρ2η2)4

A2 cos2(2qxD)+ P + Q + Z
(9)

where A = 6(ρ1η1ρ2η2)2 + (η1ρ2)
4
+ (ρ1η2)

4, B =

2(ρ1η1ρ2η2)2 − (η1ρ2)4 − (ρ1η2)4, C = ρ1η
3
1ρ
3
2η2 + ρ

3
1η1ρ2η

3
2 ,

P = 16C2 sin2(2qxD) + 8BC sin(2kxL) sin(2qxD)(cos(2qxD) − 1),
Q = B2[1 + 2 cos(2kxL)(cos(2qxD) − 1) + (1 − cos(2qxD))2] and
Z = 2AB cos(2qxD)[1+(cos(2qxD)−1) cos(2kxL)]. In the numerical
section below, we find some critical gap values for which T (φ = 0)
= 1 and show that the critical points are in good agreement with
the results calculated by the analytical expressions.

2.2. The Hartman effect in a gapped graphene

In this sectionwe study tunneling through the single barrier and
calculate two important tunneling times, the group delay time τg
and the dwell time τd [49]. The relationship between the two times
was first studied byWinful [50] for a one-dimensional electron gas
system. It was shown that there is a difference between the two
times in the conventional electron gas systems. Using the energy
derivative of the transmission phase shift [50], the group delay
time is obtained through τgt = h̄dφ0/dE, where φ0 = φt + kxD,
and the group delay time in reflection is given by τgr = h̄dφr/dE.
Here, φi (i = t or r) denotes the phase angle of the transmission or
the reflection wave function.
For a general asymmetric barrier, τgt differs from τgr , and the

groupdelay time τg is obtainedby τg = |t2|τgt+|r2|τgr , whereas for
symmetric barriers, τg = τgt = τgr . The dwell time—the time spent
by a particle in the barrier—is expressed as, τd =

∫ D
0 |ψ(x)|

2dx/jin,
where ψ(x) is the stationary state wave function with energy
E, with jin = vF cos(φ) being the flux of the incident particles.
According to calculations given in [51], we have∫ D

0
|ψ(x)|2dx = −ih̄vF[(ψĎ(r)σx∂Eψ(r))x=D

− (ψĎ(r)σx∂Eψ(r))x=0]. (10)
For the system, the wave functions are described by

ψ1(x, y) = e(ixkx+yky)
(
ρ1
eiφsη1

)
+ rei(−xkx+yky)

(
ρ1

ei(π−φ)sη1

)
(11)

in front of the barrier and

ψ3(x, y) = tei(xkx+yky)
(
ρ1
eiφsη1

)
(12)

for behind the barrier. Therefore, the right-hand side of Eq. (10) be-
comes 2vFρ1η1 cosφ{|t|2h̄dφ0/dE + |r|2h̄dφr/dE}. Consequently,
the relationship between τd and τg is obtained by

τd =
εk√

εk2 +12
τg . (13)

The τg differs from the τg and they are no longer the same in the
presence of the gap values. Note that the energy of a quasiparticle
is εk = h̄vF|

−→
k |. The dwell time becomes equal to the group delay

time by setting 1 = 0. The last result is in contrast to the result
obtained for a conventional 2D electron gas system, where the
dwell time equals the group delay time plus a self interference
term, which comes from the overlap of the incident and reflected
waves in front of the barrier.

3. Numerical results and discussion

We evaluated the electronic transmission probability and
conductance in the gapped graphene through a finite number of
potential barriers, as a function of the gap value introduced in the
system. In all of the numerical calculations we assumed that the
wavelength of the incident electron is λ = 50 nm and V0 =
200 meV. In all the figures1 scales in meV.
We first calculated the transmission probability of the charge

carriers through the graphene structurewith a double barrier,N =
2, with the barrier widthD = 50 nm. Fig. 2 shows the transmission
probability of the incident electrons hitting a graphene superlattice
as a function of the angle φ for several values of the gap values,1,
with (a) L = 50nmand (b) L = 70nm, respectively. Themagnitude
of T behaves non-monotonically with the increase of the energy
gap value at φ = 0. It shows that the Klein tunneling is no longer
applicable when there is a band gap in graphene. It should be
noted that the Kelin tunneling predicts that the chiral massless
carrier can pass through a high electrostatic potential barrier with
probability one, regardless of the height andwidth of the barrier at
normal incidence. In addition, to verify the dependence on thewell
width of the transmission probability, we calculated the electronic
transmission for the several values of the parameter L. The results
are depicted in Fig. 2(b).
To verify the behavior of the electronic transmission probability

at normal incidence, the calculated transmission probability as a
function of the band gap value for the several numbers of the
potential barriers is shown in Fig. 3(a). The structural parameters
are the same as in Fig. 2(a). The results for a single barrier, N = 1,
show that when1 increases, the transmission probability exhibits
aminimum at1 ' 62meV, and then it reaches unity at the critical
value given by 1c = 82 meV. The critical gap values entirely
coincide with the results calculated analytically. In the case of φ =
0, we found analytically that 1c =

√
(E − V0)2 − (h̄vF)2(nπ/D)

2
,

which is supported by the numerical calculations.
In the case of the double barrier, N = 2, there are three 1c

values with which T becomes exactly unity. For the system that
consists of an even number of the potential barriers, we found that
the superlattice is fully transparent (T = 1), when the energy
gap is 1c = 53.5 meV. Note that the critical value of the band
gap 1c depends on the superlattice structural parameters, as we
show numerically in Fig. 3(b), where L = 70 nm. The number of
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a b

Fig. 2. Transmission probability T of the electrons through the double-barrier structures as a function of the incident angle and the parameter 1. The value of the barrier
width is D = 50 nm and those of the well width are (a) L = 50 nm, and (b) 70 nm.
a b

Fig. 3. Transmission probability T for the normal incident electrons through graphene superlattice as a function of 1 for (a) L = 50 nm, and (b) L = 70 nm for several
numbers of the barriers.
the maxima at which the transmission amplitude becomes unity
increases with the increasing number of the potential barriers.
We also studied that how the structural parameters affect the

transmission of the system. Fig. 4 presents T (φ = 0) as a function
of the well width for the several values of the barrier width. The
number of the potential barriers isN = 2, and the value of gapwas
chosen as1 = 53.5 meV. The numerically calculated T (φ = 0) is
in good agreement with the result obtained analytically using Eq.
(9). Furthermore, the transmission probability approaches unity
only for the specific values, L = 0, 25, 50, 75, 100, . . . at D =
50 meV. However, when D = 20 or 80 meV, the transmission
probability is independent of the parameter L at normal incidence
angle, and always approaches unity. The numerical results predict
the transmission probability at normal incidence angle to be unity
for the case that 2qxD = 2nπ and that is independent of L.
However, when 2qxD = (2n − 1)π , the transmission probability
would be unity if 2kxL = 2mπ . Therefore, the transmission
probability depends strongly on the structural parameters in the
gapped graphene superlattice.
Finally, we calculated the electronic conductance as a function

of 1 for the various numbers of the potential barriers. The results
are shown in Fig. 5. Finite-size scaling analysis indicates that G
tends to a nonzero constant at 1 = 80 meV. Moreover, there
is a domain value of 1 for which the conductivity attains its
maximum value. According to the above discussions, it is clear
that the conductivity of the system depends on the superlattice
structural parameters, such as L and D. Importantly, we would like
Fig. 4. Transmission probability T for the normal incident electrons through the
graphene superlattice that consist of N = 2 as a function of well’s width L at
1 = 53.5 meV for several values of the barrier width D.

to stress that the electronic conductance can reach a maximum
value by selecting the proper gap and the barrier width.

4. Summary

We evaluated the electronic conductance in gapped graphene
with a finite number of potential barriers. An exact analytic
expression was derived for the electronic transmission probability
in a system with a single or two barrier, and the critical values
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Fig. 5. Conductance of the graphene superlattice as a function of the parameter1
for L = 50 nm and several numbers of the barriers.

of the gap at which the transmission probability equals unity
were computed. We showed that the group delay time is not
the same as the dwell time in a gapped graphene that consists
of a barrier. However, they are the same in a gapless graphene.
It should be noted that the extension of the dwell time for a
superlattice structure needs intensive computations and will be
reported in future. Moreover, we showed that the conductance
can attain its maximum for a domain value of gaps around the
critical value. In addition, the conductance of the system depends
on the superlattice structural parameters and, therefore, one may
design a very good electronic device by selecting the proper gap
and the barrier width. Thus, the systemwith a proper arrangement
might be of use in electronic or electromagnetic devices. Finally,
the present calculations may be improved to investigate the spin
dependence of the conductance.
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