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Abstract: In this paper, we investigate the statistical and scaling properties of the California earthquakes’ inter-events
over a period of the recent 40 years. To detect long-term correlations behavior, we apply detrended fluc-
tuation analysis (DFA), which can systematically detect and overcome nonstationarities in the data set at
all time scales. We calculate for various earthquakes with magnitudes larger than a given M. The results
indicate that the Hurst exponent decreases with increasing M; characterized by a Hurst exponent, which is
given by, H = 0.34 + 1.53/M, indicating that for events with very large magnitudes M, the Hurst exponent
decreases to 0.50, which is for independent events.
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1. Introduction

Considerable attention has been devoted in recent yearsto the study of the seismic data which are full of infor-mation about the reasons of occurrence of earthquakes,.The efforts have led to valuable achievements about dif-ferent aspects of seismic data. Many of the importantproperties of this phenomenon are investigated and eluci-dated, such as power laws and scale-invariant properties.The Gutenberg-Richter law gives the distribution of theMagnitude of earthquakes [1, 2]. This law states that the
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number Ne of earthquakes with magnitude larger than Mobeys the law.
Ne ∝ 10−bM , (1)

where b ≈ 1, [3, 4]. The other law, (modified) Omorilaw, says that after the main earthquake, the seismic rate,
r(M, t), for events or aftershocks with a magnitude morethan M in a region around the main earthquake, increasessuddenly, and then decreases as

r(M, t) = r0(M)/(1 + t/c)p, (2)
where t is the time from the mainshock, r0(M) = r(M, t =0), and c is a time constant, of the order of minutes, anddescribes the deviations from a power law immediatelyafter the mainshock. In the Eq. (2) p is slightly greaterthan 1.
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It has been shown that the earthquake inter-events timeshave a universal distribution [5, 6]. Specific predictionsfor the probability density function (PDF), of the recur-rence time between earthquakes in a homogeneous regionis also derived analytically [5, 6], as well as for multipleregions, by analyzing theoretically the earthquake recur-rence times using a formulation based on the probabil-ity generating functions [7], and also assuming that allearthquakes are similar (no difference between the fore-shocks, main shocks, and aftershocks). It is also shownthat, the scaling laws of the inter-event times do not givemore information than what was found by the Gutenberg-Richter and the (modified) Omori laws. This theory ac-counts quantitatively for the empirical power laws sug-gested by Bak et al. and Corral [8, 9]. We expect to seefractal-like characteristics in the seismic data, because ofthe power law and scale-invariant properties in the timeseries of earthquakes.

As we see, investigations of fractal properties of thetime series, especially earthquake inter-events time se-ries is very important, these days. In this paper we studythe scaling properties of the California earthquake interevents over a period of the recent 40 years. We investigatethe behavior of the Hurst exponent of the spatial seismicdata versus the magnitudes of the earthquakes. There aremany methods proposed in recent years for the analysisof the different types of data. The fractal properties ofthe time-series are important for many reasons and givevaluable information about the data, as mentioned above.A famous and straightforward technique to investigate thefractal and scaling properties of the data is the detrendedfluctuation analysis (DFA) method. This method was firstproposed by Peng et al. [10, 11]. There are several featuresthat account for the complexity in earthquake sequences.The scale invariance and power law are the main char-acteristics of the earthquake data set. The GutenbergRichter law states that the magnitude probability distri-bution of the earthquakes is a power law. The Omori’slaw states that the number of aftershocks, which follow amain event, decays as a power law with an exponent closeto minus one. The maps of the faults are fractal-like (spa-tial) and the time series of the earthquakes are 1/f noisein time [12, 13]. The existence of power law and scaleinvariance in the spatial-temporal data series of earth-quakes indicates the presence of a fractal behavior, soone of the aspects that scientists study on different dataseries of earthquakes is their fractal behavior. In the fol-lowing sections, we first introduce the mentioned methodand illustrate the mathematical details and the analysistechniques. Then we introduce the results of the process.

2. Analysis Techniques
As mentioned above, one of the well-known methods forinvestigation of the fractal properties of a time-series isthe Detrended Fluctuation Analysis (DFA) method. Usingthis method, we get the Hurst exponent of the series, bywhich we may get information about the fractal propertiesof the time series. The mathematical details of this methodare as follows: Consider a time-series xk . We define the”profile” as:

Y (i) = i∑
k=1 [xk − 〈x〉] . (3)

Now divide the profile Y (i) into Ns = int(N/s) non-overlapping segments of equal lengths s. Since the lengthN of the series is often not a multiple of the consideredtime scale s, a short part at the end of the profile mayremain. In order not to disregard this part of the series,the same procedure is repeated starting from the oppo-site end. Thereby, 2Ns segments are obtained altogether.Then one calculates the local trend for each of the 2Nssegments by a least-square fit of the series. At the laststep we determine the variance as follows:
F 2(s, µ) = 1/s s∑

i=1 {Y [(µ − 1)s+ i]− yµ(i)}2
for µ = 1, 2, . . . , Ns, (4)

F 2(s, µ) = 1/s s∑
i=1 {Y [N − (µ −Ns)s+ i]− yµ(i)}2

for µ = Ns + 1, . . . , 2Ns. (5)
The above computation is repeated for box sizes s (dif-ferent scales) to provide a relationship between F (s) ands. A power law relation between F (s) and s indicates thepresence of scaling: F (s) ∼ sh.The relation between the exponent h (DFA exponent) andthe Hurst exponent is as follows. For stationary signalssuch as fractional Gaussian noise (FGN), Y (i) in Eq. (3)will be an fractional Brownian motion (FBM) signal, sothat 0 < h < 1.0. The exponent h is known as the Hurstexponent H [10, 11, 14]. But for a non-stationary signal,such as FBM noise, Y (i) will be a sum of FBM signal, sothe scaling exponent of F (s) is identified by h > 1.0 [10,11, 14]. In this case the relation between the exponentsh and H will be H = h − 1. In addition, it is shown
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that the autocorrelation function can be characterized bya power law C (s) ∼ sγ with exponent γ = 2 − 2H andthe power spectra scales by S(ω) ∼ ω−β with frequency
ω and γ = 2H − 1. For the non-stationary signals, thecorrelation and the power spectrum scaling exponents are
γ = −2H and β = 2H + 1, respectively [10, 11, 14].
However, the DFA method can only determine posi-tive exponents, in order to refine the analysis near theFGN/FBM boundary or strongly anti-correlated signalswhen this exponent is close to zero. The simplest way toanalyze such data is to integrate the time series before theDFA procedure. Hence, we replace the single summationin Eq. (3), which is describing the profile from the orig-inal data, by a double summation by using classificationby the signal summation conversion method (SSC). Afterusing the SSC method, FGN switches to FBM and FBMswitches to sum-FBM. In this case the relation betweenthe new exponent, h′, and h is h = h′−1 [14, 15] (recentlyMovahed et al. have proved the relation between the de-rived exponent from the double profile of a series in theDFA method and the h exponent in the appendix of [15]).
We apply the above method to the California earthquakes’inter-event time-series data. We use DFA method forthe seismic data with different magnitudes. Changing themagnitude of the data, under investigation, gives us thefollowing results, illustrated by the figures below.

3. Data Information

The data are from a set collected by the U.S. GeologicalSurvey (USGS)1, showing the earthquakes which occurredin the California region from 1973 up to the beginning of2007. The total number of these earthquakes with themagnitude more than 3 (Richter) is (27987) and (3673)for more than 4. The number of the earthquakes withthe magnitude more than M obeys the Gutenberg-Richterlaw which is (magnitude > M) ∼ M−0.9, for the datawe have investigated. The data we have worked on arethe distances of each two successive earthquakes in thementioned region. The only restriction is that in eachstage of the calculation of the Hurst exponents, we onlyconsider the earthquakes with magnitudes greater than aspecific M. Fig. 1 shows the time series of the Californiaearthquake versus number of events.
1 www.usgs.gov

Figure 1. Time series of the California earthquake versus number of
events. For magnitudes larger than 3 (M > 3).

Figure 2. The number of California earthquakes Ne(M) with magni-
tudes larger than M. The scaling region is in Mc < M < 7.

4. Results
Applying the DFA method, as mentioned above, gives usthe scaling behavior of the California earthquakes inter-events. We repeated the calculations for various earth-quakes with magnitudes more than a given M. The re-sults indicated that the Hurst exponent decreases as Mincreases; as shown in Fig. 3. The following empiricalformula, obtained by fitting, describes well the numericalresults,

H = a+ b/Mc. (6)
With a = 0.34± 0.03, b = 1.53± 0.13, and c = 1.0± 0.2.The maximum magnitude of the earthquakes (in Richter)
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is about M ∼ 8. For these magnitudes the Hurst expo-nent H, goes to, H ≈ 0.34 + 1.53/8 = 0.53, which is closeto 0.5, So the earthquakes’ inter-event spatial data withthe magnitude more than M have a Hurst exponent ap-proaching 0.50, which shows that larger earthquakes oc-cur essentially independently (random events correspondto H = 0.50).

Figure 3. Hurst Exponent Vs. Magnitude (Richter). Considering the
earthquakes’ inter-event series with magnitude larger than
M. (Spatial data). The red squares are the results of the
calculations and the black curve is the fitted curve.

For more clarity, we have also calculated the Magnitudedependence of Hurst exponent with two other fits, whichare linear and exponential. The two other fits are as fol-lows,
H = 1.08− 0.09M, (7)
H = 1.19e−0.12M . (8)

Eqs. (7), (8), show the relation between the distributionof the aftershocks against their magnitude. As we seethe trend of the Hurst exponent versus the magnitude isdecreasing, regardless of the mathematical relation wepropose for this trend. This reveals that the earthquakesoccurring sequentially and close to each other have thelower magnitudes and they are more correlated, and forthe earthquakes with more magnitudes we find them lesscorrelated, because the Hurst exponent decreases to 0.5as we mentioned before. For larger magnitudes, we mayrarely see other earthquakes with large magnitudes afterthe main huge earthquake. This is because of the weakcorrelation between the earthquakes with large magni-tudes. But after the earthquakes with small magnitudeswe may see aftershocks frequently. In fact one of the rea-sons of the trend of Hurst exponent versus the magnitudemay be interpreted as the aftershocks occurring frequentlyafter the low magnitude earthquakes and rarely after thehigh magnitude earthquakes.

5. Conclusion
We determine that the inter-events of the earthquakesare well correlated. Our results show that increasing themagnitude of the earthquakes, leads to the decrease ofthe correlation of the inter-event, according to Eq. (6).We may interpret this behavior as aftershocks. In addi-tion, it is shown that H decreases to 0.5 for earthquakeswith a large magnitude (M > 8). As we know, H = 0.5,indicates the independence of the events. Therefore, thespatial data of California earthquakes, with large magni-tudes, occur independently, showing that such events areweakly correlated. The suggested fitting equations couldreveal how the aftershocks’ distribution depends on themagnitude.
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