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Abstract

We propose a method for analyzing the data for the rates of exchange of various currencies versus the U.S. dollar.

The method analyzes the return time series of the data as a Markov process, and develops an effective equation which

reconstructs it. We find that the Markov time scale, i.e., the time scale over which the data are Markov-correlated, is one

day for the majority of the daily exchange rates that we analyze. We derive an effective Langevin equation to describe the

fluctuations in the rates. The equation contains two quantities, Dð1Þ and Dð2Þ, representing the drift and diffusion

coefficients, respectively. We demonstrate how the two coefficients are estimated directly from the data, without using any

assumptions or models for the underlying stochastic time series that represent the daily rates of exchange of various

currencies versus the U.S. dollar.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The complex statistical properties of economic systems have attracted the attention of many researchers, as
a result of which an extensive literature has evolved for modeling such systems and, in particular, fluctuations
of financial markets (see, e.g., Ref. [1] and references therein). Traditionally, fluctuations in various price
indices were viewed and modeled as random variables. Well-known examples are the ARCH-type (see, for
example, Ref. [2]) and stochastic volatility models [3]. Since advances in the computer technology have made it
e front matter r 2007 Elsevier B.V. All rights reserved.
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possible to have high frequency (large-volume) data, many physicists have joined the field of analyzing
financial systems, adapting methods from statistical physics, which has given rise to the field of econophysics.
One line of studies within econophysics focusses on the statistical properties of financial time series, such as
stock prices, stock market indices, and currency exchange rates. Rather than comparing the predictions of
models with the various aspects of empirical data (which is the traditional approach), physicists try to extract
information about the stochastic processes that govern financial markets by analyzing the data. Several recent
articles review the recent developments [4–6].

At the same time, financial time series are not the only type of data that exhibit stochastic fluctuations. In
fact, many natural or man-made phenomena, as well as the morphology of many physical systems, are
characterized by a degree of stochasticity. Turbulent flows, seismic recordings, the internet traffic, pressure
fluctuations in chemical reactors, and the surface roughness of many materials and rock [7,8] are but a few
examples of such phenomena and systems. A long standing problem has been the development of an effective
reconstruction method for such phenomena. That is, given a set of data for certain characteristics of a
phenomenon, one would like to develop an effective equation that can reproduce the data with an accuracy
comparable to the measured data. If such a method can be developed, one may utilize it to (1) reconstruct the
original process with similar statistical properties, (2) understand the nature and properties of the stochastic
process, and (3) predict the phenomenon’s future behavior, if it is time-dependent, or its behavior over larger
(or smaller) length scales, if it is length scale-dependent.

In this paper we use a novel method to address this general problem. The proposed method utilizes a set of
data for a phenomenon which contains a degree of stochasticity and constructs a simple equation that governs
the phenomenon for which the data have been measured. The method is quite general; it is capable of
providing a rational explanation for complex features of the stochastic phenomenon under study; it requires
no scaling feature, and it enables us to accomplish the three tasks listed above. As an example, we apply the
method to analyze the rates of exchange of various currencies versus the U.S. dollar, which normally fluctuate
stochastically and in a complex manner. We develop an effective reconstruction method for the fluctuations in
the exchange rates; that is, given a set of data for certain characteristics of the rates, we develop an effective
equation that reproduces the data with an accuracy comparable to the original data. The effective equation is
then utilized to not only reconstruct the original time series with similar statistical properties, but also to
predict its future dynamic evolution.

The rest of this paper is organized as follows. Section 2 is devoted to a brief summary of the most important
notions on Markov processes, which we use for the reconstruction, and their application to the analysis of the
empirical data for the foreign exchange rates. Section 3 contains the main results of our analysis. A physical
interpretation of the method and the results is presented in Section 4.
2. Stochastic time series as Markov processes

Complete information about any stochastic process would be available, if one has all the possible n-point
joint probability density functions (PDF) pðr1; t1; r2; t2; . . . ; rn; tnÞ, describing the probability of finding
simultaneously the return r1 on the time t1, r2 on the time t2, and so forth up to rn on the time tn. The returns
are defined by, ri ¼ ln½xðtiþ1Þ=xðtiÞ�, where xðtiÞ is the datum at time ti. Without loss of generality, we take
t1ot2o . . .otn. The n-point joint PDF is expressed by multiconditional pdf

pðr1; t1; r2; t2; . . . ; rn; tnÞ

¼ pðr1; t1jr2; t2; . . . ; rn; tnÞpðr2; t2jr3; t3; . . . ; rn; tnÞ . . . pðrn�1; tn�1jrn; tnÞpðrn; tnÞ. ð1Þ

Here, pðri; tijrj ; tjÞ denotes the conditional probability of finding the return ri on the time ti under the
condition that on a larger time tj the return rj is found. It is defined with the help of the joint probability
pðri; ti; rj ; tjÞ by

pðri; tijrj ; tjÞ ¼
pðri; ti; rj ; tjÞ

pðrj ; tjÞ
. (2)
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An important simplification arises if

pðri; tijriþ1; tiþ1; . . . ; rn; tnÞ ¼ pðri; tijriþ1; tiþ1Þ. (3)

Eq. (3) is the defining feature of a Markov process evolving from riþ1 to ri. Thus, for a Markov process the
n-point joint PDF factorizes into n conditional PDF

pðr1; t1; . . . ; rn; tnÞ ¼ pðr1; t1jr2; t2Þ � � � pðrn�1; tn�1jrn; tnÞpðrn; tnÞ. (4)

The Markov property implies that the t-dependence of the returns r can be regarded as a stochastic process
evolving in t. It should be noted here that, if Eq. (3) holds, it would be true for a process evolving in time from
the large down to the small times, as well as the opposite, from the small to the large times [9]. Eq. (4) also
expresses the fundamental property of the conditional probabilities for Markov processes, since they
determine any n-point joint PDF and, thus, the complete statistics of the process.

As is well known, a given process with a degree of randomness or stochasticity may have a finite or an
infinite Markov time scale [10–12]. The proposed method utilizes a set of data for a phenomenon which
contains a degree of stochasticity. We begin by describing the procedure that leads to the development of an
effective Langevin equation based on the (stochastic) data set [11,12]. As the first step, we check whether the
returns for the data, as defined above, follow a Markov chain and, if so, measure the Markov time scale tM .
To determine the Markov scale tM for the returns, we note that a complete characterization of the statistical
properties of stochastic fluctuations of a quantity r in terms of a parameter t requires the evaluation of the
joint PDF pnðr1; t1; . . . ; rn; tnÞ for an arbitrary n, the number of the data points. If the data represent a Markov
process, an important simplification can be made, as the n-point joint PDF, pn, is generated by the product of
the conditional probabilities pðriþ1; tiþ1jri; tiÞ, for i ¼ 1; . . . ; n� 1. A necessary condition for a stochastic
phenomenon to be a Markov process is that the Chapman–Kolmogorov (CK) equation [13],

pðr2; t2jr1; t1Þ ¼

Z
dr0 pðr2; t2jr

0; t0Þpðr0; t0jr1; t1Þ (5)

should hold for any value of t0 in the interval t2ot0ot1. Thus, one should check the validity of the CK
equation for different r1 by comparing the directly evaluated conditional probability distributions
pðr2; t2jr1; t1Þ with the ones calculated according to right side of Eq. (5). The simplest way to determine tM

for the data is the numerical calculation of the quantity,

S ¼ jpðr2; t2jr1; t1Þ �

Z
dr0pðr2; t2jr

0; t0Þpðr0; t0jr1; t1Þj (6)

for given r1 and r2, in terms of, for example, t0 � t1 and considering the possible errors in estimating S. Then,
tM ¼ t0 � t1 for that value of t0 � t1 for which either S vanishes, or reach its minimum [12].

3. Analysis of the rates of exchange of various currencies versus U.S. dollar

We now apply the method to construct the fluctuations in the rates of exchange of various currencies versus
the U.S. dollar, by calculating the Markov time scale tM . For this purpose, we first construct the return
series ri. Then, to determine tM , the validity of the CK equation for different r1 is checked by comparing the
directly evaluated conditional probability distributions pðr2; t2jr1; t1Þ with those calculated according to the
right side of Eq. (5). For example, we show in Fig. 1 the computed S values for the hourly closing prices of
EURO versus the U.S. dollar, along with their statistical errors, for different time scales. The data were taken
from the source, http://finance.yahoo.com/, and are all related to the same period: 31 December, 1979 – 31
December, 1998. Except for the hourly price of EURO over a period of 4 months (30 January – 31 May, 2003),
the rest have been recorded for each trading day. In Table 1 we report the Markov time scale tM for different
currencies versus the U.S. dollar.

Since the price index returns can be represented by a Markov process, we can derive an effective stochastic
equation that describes the fluctuations of the returns rn. The CK equation yields an evolution equation for the
distribution function pðrnÞ across the time step n which, when formulated in differential form, yields a master

http://finance.yahoo.com/
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Fig. 1. The S values of the hourly prices of EURO versus the U.S. dollar, along with the statistical errors for the returns.

Table 1

Markov time scale tM , and the drift and diffusion coefficients for the various exchange rates versus the U.S. dollar

Currency tM Dð1Þ Dð2Þ Period

FRNFR/US 1 �1:0328r 0:0081þ 0:0096rþ 0:4133r2 12/31/1979–12/31/1998

GERDM/US 1 �0:0082� 0:9474r 0:0078þ 0:0110rþ 0:5942r2 12/31/1979–12/31/1998

DTCHG/US 1 �0:0033� 1:0071r 0:0043� 0:0007rþ 0:7134r2 12/31/1979–12/31/1998

SWISF/US 1 �0:0051� 1:0142r 0:0067þ 0:0087rþ 0:4736r2 12/31/1979–12/31/1998

JAPYN/US 1 �0:0033� 1:0571r 0:0029� 0:0088rþ 0:6716r2 12/31/1979–12/31/1998

AUSTR/US 1 �0:0014� 1:1629r 0:0080þ 0:0126rþ 0:6385r2 12/31/1979–12/31/1998

BRITP/US 1 �0:0013� 0:9439r 0:0053þ 0:0117rþ 0:5853r2 12/31/1979–12/31/1998

CDNDL/US 1 �0:0008� 1:0460r 0:0039þ 0:0091rþ 0:7006r2 12/31/1979–12/31/1998

EURO/US(hourly) 1 �0:04242� 0:0287r 0:00069þ 0:00123rþ 0:00045r2 30/01/2003–30/05/2003

The results are, from top to bottom, for French, German (Mark), Dutch, Swiss, Japanese, Austrian, British, and Canadian currencies.
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equation which takes the form of a Fokker–Planck equation [13]:

q
qt

pðrÞ ¼ �
q
qr
½Dð1Þðr; tÞpðr; tÞ� þ

q2

qr2
½Dð2Þðr; tÞpðr; tÞ�. (7)

The drift and diffusion coefficients, Dð1Þðr; tÞ and Dð2Þðr; tÞ, are estimated directly from the data and the
moments M ðkÞ of the conditional probability distributions:

DðkÞðr; tÞ ¼
1

k!
lim
Dt!0

MðkÞ,

MðkÞ ¼
1

Dt

Z
dr0ðr0 � rÞkpðr0; tþ Dtjr; tÞ. (8)

The quantities DðkÞðr; tÞ are known as the Kramers–Moyal coefficients. The drift and diffusion coefficients Dð1Þ

and Dð2Þ are displayed in Figs. 2 and 3 (the data used are the hourly prices of EURO versus the U.S. dollar).



ARTICLE IN PRESS

r

D
(1

)  
(r

)

-0.5 -0.25 0 0.25 0.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 2. The drift coefficient for EURO versus the U.S. dollar.
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Fig. 3. The diffusion coefficient for EURO versus the U.S. dollar.
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It turns out that the drift coefficient Dð1Þ is (to a good degree of approximation) a linear function of r, whereas
the diffusion coefficient Dð2Þ is a quadratic function in r. For large values of r, the estimates become poor and,
thus, the uncertainty increases. From the analysis of the data set we obtain the approximants that are
presented in Table 1. To estimate the drift and diffusion coefficients, we measured the returns in units of the
10s, where s is the standard deviation of r.

According to Pawula‘s theorem, the Kramers–Moyal expansion terminates after the second term,
provided that the fourth-order coefficient Dð4Þðr; tÞ vanishes [13]. In our analysis the fourth-order
coefficient Dð4Þ was found to be about Dð4Þ ’ 10�2Dð2Þ. Thus, in this approximation, we may ignore the
coefficients DðnÞ for nX3. We note that the Fokker–Planck equation is equivalent to the following Langevin
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equation [13],

d

dt
rðtÞ ¼ Dð1ÞðrÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð2ÞðrÞ

q
f ðtÞ. (9)

Here, f ðtÞ is a random force, with zero mean and Gaussian statistics, d-correlated in t, i.e.,
hf ðtÞf ðt0Þi ¼ 2dðt� t0Þ. Furthermore, given Eq. (9), it should be clear that we are able to separate the
deterministic and the noisy components of the returns’ fluctuations in terms of the coefficients Dð1Þ and Dð2Þ.
Using Eq. (9), we show in Fig. 4 the reconstructed series for the hourly rates of exchange between the EURO
and the U.S. dollar. Compared with the real data (red line), Eq. (9) exhibits the trends perfectly. Moreover, the
two series (the actual and the reconstructed ones) exhibit practically the same fluctuations. It is worth
mentioning that Eq. (9) should be reconstructed by steps equal to the Markov time scale tM , since we do not
have information at times shorter than the time step (the Markov time scales for all the indices in Table 1 are
equal to 1 day).
t

e
u
ru

s
d
6
0

500 1000 1500 2000

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

Original

Reconstructed

Fig. 4. Comparison of the actual and reconstructed hourly data for EURO.
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Fig. 5. Comparison of the actual and reconstructed hourly data for EURO.



ARTICLE IN PRESS

r

C
u
m

u
la

ti
v
e
 P

D
F

0 1 2 3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original

Reconstructed

D=0.037

Fig. 6. Comparison of two cumulative PDFs for the original and reconstructed hourly data for EURO versus the U.S. dollar, via the

Kolmogorov–Smirnov test.

F. Farahpour et al. / Physica A 385 (2007) 601–608 607
To make predictions for the future trends, we use the definition of rðtÞ to write xðtþ 1Þ in terms of xðtÞ. But,
since the reconstructed data have a variance equal to 1

10
and a zero mean, we have

xðtþ 1Þ ¼ xðtÞ expf10sr½rðtÞ þ r̄�g, (10)

where r̄ and sr are the mean and standard deviations of rðtÞ. To use Eq. (10) for predicting rðtþ 1Þ, we need
½xðtÞ; rðtÞ�. We select three consecutive points in the series rðtÞ and search for three consecutive points in the
reconstructed series of rðtÞ that have the smallest difference with the selected points. We consider the difference
to be minimum if it is less than 0:05rmax (stricter rules are clearly possible). Wherever this happens is taken to
be the time t which fixes ½xðtÞ; rðtÞ�. Shown in Figs. 4 and 5 are the actual data and the predictions for some
interval in the time series for the hourly rates of EURO versus the U.S. dollar. We also have to say that the
figures here are one of the best runs of the stochastic simulation. Since we have different realization of the
noise and also different initial conditions, a perfect reconstruction is not always exist, but the more accurate
calculation of drift and diffusion coefficients, the better result of reconstruction we have.

We also check to make sure that the original times series and the reconstructed ones have the same statistics.
To do this, we computed the cumulative PDF PðrÞ of the series, based on the data and, in the case of the
reconstructed PDF, using the Langevin equation. Fig. 6 presents the comparison of the two PDFs for
the EURO. The Kolmogorov–Smirnov test was used to discern the differences between the two PDFs. The
maximum difference between the two cumulative PDFs is about 0.037, hence indicating the high precision of
the reconstructed PDF.

4. Summary

We analyzed the stochastic time series that represent the rates of exchange of various national currencies
versus the U.S. dollar. To convert the series to stationary ones, we analyzed their corresponding return series.
The fundamental time scale in the approach is the Markov time scale tM , which is the minimum time interval
over which the series can be considered as constituting a Markov process. Based on the estimates of the
Kramers–Moyal coefficients DðkÞðr; tÞ for the series, it was shown that the fourth-order coefficient Dð4Þ is very
small, implying that the Kramers–Moyal expansion reduces to a Fokker–Planck equation which, in turn, is
equivalent to a Langevin equation. Thus, the probability densities of the fluctuations in the returns r for the
rate of exchange of various currencies versus the U.S. dollar satisfy a Fokker–Planck equation, characterized
by a drift and a diffusion coefficient, which represent the first two coefficients in the Kramers–Moyal
expansion. We computed accurate approximants for the coefficients for the stochastic time series r by using
the polynomial ansatz [10–15]. We then used a novel method to utilize the returns’ data, which contain a
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degree of stochasticity, and constructed a simple equation that governs the time series. The resulting equation
is capable of providing a rational explanation for complex features of the series. Moreover, it requires no
scaling feature. Our approach provides extensive statistical properties of the returns’ data, which can help one
to precisely check the financial models.
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