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Abstract. We describe a method for analyzing the stochasticity in non-stationary data for the beat-to-
beat fluctuations in the heart rates of healthy subjects, as well as those with congestive heart failure.
The method analyzes the return time series of the data as a Markov process, and computes the Markov
time scale, i.e., the time scale over which the data are a Markov process. We also construct an effective
stochastic continuum equation for the return series. We show that the drift and diffusion coefficients,
as well as the amplitude of the return time series for healthy subjects are distinct from those with
CHF. Thus, the method may potentially provide a diagnostic tool for distinguishing healthy subjects
from those with congestive heart failure, as it can distinguish small differences between the data for
the two classes of subjects in terms of well-defined and physically-motivated quantities.
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Introduction

Cardiac interbeat intervals fluctuate in a complex manner [1–7]. Recent studies
reveal that under normal conditions, beat-to-beat fluctuations in the heart rate may
display extended correlations of the type typically exhibited by dynamical systems
far from equilibrium. It has been shown [2], for example, that the various stages of
sleep may be characterized by long-range correlations in heart rate, separated by a
large number of beats.

The analysis of the interbeat fluctuations in heart rate belongs to a much broader
class of many natural, as well as man-made, phenomena that are characterized by
a degree of stochasticity. Turbulent flows, fluctuations in the stock market prices,
seismic recordings, internet traffic, pressure fluctuations in chemical reactors, and
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the surface roughness of many materials and rock [8], are but a few examples of
such phenomena and systems. A long standing problem has been the development
of an effective reconstruction method for such phenomena. That is, given a set
of data for certain characteristics of such phenomena (for example, the interbeat
fluctuations in the heart rate), one would like to develop an effective equation that
can reproduce the data with an accuracy comparable to the measured data. Although
many methods have been suggested in the past, and considerable progress has been
made, the problem remains, to a large extent, unsolved.

In many cases the stochastic process to be analyzed is non-stationary. If the
process also exhibits extended correlations, then deducing its statistical properties
by the standard methods of analyzing such processes is very difficult. One approach
to analyze such processes was proposed by Stanley and co-workers [1, 3, 5, 20–24]
and others [25-29]. They studied data for heart-rate fluctuations, for both healthy
subjects and those with congestive heart failure (CHF), in terms of self-affine fractal
distributions, such as fractional Brownian motion (FBM). FBM is a non-stationary
stochastic process which induces long-range correlations, the successive increments
of which are, however, stationary, and follow a Gaussian distribution. The power
spectrum of an FBM distribution is given by, S( f ) ∝ f −(2H+1), where H is the
Hurst exponent that characterizes the type of the correlations that the data contain.
Thus, one may distinguish healthy subjects from those with CHF in terms of the
numerical value of H associated with the data: negative or antipersistent correlations
for H < 1/2, as opposed to positive or persistent correlations for H > 1/2. The
analysis of Stanley and co-workers indicated that there may indeed be long-range
correlations in heart-rate fluctuation data that can be characterized by FBM and
similar fractal distributions. In addition, the data for healthy subjects seem to be
characterized by H < 1/2, whereas those with CHF by H > 1/2. This was a
significant discovery over the traditional methods of analyzing non-stationary data
for heart-rate fluctuations.

However, values of the Hurst exponent H associated with the two groups of
subjects are non-universal. Thus, it would, for example, be difficult to distinguish
the two groups of subjects if their associated Hurst exponents are both close to 1/2.
In addition, the FBM is a non-self-averaging distribution, i.e., given a fixed Hurst
exponent H, each realization of a FBM may be significantly different from its other
realizations with the same H. As a result, estimating H alone and characterizing the
data by a FBM cannot enable one to predict the future trends of the data. One may
also analyze such data by the deterended fluctuation analysis [2–5] which, in many
cases, is capable of yielding accurate and insightful information about the nature
of the data.

Recently, a novel method of analyzing stochastic processes was introduced [9–
12]. It was shown that by analyzing stochastic phenomena as Markov processes and
computing their Markov time (or length) scale (that is, the time scale over which the
process can be thought of as Markov), one may reconstruct the original process with
similar statistical properties by constructing an effective equation that governs the
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process. The constructed equation helps one to understand the nature and properties
of the stochastic process. The method utilizes a set of experimental data for a
phenomenon which contains a degree of stochasticity, and constructs a simple
equation that governs the phenomenon [9–16]. The method is quite general; it is
capable of providing a rational explanation for complex features of the phenomenon
in question. More significantly, it requires no scaling feature.

In this paper we describe a method for analyzing non-stationary data, and then
utilize it to study the interbeat fluctuations of the heart rate. We show that the
application of the method to the analysis of interbeat fluctuations of the heart rate
may potentially lead to a novel method for distinguishing healthy subjects from
those with CHF.

The plan of this paper is as follows. In the next section, we describe the method.
We then utilize the method to analyze data for heart-rate fluctuations in human
subjects.

Markov Analysis of Non-Stationary Data

Given a (discrete) non-stationary time series ri , we introduce a quantity xi , called
the return of ri , defined by

xi = ln(ri+1/ri ), (1)

where ri is the value of the stochastic quantity at step i. If there are long-range
positive correlations in the series, then ri and ri+1 are close in values and, therefore,
we expect the series xi to have very small values for all t. For white noise, as well
as data that exhibit negative or anti-correlations, ri and ri+1 can be completely
different and, therefore, the time series xi will fluctuate strongly.

Figures 1 and 2 present typical data ri and the corresponding returns xi for
healthy subjects and those with CHF. The number of data is of the order of
30,000-40,000, taken over a period of about 6 h. It is evident that the return se-
ries for the subjects with CHF has small amplitude, implying that the ri data set
has long-range positive correlations, which is consistent with the previous anal-
ysis [1]. It can be verified straightforwardly that the series xi is stationary, by
measuring the stability of its average and variance in a moving window (that
is, over a period of time which varies over the length of the series). Due to the
stationarity of the series x(t), we can construct an effective stochastic equation
for the returns series of the two groups of subjects, and distinguish the data for
healthy subjects from those with CHF. The procedure to do so involves two key
steps:

(1) Computing the Markov time scale (MTS) tM constitutes the first step. tM
is the minimum time interval over which the data can be considered as a Markov
process [9–12, 17]. As is well-known, a given stochastic process with a degree
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Figure 1. Interbeat fluctuations of healthy subjects (top), and its return time series (bottom).

Figure 2. Interbeat fluctuations of subjects with congestive heart failure (top), and its return
time series (bottom).

of randomness may have a finite or even an infinite tM . To estimate the MTS tM ,
we note that a complete characterization of the statistical properties of stochastic
fluctuations of a quantity x(t) in terms of a parameter t requires the evaluation of the
joint probability distribution function (PDF) Pn(x1, t1; . . . ; xn, tn) for an arbitrary n,
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the number of the data points. If a stochastic phenomenon is a Markov process, an
important simplification can be made as Pn , the n-point joint PDF, is generated by
the product of the conditional probabilities, p(xi+1, ti+1|xi , ti ), for i = 1, . . . , n−1.

The simplest way to determine tM for stationary data is by using the least-squares
test. The rigorous mathematical definition of a Markov process is given [18] by

P(xk, tk | xk−1, tk−1; . . . ; x1, t1; x0, t0) = P(xk, tk | xk−1, tk−1). (2)

Intuitively, the physical interpretation of a Markov process is that it “forgets its
past.” In other words, only the closest “event” to xk , say xk−1 at time tk−1, is
relevant to the probability of the event xk at tk . Hence, the ability for predicting the
event xk is not enhanced by knowing its values in steps prior to the most recent
one. Therefore, an important simplification made for a Markov process is that the
conditional multivariate joint PDF is written in terms of the products of simple two
parameter conditional PDFs [18] as (3)

P(xk, tk ; xk−1, tk−1; . . . ; x1, t1 | x0, t0) =
k∏

i=1

P(xi , ti | xi−1, ti−1). (3)

Testing Equation (3) for large values of k is beyond current computational capa-
bilities. For k = 3 (three points or events), however, the working equation, given
by,

P(x3, t3 | x2, t2; x1, t1) = P(x3, t3 | x2, t2), (4)

should hold for any value of t2 in the interval t1 < t2 < t3. A process is then
Markovian if Equation (4) is satisfied for a certain time separation t3 − t2, in
which case, tM = t3 − t2. Thus, to compute the tM we use a fundamental theory
of probability according to which we write any three-point PDF in terms of the
conditional probability functions as,

P(x3, t3; x2, t2; x1, t1), = P(x3, t3|x2, t2; x1, t1)P(x2, t2; x1, t1). (5)

Using the properties of Markov processes to substitute Equation (5), we obtain,

PMarkov (x3, t3; x2, t2; x1, t1) = P(x3, t3 | x2, t2)P(x2, t2; x1, t1). (6)

We then compare the deviation of PMarkov from that given by Equation (5). Using
the least squares method [10], we write:

X 2 =
∫

dx3dx2dx1 × [P(x3, t3; x2, t2; x1, t1) − PMarkov(x3, t3; x2, t2; x1, t1)]2

σ 2 + σ 2
Markov

,

(7)
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Figure 3. X 2
v values for a typical subject with CHF for several time scales.

where σ 2 and σ 2
Markov are the corresponding variances of terms in the numerator.

Thus, one should plot the reduced chi-square, X 2
v = X 2/N (with N being the

number of degrees of freedom), as a function of the time scale t3 − t2. Then,
tM = t3 − t2 for that value of t3 − t2 for which X 2

v either achieves a minimum or
becomes flat and does not change anymore; see Figure 3.

On the other hand, a necessary condition for a stochastic phenomenon to be a
Markov process is that the Chapman-Kolmogorov (CK) equation,

P(x3, t3 | x1, t1) =
∫

dx2 P(x3, t3 | x2, t2)P(x2, t2 | x1, t1), (8)

should hold for the time separation t3 − t2, in which case, tM = t3 − t2. Therefore, to
test whether the time series x(t) is a Markov process, one should check the validity
of the CK equation for describing the process using different x1 by comparing the
directly-evaluated conditional probability distributions P(x3, t3 | x1, t1) with the one
calculated according to right side of Equation (8).

(2) Estimation of the Kramers-Moyal coefficients is the second step in con-
structing an effective equation for describing the series xi . The CK equation is
an evolution equation for the distribution function P(x, t) at any time t. When
formulated in differential form, the CK equation yields the Kramers-Moyal (KM)
expansion [18], given by,

∂

∂t
P(x, t) =

∞∑
n=1

(
− ∂

∂x

)n

[D(n)(x)P(x, t)]. (9)
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The coefficients D(n)(x, t) are called the KM coefficients. They are estimated di-
rectly from the data, the conditional probability distributions, and the moments M(n)

defined by,

M (n) = 1

�t

∫
dx ′(x ′ − x)n P(x ′, t + �t | x, t), D(n)(x, t) = 1

n!
lim

�t→0
M (n).

(10)

According to the Pawula’s theorem, for a process with D(4)∼0 all the D(n) with
n ≥ 3 vanish, in which case the KM expansion reduces to the Fokker-Planck
equation, also known as the Kolmogorov Equation (18):

∂

∂t
P(x, t) =

[
− ∂

∂x
D(1)(x, t) + ∂2

∂x2
D(2)(x, t)

]
P(x, t). (11)

Here D(1)(x, t) is the drift coefficient, representing the deterministic part of the
process, and D(2)(x, t) is the diffusion coefficient that represents the stochastic
part.

We now apply the above method to the fluctuations in the human heartbeats of
both healthy subjects and those with CHF. As mentioned in the Introduction, several
studies [5, 6, 10–12, 19–21] indicate that, under normal conditions, the beat-to-beat
fluctuations in the heart rate may display extended correlations of the type typically
exhibited by dynamical systems far from equilibrium, and that the two groups of
subjects may be distinguished from one another by a Hurst exponent. We show that
the drift and diffusion coefficients (as defined above) of the interbeat fluctuations
of healthy subjects and patients with CHF have distinct behavior, when analyzed
by the method we propose in this paper, hence enabling one to distinguish the two
groups of the subjects.

We analyzed both daytime (12:00 pm to 18:00 pm) and nighttime (12:00 am
to 6:00 am) heartbeat time series of healthy subjects, and the daytime records of
patients with CHF. Our database includes 10 healthy subjects (7 females and 3
males with ages between 20 and 50, and an average age of 34.3 years), and 12
subjects with CHF (3 females and 9 males with ages between 22 and 71, and an
average age of 60.8 years). Figures 1 and 2 present the data. We first estimate the
Markov time scale tM for the return series of the interbeat fluctuations, using the
chi-square method described above. In Figure 3 the results for the X 2

v values for a
subject with CHF are shown. For the healthy subjects we find the average tM for the
returns, for both the day- and nighttime data, to be (all the values are measured in
units of the average time scale for the beat-to-beat times of each subject), tM = 10.
On the other hand, for the daytime records of the patients with CHF, the estimated
average tM is tM = 20. Therefore, the data for the healthy subjects are characterized
by tM values that are smaller than that of the patients with CHF by a significant
factor of 2.
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Figure 4. Test of Chapman-Kolmogorov equation for the time separation between t3 and t1

equal to the Markov time scale, for x1 = −6 × 10−2, x1 = 0, and x1 = 6 × 10−2. Squares and
triangles represent, respectively, the directly-evaluated PDF and that computed according to
the right side of Equation (8). For clarity, the PDFs are shifted in the vertical directions.

We then check the validity of the CK equation for several x1 triplets by comparing
the directly-evaluated conditional probability distributions P(x3, t3 | x1, t1) with the
ones calculated according to right side of Equation (8). Here, x represents the
returns. In Figure 4, the two differently-computed PDFs are compared. Assuming
the statistical errors to be the square root of the number of events in each bin, we
find that the two PDFs are statistically identical.

Using Equation (10) directly we calculate the drift and diffusion coefficients,
D(1)(x) and D(2)(x), for the entire set of data for the healthy subjects, as well as those
with CHF. The corresponding D(1)(x) and D(2)(x) are displayed in Figure 5. We
find that these coefficients provide another important indicator for distinguishing
the ill from the healthy subjects: The drift D(1) and the diffusion coefficients D(2)(x)
follow, respectively, linear and quadratic equations in x with distinct coefficients
for the healthy subjects and patients with CHF. The analysis of the data yields the
following estimate for the healthy subjects (averaged over the samples),

D(1)(x) = −0.1x, D(2)(x) = 3.7 × 10−5 − 6.6 × 10−5x + 0.06x2 , (12)

with −0.15 < x < 0.15, whereas for the patients with CHF we find that,

D(1)(x) = −0.06x, D(2)(x) = 8.6 × 10−6 − 2.7 × 10−5x + 0.03x2, (13)

with −0.04 < x < 0.04.
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Figure 5. The drift and diffusion coefficients, D(1)(x) and D(2)(x), estimated by Equation (8).
For the healthy subjects (triangles) and for patients with CHF (squares), D(1)(x) and D(2)(x)
follow linear and quadratic equations in x, respectively.

We find two important differences between the heartbeat dynamics of the two
classes of subjects:
1. Compared with the healthy subjects, the drift and diffusion coefficients for the

patients with CHF are small.
2. The fluctuations of the return time series for healthy subjects are distinct from

those with CHF. They also fluctuate over different intervals, indicating that the
return data for the healthy subjects fluctuate over a large interval. The fluctuation
intervals are −0.04 < x < 0.04 and −0.15 < x < 0.15 for patients with CHF
and healthy subjects, respectively. Hence, we suggest that one may use the drift
and diffusion coefficient magnitudes, as well as the fluctuation intervals for the
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returns, for characterizing the dynamics of human heartbeats, and to distinguish
healthy subjects from those with CHF.

Discussion

Lin [30] argued that the daytime heart rate variability of healthy subjects may exhibit
discrete scale-invariance (DSI). A stochastic process x(t) possesses continuous
scale-invariant symmetry if its distribution is preserved under a change of variables,
t → λt and x → x/μ, where λ and μ are real numbers, so that,

x(t) = 1

μ
x(λt) . (14)

If Equation (14) holds only for a countable (discrete) set of values of λ, x(t) is said
to possess DSI, which implies a power-law behavior for x(t) that has a log-periodic
correction of frequency 1/ log λ, so that

x(t) = tγ F(log t/ log λ) , (15)

with γ = log μ/ log λ, and with F(x) = F(x + 1) being a period scaling function.
Generally speaking, one may write x(t) = c(t)t ζ , with ζ = γ + 2nπ i/ log λ,
n = 1, 2, . . . The existence of log-periodicity was first suggested by Novikov [31]
in small-scale energy cascade of turbulent flows. It has been argued [32] that log-
periodicity may exist in the dynamics of stock market crashes [33], turbulence
[34], earthquakes [35], diffusion in disordered materials [36, 37], and in fracture
of materials near the macroscopic fracture point [38]. The log-periodicity, if it
exists in the heart rate variability (HRV), implies the existence of a cascade for
the multifractal spectrum of HRV, previously reported by others. However, Lin’s
method neither provides a technique for distinguishing the HRV of healthy people
from those with CHF, nor can it predict the future behavior of HRV based on some
data at earlier times.

The method proposed in the present paper is different from such analyses in that,
the returns for the data are analyzed in terms of Markov processes. Our analysis
does indicate the existence of correlations in the return time series which can be
quite extended (and is characterized by the value of the Markov time scale tM ).

Summary

We distinguish the healthy subjects from those with CHF in terms of the differences
between the drift and diffusion coefficients of the Fokker-Plank equations that we
construct for the return data which, in our view, provide a clearer and more physical
way of understanding the differences between the two groups of the subjects. In
addition, the reconstruction method suggested in this paper enables one to predict
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the future trends in the returns (and, hence, in the original series ri ) over time scales
that are of the order of the Markov time scale tM .

None of the previous approaches for analyzing the data could provide such a
reconstruction method.

We also believe that the computational method that is described in this paper is
more sensitive to small differences between the data for healthy subjects and those
with CHF. As such, it might eventually provide a diagnostic tool for detection of
CHF in patients with small amounts of data and in its initial stages of development.
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