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Statistical properties of interbeat intervals cascade in human hearts are evaluated by
considering the joint probability distribution P (∆x2, τ2;∆x1, τ1) for two interbeat incre-
ments ∆x1 and ∆x2 of different time scales τ1 and τ2. We present evidence that the con-
ditional probability distribution P (∆x2, τ2|∆x1, τ1) may be described by a Chapman–
Kolmogorov equation. The corresponding Kramers–Moyal (KM) coefficients are eval-
uated. The analysis indicates that while the first and second KM coefficients take on
well-defined and significant values, the higher-order coefficients in the KM expansion are
small. As a result, the joint probability distributions of the increments in the interbeat
intervals are described by a Fokker–Planck equation, with the first two KM coefficients
acting as the drift and diffusion coefficients. The method provides a novel technique for
distinguishing two classes of subjects, namely, healthy ones and those with congestive
heart failure, in terms of the drift and diffusion coefficients which behave differently for
two classes of the subjects.
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1. Introduction

Cardiac interbeat intervals normally fluctuate in a complex manner.1–6 Recent

studies reveal that under normal conditions, beat-to-beat fluctuations in the heart

rate may display extended correlations of the type typically exhibited by dynamical
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systems far from equilibrium. It has been argued,2 for example, that the various

stages of sleep may be characterized by long-range correlations of heart rates sep-

arated by a large number of beats. The interbeat fluctuations in the heart rates

belong to a much broader class of many natural, as well as man-made, phenomena

that are characterized by a degree of stochasticity. Turbulent flows, fluctuations in

the stock market prices, seismic recordings, the internet traffic, and pressure fluctu-

ations in packed-bed chemical reactors are examples of time-dependent stochastic

phenomena, while the surface roughness of many materials7,8 are examples of phe-

nomena that are length scale-dependent.

The focus of the present paper is on the intriguing statistical properties of

interbeat interval sequences, the analysis of which has attracted the attention of

researchers from different disciplines.9–15 Analysis of heartbeat fluctuations focused

initially on short-time oscillations associated with breathing, blood pressure and

neuroautonomic control.16,17 Studies of longer heartbeat records, however, revealed

1/f -like behavior.18,19 Recent analysis of very long time series indicates that under

healthy conditions, interbeat intervals may exhibit power-law anticorrelations,20

follow universal scaling in their distributions,21 and are characterized by a broad

multifractal spectrum.22 Such scaling features change with the disease and advanced

age.23 The possible existence of scale-invariant properties in the seemingly noisy

heartbeat fluctuations may be attributed to highly complex, nonlinear mechanisms

of physiological control,24 as it is known that circadian rhythms are associated with

periodic changes in key physiological processes.25–33 In Fig. 1 samples of interbeats

fluctuations of healthy subjects and those with congestive heart failure (CHF) are

shown.

Recently, Friedrich and Peinke were able34 to derive a Fokker–Planck (FP) equa-

tion for describing the evolution of the probability distribution function of stochastic

properties of turbulent free jets, in terms of the relevant length scale. They pointed

out that the conditional probability density of the increments of a stochastic field

(for example, the increments in the velocity field in turbulent flow) satisfies the

Chapman–Kolmogorov (CK) equation, even though the velocity field itself contains

long-range, nondecaying correlations. As is well-known, satisfying the CK equation

is a necessary condition for any fluctuating data to be a Markovian process over

the relevant length (or time) scales.35 Hence, one has a way of analyzing stochastic

phenomena in terms of the corresponding FP and CK equations.

In this paper the method proposed by Friedrich and Peinke is used to compute

the Kramers–Moyal (KM) coefficients for the increments of interbeat intervals fluc-

tuatations, ∆x(τ) = x(t + τ) − x(t). Here, ∆x is the interbeat increments which,

for all the samples, is defined as, ∆x ≡ ∆x/στ , where στ is the standard deviations

of the increments in the interbeats data. It is shown that the first and second KM

coefficients representing, respectively, the drift and diffusion coefficients in the FP

equation, have well-defined values, while the third- and fourth-order KM coefficients

are small. Therefore, a FP evolution equation35 is developed for the probability
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Fig. 1. Time series of interbeat intervals x(t) versus interval number t for a typical person with
congestive heart failure (bottom) and a healthy subject (top).

density function (PDF) P (∆x, τ) which, in turn, is used to gain information on

changing the shape of PDF as a function of the time scale τ 36 (see also Ref. 37

for another interesting and carefully analyzed example of the application of CK

equation to stochastic phenomena).

The plan of this paper is as follows. In Sec. 2 we describe the Friedrich–Peinke

method in terms of a KM expansion and the FP equation. We then apply the

method in Sec. 3 to the analysis of the increments in the interbeat fluctuations.

2. The Kramers Moyal Expansion and Fokker Planck Equation

A complete characterization of the statistical properties of the interbeat fluctuation

requires evaluation of the joint PDFs, PN (∆x1, τ1, . . . , ∆xN , τN ), for an arbitrary

N , the number of data points. If the phenomenon is a Markov process, an important

simplification arises in that, the N -point joint PDF PN is generated by the product

of the conditional probabilities P (∆xi+1, τi+1|∆xi, τi), for i = 1, . . . , N−1. Thus, as

the first step of analyzing a stochastic time series, we check whether the increments

in the data follow a Markov chain. As mentioned above, a necessary condition for

a stochastic phenomenon to be a Markov process is that the CK equation,34

P (∆x2, τ2|∆x1, τ1) =

∫

d(∆x3)P (∆x2, τ2|∆x3, τ3) P (∆x3, τ3|∆x1, τ1) , (1)
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Fig. 2. Test of Chapman–Kolmogorov equation for ∆x1 = −0.42, ∆x1 = 0 and ∆x1 = 0.42. The
solid and open symbols represent, respectively, the directly-evaluated PDF and the one obtained
from Eq. (1). The PDFs are shifted in the horizontal directions for clarity. Values of ∆x are

measured in units of the standard deviation of the increments. The time scales τ1, τ2 and τ3 are
10, 30, and 20, respectively.

should hold for any value of τ3, in the interval τ2 < τ3 < τ1.
35 Therefore, we

check the validity of the CK equation for describing the data using many values

of the ∆x1 triplets, by comparing the directly-evaluated conditional probability

distributions P (∆x2, τ2|∆x1, τ1) with those calculated according to the right-hand

side of Eq. (1). In Fig. 2, the directly-computed PDF is compared with the one

obtained from Eq. (1). Allowing for a statistical error of the order of the square

root of the number of events in each bin, we find that the PDFs are statistically

identical.

It is well-known that the CK equation yields an evolution equation for the distri-

bution function P (∆x, τ) across the scales τ . The CK equation, when formulated

in differential form, yields a master equation, which takes on the form of a FP

equation:35

d

dτ
P (∆x, τ) =

[

−
∂

∂∆x
D(1)(∆x, τ) +

∂2

∂∆x2
D(2)(∆x, τ)

]

P (∆x, τ) . (2)

The drift and diffusion coefficients, D(1)(∆x, τ) and D(2)(∆x, τ), are estimated

directly from the data and the moments M (k) of the conditional probability

distributions:

D(k)(∆x, τ) =
1

k!
lim

∆τ→0
M (k) , (3)

M (k) =
1

∆τ

∫

d∆x′(∆x′ − ∆τ)kP (∆x′, τ + ∆τ |∆x, τ) . (4)

The coefficients D(k)(∆x, τ) are known as the Kramers–Moyal (KM) coefficients.
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3. Application to Analyzing Human Heartbeat Data

As an application of the method, we analyzed both daytime (noon to 18:00 pm) and

nighttime (midnight to 6:00 am) heartbeat time series of healthy subjects, and the

daytime records of patients with CHF. Our database includes 10 healthy subjects (7

females and 3 males with ages between 20 and 50, and an average age of 34.3 years),

and 12 subjects with CHF, with 3 females and 9 males with ages between 22 and

71, and an average age of 60.8 years). The resulting drift and diffusion coefficients,

D(1) and D(2), are displayed in Figs. 3 and 4. It turns out that the drift coefficient
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Fig. 3. The drift and diffusion coefficients D(1)(∆x) and D(2)(∆x), estimated from Eq. (5) for
a healthy subject, follow linear and quadratic behavior, respectively.
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Fig. 4. The drift and diffusion coefficients D(1)(∆x) and D(2)(∆x) are estimated from the
Eq. (6) for typical patients with congestive heart failure, and follow linear and quadratic behavior,
respectively.

D(1) is a linear function of ∆x, whereas the diffusivity D(2) is quadratic in ∆x.

Estimates of these coefficients are less accurate for large values of ∆x and, thus,

the uncertainties increase. Using the data set for the healthy subjects we find that,

D(1)(∆x, τ) = −0.03∆x− 0.0046 ,

D(2)(∆x, τ) =

(

0.01 +
0.11

τ

)

(∆x)2 +

(

0.057 +
0.287

τ

)

,
(5)
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whereas for the patients with CHF we obtain,

D(1)(∆x, τ) = −0.013∆x− 0.0018 ,

D(2)(∆x, τ) =

(

0.005 +
0.005

τ

)

(∆x)2 +

(

0.013 +
0.066

τ

)

.
(6)

We also computed the average of the coefficients D(1) and D(2) for the entire set

of the healthy subjects, as well as those with CHF. According to the Pawula’s

theorem,34,37 the KM expansion is truncated after the second term, provided that

the fourth-order coefficient D(4)(∆x, τ) vanishes. For the data that we had analyzed

the coefficient D(4) is about 1/10D(2) for the healthy subjects, and about 1/20D(2)

for those with CHF.

Equations (5) and (6) state that the drift coefficients for the healthy subjects

and those with CHF have the same order of magnitude, whereas the diffusion

coefficients for given τ and ∆x are different by about one order of magnitude. This

points to a relatively simple way of distinguishing the two classes of the subjects.

Moreover, the τ -dependence of the diffusion coefficient for the healthy subjects is

stronger than that of those with CHF (in the sense that the numerical coefficients

of the τ−1 are larger for the healthy subjects). These are shown in Figs. 3 and 4.

The strong τ -dependence of the diffusion coefficient D(2) for the healthy subjects

indicates that the nature of the PDF’s increments ∆x for given a τ , i.e. P (∆x, τ),

is intermittent, and that its shape should change strongly with τ . However, for the

subjects with CHF the PDF is not so sensitive to the change of the time scale τ ,

hence indicating that the increments’ fluctuations for the subjects with CHF is not

intermittent. These results are completely compatible with the recent discoveries

that the interbeat fluctuations for healthy subjects and those with CHF have fractal

and multifractal properties, respectively.22

4. Summary and Comparison with Other Methods

We have shown that the probability density of the interbeat interval increments

satisfies a Fokker–Planck equation, which encodes the Markovian nature of the

increments’ fluctuations. We have been able to compute reliably the first two

Kramers–Moyal coefficients for the stochastic processes ∆x — the drift and dif-

fusion coefficients in the FP representation — and, using the polynomial ansatz,34

obtain simple expressions for them in terms of ∆x and the time scale τ . We have

shown that the drift and diffusion coefficients of the increments in the interbeat

fluctuations of healthy subjects and patients with CHF have different behavior,

when analyzed by the method that we used in this paper. Hence, they help one to

distinguish the two groups of the subjects. Moreover, one can obtain the form of

the path probability functional of the increments in the interbeat intervals in the

time scale, which naturally encodes the scale dependence of the probability den-

sity. This, in turn, provides a clear physical picture of the intermittent nature of

interbeat intervals fluctuations.
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Let us emphasize that the previous analyses1–6,20–23,26,27,30,31 of the type of

data that we consider in this paper indicated that there may be long-range corre-

lations in the data which might be characterized by self-affine fractal distributions,

such as the fractional Brownian motion or other types of stochastic processes that

give rise to such correlations. In that method one distinguishes healthy subjects

from those with CHF in terms of the type of the correlations that might exist in

the data. For example, if the data follow a fractional Brownian motion, then the

corresponding Hurst exponent H is used to distinguish the two classes of the sub-

jects, as H < 0.5 (> 0.5) indicates negative (positive) correlations in the data,

while H = 0.5 indicates that the increments in the data follow Brownian motion.

The method proposed in the present paper is different from such analyses in that,

the increments in the data are analyzed in terms of Markov processes. Our analysis

does indicate the existence of correlations in the increments which can be quite ex-

tended but, as is well-known in the theory of Markov processes, such correlations,

though extended, eventually decay (the correlations in fractional Brownian motion

do not). We distinguish the healthy subjects from those with CHF in terms of the

differences between the drift and diffusion coefficients of the Fokker–Plank equation

that we construct for the incremental data which, in our view, provides a clearer

and more physical way of understanding the differences between the two groups of

the subjects.

We should also mention the recent work of Lin38 who argued that the day-

time heart rate variability of healthy subjects may exhibit discrete scale-invariance

(DSI). A stochastic process x(t) possesses continuous scale-invariant symmetry if

its distribution is preserved under a change of variables, t → λt and x → x/µ,

where λ and µ are real numbers, so that,

x(t) =
1

µ
x(λt) . (7)

If Eq. (7) holds only for a countable (discrete) set of values of λ, x(t) is said to

possess DSI, which implies a power-law behavior for x(t) that has a log-periodic

correction of frequency 1/ logλ, so that

x(t) = tγF (log t/ log λ) , (8)

with, γ = log µ/ logλ, and F (x) = F (x + 1) being a period scaling function. Gen-

erally speaking, one may write, x(t) = c(t)tζ , with, ζ = γ + 2nπi/ logλ, with

n = 1, 2, . . . The existence of log-periodicity was first suggested by Novikov39

in small-scale energy cascade of turbulent flows. Sornnette40 and co-workers ar-

gued that log-periodicity may exists in the stock market crashes,41 turbulence,42

earthquakes,43 and diffusion in disordered materials,44 while Sahimi and Arbabi45

provided numerical evidence that it may also exists in the fracture of materials near

the macroscopic fracture point. The log-periodicity, if it exists in the heart rate vari-

ability (HRV), implies the existence of a cascade for the multifractal spectrum of

HRV, previously reported by others.
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As mentioned earlier, our approach is different from those of Lin and others

in that, it attempts to construct a stochastic equation that governs the HRV data

which can, (1) distinguish healthy subjects from those with CHF based on the

differences between the drfit and diffusion coefficients of the Fokker–Planck equation

that it constructs for the data, and (2) predict the stochastic variations of HRV over

time scales that are of the order of the Markov time scale described above. Lin’s

method, on the other hand, neither provides a technique for distinguishing the HRV

of healthy people from those with CHF, nor can it predict the future behavior of

HRV based on some data at earlier times.
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