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In this research, we present results of simulated annealing (SA), a heuristic optimization algorithm, for focusing
light through a turbid medium. Performance of the algorithm on phase and amplitude modulations has been
evaluated. A number of tips to tune the optimization parameters are provided. The effect of measurement noise on
the performance of the SA algorithm is explored. Additionally, SA performance is compared with continuous
sequential and briefly with other optimization algorithms. © 2018 Optical Society of America
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1. INTRODUCTION

Smart control of light propagation through a highly scattering
medium has been a much-desired goal with applications such
as deep-tissue imaging, optical encryption, and quantum infor-
mation processing [1]. Such control has been achieved by
optimizing the shape of the wavefront of the incident light
using spatial light modulators (SLMs) or digital micromirror
devices (DMDs), and a feedback system; this technique is
known as wavefront shaping [2,3]. Wavefront shaping tech-
niques enhance the signal-to-noise ratio and imaging depth
in optical imaging systems, e.g., optical coherence tomography
[4–6], fluorescence microscopy [7], two-photon microscopy
[8–10], multiphoton microscopy [11], photo-acoustic micros-
copy [12–14], etc., when a highly scattering medium is imaged.
Wavefront shaping has also been used for photodynamic
therapy, photostimulation of cells/tissues, and multimode
optical fiber-based endoscopy [15]. Moreover, wavefront shap-
ing has been applied to many other applications, including con-
trol of the spatiotemporal characteristics of random lasers
[16–19], achievement of spectral control of a broadband light
source [20–23], compression of ultrashort pulses [24,25], con-
trol of polarization [26,27], achievement of perfect focusing
[28,29], phase conjugation of fluorescence in turbid tissue
[30], tunable beam splitters [31], spatial control of second-
harmonic light [32,33], control of single-photon Fock-state

propagation [34], control of photocurrent in disordered photo-
voltaics [35], focusing through dynamic tissue [36], improve-
ment of free-space optical communication [37], image
projection through disordered media [38], three-dimensional
microscopy [39], creation of an ultrafast nanophotonic switch
[40], and optical control of excitation waves in cardiac tissue
[41,42]. In addition to this wide range of applications, con-
trolled reflection has promising applications for optical authen-
tication of optical physical unclonable functions [43,44].

Light scattering is the major obstacle in focusing light
through biological tissues. Scattering in a tissue scrambles
the incident photons in a highly disordered manner, especially
after a few mean free paths [1]. Freund first proposed in 1990
that wavefront shaping could be used to focus light through an
opaque medium [45]. Vellekoop and Mosk demonstrated this
method, for the first time, in 2007 [2]. They experimentally
showed that coherent light can be focused through a diffusive
medium when an SLM is used. For any given medium, there is
a unique wavefront shape that can compensate for the effects of
scattering in the sample. This wavefront couples to the medi-
um’s transmission eigenchannels, which leads to an optimal
transmission of light into a target channel.

Although light propagation through a diffusive medium
seems unpredictable, it is a deterministic process, which follows
Maxwell equations [15]. Light transport in a complex medium
is considered a linear process, which can be described using a
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transmission matrix. This matrix describes how each segment
of the incident light contributes to the constructive or destruc-
tive interference at each segment of the output speckle pattern
[46]. By optimizing the impinging wavefront, i.e., spatially
manipulating the wavefront phase, constructive interference
at a desired target can be achieved (see Fig. 1).

While SLMs are usually used for phase modulation, DMDs
are used for amplitude modulation. Although phase opti-
mization provides a better focus in a turbid medium, DMDs
are much faster. DMDs have refresh rates ≥kHz, whereas
SLMs are demonstrated to have up to 180 Hz refresh rate
(Meadowlark Optics now makes an SLM that can reach rates
of up to 667 Hz) [3,43,47].

Several algorithms have been proposed for the optimization
of a wavefront shaping system. The basic principle of all these
algorithms involves dividing the wavefront into segments, i.e.,
the input channels, and then modulating each of these channels
until a sharp focus is achieved.

In this study, we evaluate the simulated annealing (SA) algo-
rithm for wavefront shaping to optimize phase in an SLM as well
as amplitude optimization in a DMD. Measurement noise is a
random error in the measurement of light intensity at the target
channel. The effect of measurement noise on the performance of
the SA algorithm for both SLM and DMD is also explored. All
the results are compared with the continuous sequential (CS)
algorithm, which is the classical algorithm for this purpose.
However, several other algorithms have as well been proposed
in recent years. We will provide a brief comparison with four
other algorithms, namely, partitioning algorithm (PA) [2], trans-
mission matrix (TM) [46] estimation method, particle swarm
optimization (PSO) [48], and genetic algorithm (GA) [49].

2. MATERIALS AND METHODS

A. Wavefront Optimization
In wavefront optimization, the phases or amplitudes of the in-
put channels are modulated repetitively until a sharp focus is
obtained. The linear relationship between the incident electric

field and the electric field transmitted through a scattering
medium can be described by a TM [see Eq. (1)]:

Em �
XN
n

tmnEn �
XN
n

tmnAneiϕn , (1)

where Em is the electric field at the mth output channel, En is
the electric field at the nth input channel, and tmn is an element
of the TM. In our simulations, the incident light beam is illu-
minated on N segments of a light modulator. Each segment is
modulated with a specific phase, ϕn, or an amplitude, An, in the
case of phase or amplitude optimization, respectively. In order
to maximize the strength of the focus, a single output channel is
targeted.

The working principle of the phase and amplitude wave-
front optimizations is demonstrated in Fig. 2. In this figure,
a vectorial representation of the electric field in the selected
target channel, Em, is depicted. This electric field is a vectorial
sum of the electric fields of all input channels multiplied
by their corresponding elements of the TM. The top panels
[Figs. 2(a)–2(c)] illustrate how phase modulation increases
the strength of the focus, whereas the bottom panels
[Figs. 2(d)–2(f )] illustrate the effect of amplitude modulation.

B. SA Optimization Algorithm
SA is a heuristic optimization algorithm that is used to find the
global optimum in a large search space. It is a numerical opti-
mization technique based on the principles of thermodynamics
suggested in 1953 by Metropolis et al. [50]. The algorithm sim-
ulates the cooling of a metal in a heat bath. This is a process
known as annealing. If a solid is heated past its melting point
and then cooled, the structural properties of the solid will
depend on the rate of cooling. If the liquid is cooled slowly
enough, large pure crystals will be formed with the minimum
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Fig. 1. Demonstration of light propagation through a turbid
medium with and without wavefront shaping. (a) Light focusing with
a lens in the absence of a turbid medium. (b) Light divergence due to
multiple scattering. (c) Focusing through a turbid medium after
wavefront shaping.
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(d) (e) (f)

Initial map

Fig. 2. (a)–(c) Graphical representation of phase modulation and (d)–
(f) amplitude modulation. The small vectors show the electric field trans-
mitted from each input channel. The red vector is the total electric field at
the target output channel. In phase optimization, at each iteration, a seg-
ment is selected and the phase of the segment is varied. The blue, green,
purple, and orange vectors represent the electric field at the target channel
corresponding to four different phases. In amplitude optimization, at each
iteration, a segment is turned on (white) or off (blue).
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energy. If, however, the liquid is cooled quickly (quenched),
imperfect crystals will be formed. The SA algorithm simulates
the cooling process by gradually lowering the temperature of
the system until it converges to a steady state.

The concept of optimization using SA is depicted in Fig. 3.
This cartoon demonstrates how to find the global minimum
in a solution space with various local minima using SA.
Temperature is a parameter that mimics the effect of a fast-
moving particle in a hot molten metal. The SA algorithm be-
gins the optimization at a high temperature. In Fig. 3, this is
demonstrated by permitting the ball to jump over any moun-
tain and potentially access the deepest valley if sufficient time is
given or a sufficient number of iterations is allowed. As the tem-
perature drops, the ball bounces much less and less favorable
answers are not likely to be accepted.

The SA algorithm has previously been used for the optimi-
zation of optical systems [51–57]. In our study, we optimized a
phase or an amplitude modulator using the SA algorithm until
the strongest focus on a charge-coupled device (CCD) is
achieved.

Algorithm 1: SA algorithm pseudocode. TM represents the trans-
mission matrix, T represents the temperature in the SA algorithm, and
T 0 is the initial temperature. ϕ1 and B1 are, respectively, the initial
phase map and binary amplitude map (randomly generated). The text
in red indicates changes in the pseudocode related to amplitude
optimization.

TM ← Turbid medium transmission matrix
with a Gaussian distribution

T ← T 0

ϕ1 ← Random phase map
B1 ← Random binary amplitude map
E1 ← Initial intensity of focus
while Termination criteria are not met (i.e., T > Tmin) do

for L � 1 to L � loop length do ▹ Perturbation loop
ϕ2 ← ϕ1 � Phase perturbation
B2 ← Toggle�B1�
E2 ← E�ϕ2� ▹ Update focus intensity
if E2 > E1 then

ϕ1 ← ϕ2

B1 ← B2

E1 � E2 ▹ Perturbed state is accepted
else ▹ Boltzmann condition
if exp�E2−E1

T � > rand �0, 1� then
ϕ1 ← ϕ2

B1 ← B2

E1 � E2 ▹ Perturbed state is accepted
T � αT ▹ Decrease temperature

The pseudocode of the SA algorithm is given in
Algorithm 1. In this algorithm, a random TM with a circular
Gaussian distribution, representing a scattering medium, is
generated. An initial random phase map is also generated with
values between 0 and 2π (SLM phase map). The strength of
the focus point on the CCD, E0, is calculated. A coarse per-
turbation is applied to the phases of the SLM segments, and
the energy of the new system, with the new phase map, is
calculated. If the energy is larger than the previous one, i.e.,
if the new focus is stronger, then the new perturbation will
be accepted as the new state of the system. Otherwise, the
perturbation has a lower chance of being accepted with the

probability calculated in Boltzmann probability function [i.e.,
exp�E2−E1

T �] and is discarded. After going through a perturbation
loop (i.e., applying L coarse perturbations), the temperature
drops by a factor of α. After a certain number of perturbation
loops, the perturbation size decreases; these are the fine pertur-
bations, which will be executed until the end of run. In the
amplitude optimization, the SA algorithm is utilized in a similar
manner. In the algorithm, instead of a phase map, a binary
amplitude map is used. Those parts of the pseudocode that
are changed from phase modulation to amplitude modulation
are shown in red in Algorithm 1.

C. Theory of Wavefront Shaping
In the phase optimization algorithm, we assume that the
incident light homogeneously illuminates the modulator and
all input channels carry the same intensity. We assume that
the amplitude of each segment is An � 1ffiffiffi

N
p . Elements

E1, E2,…EN correspond to the output channels. The goal
is to focus the light on a single spot, i.e., strengthen a single
output channel (Em). The intensity transmitted into the output
channel (Im) is given by Eq. (2):

Im � jEmj2 �
1

N

����
XN
n

tmneiϕn

����
2

: (2)

Regardless of the values in the TM (tmn), the intensity Im
will have the maximum value when the phase modulator
correctly compensates for the sample phase retardation in each
segment, i.e., ϕn � − arg�tmn�. The intensities before optimi-
zation �I 0� and after an ideal optimization �Imax� are given,
respectively, by Eqs. (3) and (4):

I0 �
1

N

����
XN
n

tmn

����
2

, (3)

Imax �
�XN

n
jtmnj

�2

: (4)

Assuming the elements of the TM are uncorrelated and fol-
low a circular Gaussian distribution [58–61], Eq. (4) can be
rewritten as
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Fig. 3. Demonstration of SA optimization to find the global mini-
mum in a minimization problem.
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hImaxi �
�
1

N

XN
n, k≠m

jtmnjjtmkj �
1

N

XN
n

jtmnj2
�

� hI 0i
��N − 1�π

4
� 1

	
, (5)

where the angled brackets denote ensemble averaging.
Enhancement is defined as the ratio of the optimized focus in-
tensity to the ensemble averaged intensity before optimization.
Equation (5) predicts that the expected maximum enhance-
ment (η) depends on the system size, i.e., the number of seg-
ments (N ) in a stable and noise-free system. In phase
optimization, for N ≫ 1, η ≈ π N

4 . In amplitude optimization,
if noise and instabilities are ignored, then the ensemble aver-
aged intensity enhancement at the target position, ηideal, is ob-
tained as [3]

ηideal �
hImaxi
hI 0i

� 1� 1

π

�
N
2
− 1

�
≈
N
2π

: (6)

D. Simulation
The simulation setup is shown in Fig. 4. In this simulation, a
wavefront shaping system including a CCD and a phase/
amplitude modulator (an SLM or a DMD) were used. The
modulated field is then projected onto a turbid medium.
The pattern of the outgoing light field is measured by the
CCD. A modified phase/amplitude map is then sent to the
modulator to create a sharp focus.

E. Parameter Setting
There are several parameters in the SA algorithm to be de-
termined. There is no standard method to fine-tune these
parameters. We provide a number of tips to determine these
parameters such that an optimum solution is obtained. The
impact of the parameters on the performance of SA is also

evaluated. We used two measures for evaluation, namely, run-
time and enhancement.

1. Phase Optimization
In phase optimization, each input channel can be assigned a
value between 0 and 2π. This creates a very large search space.
For instance, if the number of input channels (the phase mod-
ulator’s pixels) is 1024, considering 10 quantization levels, the
search space will have 102410 solutions. Finding an optimum
solution, in such a large search space, can be a very time-
consuming task. Optimization algorithms reduce the size of
the search space and save a significant amount of time in
the search process.

In the SA optimization algorithm, the phase values of the
input channels are perturbed at each iteration. We use two
types of perturbations, namely, coarse perturbation and fine
perturbation. Coarse perturbation is defined as an addition
of a large multiple of the phase step to the current phase value.
Fine perturbation is an addition of a small multiple. The algo-
rithm begins with iterations of the coarse perturbation (loop)
and then continues with iterations of the fine perturbation. In
the coarse perturbation loop, the algorithm lets the system ex-
plore the entire search space, potentially escaping the local op-
timum in order to approach the global optimum. The fine
perturbation loop, however, is designed to guide the search
toward the global optimum.

Due to the large number of pixels in the SLM, they are
grouped into segments, and the phase values of each segment
are changed simultaneously. Applying a perturbation to each
segment is equivalent to a negligible alteration in the wavefront
that transmits through the SLM; the phase values assigned to a
group of segments are, therefore, simultaneously changed in
each step. By doing so, faster progress in the objective function
is expected. The search will also be less sensitive to measure-
ment noise and can more rapidly recover from disturbances [2].

The initial perturbation size is defined as the percentage of
input channels (N ) that are perturbed initially. A perturbation
is then added to the phase of the randomly selected input chan-
nels. In the simulation, initially 50% of the segments are per-
turbed (initial perturbation size) for π∕16 at each iteration
during the coarse perturbation loop. In simulating noisy envi-
ronments (≥ 0.9hI 0i), the perturbation is changed to π∕8.
After going through a few coarse perturbation loops, the aver-
age acceptance rate of the new solutions generated in the loop
decreases significantly and the search enters the fine perturba-
tion loop. It has been shown that the performance of the SA
algorithm is optimal when 30%–40% of the perturbations are
accepted [50,62]. At the end of each fine perturbation loop, the
temperature decreases and the fine perturbation size is adjusted
by 10% of its current value (rate of change of perturbation size)
to keep the acceptance rate in the optimal range.

Of note, the acceptance rate gradually decreases as the tem-
perature drops. The optimization algorithm stops when the ter-
mination criteria are met—that can be the intensity of the focus
or the number of iterations or the minimum temperature.

Another critical parameter in SA is the initial temperature.
Temperature links the difference between the target electric
field after perturbation (E2) and that before perturbation
(E1) with the acceptance probability Pacc:
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Fig. 4. Simulation setup: (a) represents the segments of a phase/am-
plitude map; (b) represents the TM of a turbid medium; and (c) is the
transmitted light field at the CCD plane.
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ΔE � E2 − E1, Pacc � exp

�
ΔE
T

�
⇒ T � ΔE

ln�Pacc�
: (7)

If the initial acceptance probability is too high, unnecessary
time is spent at the beginning of the optimization. If it is too
low, then the search might be trapped in a local optimum. In
our study, we used a random TM, with a circular Gaussian dis-
tribution, zero mean, and a standard deviation of unity, to sim-
ulate the turbid medium [58–60]. According to Eq. (2), the
value of electric field, E , is directly proportional to the values
of the TM elements. On the other hand, according to Eq. (7),
the ratio of ΔE to T is important for acceptance probability.
Therefore, the optimum value of initial temperature depends
on the standard deviation of the TM. Empirically, we calculated
the optimum value of the initial temperature to be equal to the
standard deviation of the TM elements.

The two parameters L and α, i.e., the number of solutions
generated in each perturbation loop and the cooling ratio,
respectively, have similar impacts on the performance of the
optimization algorithm. A steep temperature slope, which cor-
responds to small values of α, approaches zero quickly, and,
therefore, a large number of iterations should be performed
at each temperature. However, if a gradual temperature slope
is used, a smaller number of iterations is sufficient. According
to [63,64], α is usually chosen between 0.85 and 0.99. The
higher the α, the longer the algorithm takes to reach the final
temperature and the better the enhancement in noisy environ-
ments. In our study, α � 0.9 was used in noise-free environ-
ments, and increased to 0.99 in very noisy environments.
Depending on the execution time or the desired enhancement,
L will be assigned a value between N∕16 (noise-free environ-
ments) and N∕6 (in highly noisy environments) iterations at
each perturbation loop.

In some studies, the number of iterations has been increased
as the temperature drops [63,65]. By doing so, we observed no
significant improvement in the final result.

2. Amplitude Optimization
Amplitude optimization is a simpler optimization task than
phase optimization. In amplitude optimization, each segment

can be either “on” or “off”. It has been shown that the ratio of
the number of “on” segments to “off” segments in an optimal
amplitude mask is 1∶1 [3]. Therefore, the algorithm starts with
a random binary map in which about half of the segments are
“on” and half are “off”. This ratio should be consistent through-
out the optimization process. Initially, the algorithm toggles
5% of the input channels. The percentage of toggled channels
is updated in a manner similar to that in the fine perturbation
loop in the phase optimization algorithm (see Algorithm 1).
Other parameters such as initial temperature, cooling ratio, per-
turbation loop length, and termination criteria are also adjusted
similarly to how they are adjusted in phase optimization.

Reviewing the literature and performing several experi-
ments, we have come up with a few tips to tune the optimi-
zation parameters for a more efficient implementation of the SA
algorithm. As a general rule, one may say that the longer the
execution time, the higher the enhancement; however, there are
limitations. Increasing the initial and final temperatures may
not be as effective as slowing down the cooling process, e.g., in-
creasing the cooling ratio or the number of perturbations at
each temperature; increasing the cooling ratio is a more efficient
way to slow down the cooling process. We do not recommend
that the algorithm spend a large amount of time at high temper-
atures (at which almost all perturbations are accepted); one way
to solve this problem is to set a cutoff temperature or simply by
starting the algorithm at a lower temperature. We observed a
considerable variation in the obtained solutions with a long ex-
ecution time. We also observed that the results obtained from
one long run are more reliable than the average of results ob-
tained from several shorter runs. A summary of how to tune the
optimization parameters in the SA algorithm is given in Fig. 5.

3. RESULTS AND DISCUSSION

In this section, we present the results of the SA algorithm and
compare its performance with a widely used optimization algo-
rithm, the CS algorithm. We also compare the results of these
algorithms in noisy environments. Finally, we briefly compare
the SA algorithm with four other algorithms. In our simula-
tions, a measurement is defined as the process of measuring

Parameter Explanation Suggested 
value 

Initial perturbation 
size 

Percentage of the number of input channels (N )
that are initially perturbed

Phase: 50% N 
Binary: 5% N

Perturbation Amount of perturbation in phase optimization 
Fine:

Coarse:

Perturbation size 
change rate 

Percentage by which the perturbation size is 
changed during the temperature loops

10% current 
perturbation size

Initial temperature 
Assuming that the standard deviation of 

transmission matrix is 1 
1

Cooling ratio Temperature decrease rate
Ideal: 0.9

Noisy: 0.99

Perturbation loop 
length (L) 

Number of iterations generated in a loop before 
the temperature drops 

Ideal: N/16
Noisy: N/6

Fig. 5. Summary of optimization parameters in the SA algorithm.
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the intensity of a specific output channel �Im� when a phase
mask or an amplitude mask is chosen based on Eq. (2).
Gaussian noise with a standard deviation of 0.1hI0i,
0.3hI 0i, 0.6hI 0i, or 0.9hI0i was added to each of these
measurements. 0.3hI 0i represents a normal experimental
environment [2].

A. Phase Optimization
In the CS algorithm, the phase of each segment is cycled be-
tween 0 and 2π to find the optimum phase for each segment.
Assuming 10 phase samples are applied for each segment,
10N measurements are required to optimize a full phase map.

To make a fair comparison, the results of the SA algorithm are
also obtained after 10N measurements. Figure 6 compares the
performance of the SA and CS algorithms under the same noise
conditions and system sizes.

The CS algorithm demonstrates better performance com-
pared with the SA algorithm in a noise-free environment. As
the level of measurement noise increases, its performance drops
dramatically. The CS algorithm fails to improve the enhance-
ment beyond 10% of its maximum value in environments with
a noise level larger than 0.9hI0i [49]. In contrast to CS, SA is
more resilient to noise (see Fig. 6). CS initially converges slowly,
but converges more rapidly toward the end of the algorithm.

(a) (b)

(c) (d)

(e)

Fig. 6. Comparison between SA and CS algorithms with different system sizes at different measurement noise levels. (a) Enhancement versus
different noise levels when the SA algorithm is used with a different number of input channels: 256, 1024, or 4096. (b) Enhancement versus
different noise levels when the CS algorithm is used with a different number of input channels: 256, 1024, or 4096. (c)–(e) Enhancement
versus noise level in CS and SA when the number of input channels is 256, 1024, or 4096. The data points are averaged over 20 runs.
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SA converges fast in the beginning and slows down toward the
end of the algorithm. Thus, SA can yield more acceptable re-
sults in a noisy environment in a relatively shorter time than
that required by CS. The fast convergence time is particularly
desirable for samples with a low persistence time. The perfor-
mance of the SA algorithm does not change with increasing the
size of the system. This is not the case with the CS algorithm,
where performance degrades with increased system size.

B. Amplitude Optimization
SA also offers promising performance improvement for DMD
optimization, especially in noisy environments. Figure 7
presents the effect of the number of input channels on the ex-
ecution time and enhancement. The enhancements of the
algorithms are plotted versus the number of measurements.
As demonstrated in Fig. 7, SA optimizes the system with differ-
ent numbers of input channel robustly. Figure 8 shows the per-
formance of the SA algorithm at different noise levels.

Wavefront shaping has an essential role in overcoming light
scattering in turbid media. Several studies have investigated
various optimization algorithms to find the optimum wavefront
shape. Here, we comprehensively explored the SA algorithm, a
heuristic algorithm for finding a global optimum of an objec-
tive function. SA is well suited for wavefront shaping because it
can simultaneously optimize many input channels at once, thus
reducing the effects of measurement noise better than linear
solutions such as the CS algorithm and the TM estimation ap-
proach [46]. The SA algorithm reaches its optimum solution
faster than the CS optimization algorithm. Thus, it is a prudent
choice where a real-time algorithm is required—when working
with samples with a low persistence time, for example.

In this study, we suggested a few tips as how to tune the
optimization parameters. By introducing the perturbation
loops and an adaptive perturbation system as explained in
Section 2.E, we have improved the performance of the SA
algorithm and its tolerance to measurement noise. The perfor-
mance of SA in noisy environments can be improved further by
using a PA as a pre-optimization step [2].

SA can also be tuned for a wide range of other applications
by adjusting the cost function or the transmission matrices.
For example, this approach can be extended to polarization-
dependent [66], spectroscopic [67], and spatiotemporal

wavefront shaping [68]. In each of these cases, the formalism
of the transmission matrices would be different from the simple
case that we have discussed in this work; this would, however,
not change the overall performance of the algorithm, as the
algorithm can be easily adjusted to work with any given cost
function. It can also be easily tuned for multifocus transmission
of beams by adding extra terms concerning the intensity of
the new focuses to the cost function. Since SA is a parallel iter-
ative optimization algorithm, it can be readily applied to mea-
sure the TM with wavefront shaping [69].

C. Comparison with Other Algorithms
Since the first successful demonstration of wavefront shaping
for controlled transmission, several other algorithms have been
proposed for this purpose that have several advantages over the
simple CS algorithm. A comprehensive comparison of all these
algorithms in different noise conditions and for system sizes is
out of scope of this work. Nevertheless, in this section, six
optimization algorithms for wavefront shaping, including
CS, PA, the TM estimation method, PSO, GA, and SA, are
discussed and compared for a system with size N � 256 in
noise-free conditions.

The PA algorithm has a fast initial enhancement increase.
In each iteration of the PA, the segments are randomly divided
over two equally sized partitions. Then the focus is maximized
by cycling the phase of one partition with respect to the others
from 0 to 2π (10 phases). This process is repeated until the
termination condition, i.e., maximum number of measure-
ments, is met [2].

The TM estimation method is a very flexible method and
can be used to focus a beam on any desired target. In this
method, for each input channel n, the algorithm iteratively sets
the phase retardation to 0, π∕2, π, and 3π∕2. Then the respec-
tive intensities in the mth output channel, I0m, I

π∕2
m , I πm, and

I 3π∕2m , are measured. It can be shown that the TM elements
are then

tmn �
I0m − Iπm

4
� i

I π∕2m − I 3π∕2m

4
(8)

up to a multiplicative factor, which is the same for all the el-
ements of the matrix and can be eliminated [46]. Having the
TM, one can easily set the phase mask to achieve a good focus.
In this method, the TM can be estimated with 3N � 1
measurements, which makes it a very fast method. However,

Fig. 7. Amplitude optimization using the SA algorithm. N repre-
sents the number of input channels. Enhancements are close to the
theoretical values (shown with red crosses) even in a large number
of input channels. The data points are averaged over 20 runs.

Fig. 8. Performance of the algorithm at different noise levels with
N � 10, 000. The data points are averaged over 20 runs.
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the performance of this method drops significantly in noisy
conditions [70].

PSO is inspired by the social behavior of groups of animals
and uses an efficient global information sharing mechanism.
This algorithm begins by randomly generating a population
of phase masks (particles). Each particle is then assigned an ini-
tial random velocity, which determines how the search space is
explored. At the beginning, pbest stores the initial position
(phase map) of each particle and the best position (with the
highest focus intensity) of all particles is stored in gbest.
Then the velocity and position of each particle are updated
according to Eq. (10):

vk�1
i � wvki � c1rk1�pbestki − pki � � c2rk2�gbestk − pki �, (9)

pk�1
i � pki � vki , (10)

where vki and p
k
i are, respectively, the velocity and position vec-

tors of the ith particle in the kth iteration and w is the inertia
weight. c1 and c2 are positive constants, which are called learn-
ing factors, and r1 and r2 are uniformly distributed random
numbers between 0 and 1. Then, the new population is evalu-
ated by measuring the fitness of each particle and comparing
their fitness values with the pbest fitness value. If the new fit-
ness is improved, then we update pbest with the current posi-
tion of the particle. Afterwards, the best obtained fitness is
compared with the population’s overall previous best fitness
(fitness of gbest). If a better fitness is obtained, we update gbest
to the new best particle’s phase map. This process continues
until maximum number of iterations is reached [48,70].

The GA developed for focusing through turbid media begins
by generating an initial population of phase masks. Each phase
mask is created by selecting each input channel value from a uni-
form pseudorandom distribution of phase values between 0 and
2π. First a population of phase masks is identified, and then the
fitness value (focus intensity) of each mask is measured. The fit-
ness function is used to rank the population of masks; masks
with the highest intensity receive a higher ranking. To improve
the phase masks, the algorithm uses an iterative breeding and
mutation operation. Using a random binary breeding template,
B, two randomly selected parent masks (ma and pa) are chosen
for breeding from the population. The probability of selection
for breeding is determined by the ranking of the phase masks.
Using B, the input channels of the parent masks are combined,
creating a new offspring. The offspring mask is then mutated by
changing the phase of a small percentage of input channels at
random: Offspring � ma · B � pa · �1 − B�. This new mask
is again mutated by randomly changing the phase of a small
percentage of input channels [49].

Figure 9 presents the results of implementing the following
algorithms: CS and SA are implemented as explained in
Section 2.E. The PA and TM estimation methods do not have
any specific free parameters. The PSO was implemented with a
population size of 50. The algorithm ran for 50 iterations. The
constriction coefficient method was used to set the values of
w � 0.73 and c1 � c2 � 1.5 [71]. The phases were chosen
to be between 0 and 2π. The velocities were limited to a
range of �−2π∕10, 2π∕10� to avoid very large steps. The pop-
ulation size for the GA algorithm was also set to 50 and the
crossover rate was set to 0.5. The parents were chosen with

the tournament method [49]. Mutation was applied on
10% of the population in each generation. The phase of 0.1
of the input channels (mutation rate) of the selected population
was mutated by a value of 4π∕10. In order to prevent the algo-
rithm from mutating too many optimized phase modes, the
mutation rate was decreased from the initial value of 0.1 to
a value of 0.002 as the algorithm reaches the end of optimiza-
tion. Note that these simulations were run for the ideal, noise-
free environment. The performance of CS and TM, which
seem to be better here, would degrade considerably in noisy
environments [70].

4. CONCLUSION

SA is an efficient and effective algorithm to find the optimum
wavefront shape for focusing light through a turbid medium.
We implemented the SA algorithm for optimization of phase
and amplitude modulators with different system sizes (in phase
optimization, N � 256, 1024, 4096; in amplitude optimiza-
tion, N � 1 K, 5 K, 10 K, 50 K, 100 K) at different measure-
ment noise levels (0, 0.1hI0i, 0.3hI 0i, 0.6hI 0i, 0.9hI0i). The
major optimization parameters, including temperature, cooling
ratio, perturbation loop length, and perturbation size, were
tuned based on our suggested tips. Key findings in this study
were as follows: in a noise-free environment, the CS algorithm
outperforms SA, whereas in noisy environments, SA performs
significantly better than CS. As opposed to CS, in SA the ratio
of experimental enhancement to theoretical enhancement at
different system sizes is almost the same. Optimization using
the SA algorithm has an initial rapid enhancement growth,
which makes SA an appropriate algorithm in applications that
need fast convergence.

This study suggests that SA is a promising and efficient
algorithm for wavefront optimization of phase or amplitude
modulators. Comparing the performance of the SA and CS
algorithms with those of other established optimization algo-
rithms for wavefront shaping is in progress and planned for
the future.

Fig. 9. Illustration of the performance of the CS, PA, TM method,
PSO, GA, and SA for N � 256, comparing the enhancement of the
focus with the number of measurements. The curves are averaged over
20 runs [70].
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