
PHYSICAL REVIEW E 94, 062901 (2016)

Packing of nonoverlapping cubic particles: Computational algorithms
and microstructural characteristics

Hessam Malmir and Muhammad Sahimi*

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles,
California 90089-1211, USA

M. Reza Rahimi Tabar
Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran

(Received 31 August 2016; published 1 December 2016)

Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the
fabrication of new types of porous materials with controlled morphology. The properties of such packings may
also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2

sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about
the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural
characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary
results [H. Malmir et al., Sci. Rep. 6, 35024 (2016)]. A modification of the random sequential addition (RSA)
algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including
the radial distribution function, the face-normal correlation function, two-point probability and cluster functions,
the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation
functions, have been computed, along with the specific surface and mean chord length of the packings. The
results indicate the existence of both spatial and orientational long-range order as the the packing density
increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the
limit for a structure similar to liquid crystals.
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I. INTRODUCTION

Porous media and materials are of fundamental scientific
and technological interest due to their wide variety of applica-
tions. The ability of porous media to interact with gases and
liquids, not only on their external surface but also in their pore
space as fluids pass through them, is one important factor in
the wide interest in these materials. Other factors that con-
tribute to the importance of porous media and materials include
their capacity for storing energy (such as supercapacitors
separating the components of a fluid mixture), their mechanical
strength, and the thermal and electrical properties of their solid
matrix. The structure of porous materials and media can be
completely ordered [1] or stochastic with some degree of
randomness or heterogeneity. Examples of ordered porous
media include zeolites [2], which are used heavily in the
chemical industry, and various types of aluminophosphates,
which have a variety of applications. Disordered porous media
may also be divided into two groups. One group consists of
consolidated porous media in which the grains have somehow
been fused together. Examples are too numerous, but they
include rock, membranes, and other types of porous structures
[3]. The second group is made up of unconsolidated porous
media in the form of packing of nonoverlapping discrete
particles. The focus of the present paper is on one particular
type of packing.

The properties of packings of nonoverlapping particles have
been studied intensively because, at the fundamental level,
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they are conceptual models for studying and understanding the
structure of liquids, glassy and crystal states of matter [4-6],
granular media [7], and heterogeneous materials [6,8,9]. As
far as applications are concerned, packings of particles are
relevant to powders [10], cell membranes [11], thin films [12],
colloidal dispersion [13], and composite materials [6,8,9]. The
great majority of early studies on packings of nonoverlapping
particles focused on those with a spherical shape [6], with
relatively limited studies of elliptical particles [14-19]. With
the more recent widening range of applications of packings
of particles, as well as advances in computational power and
instrumentation, packings of other types of particles have also
been studied, including disks [20,21], hard rectangles [22],
polyhedra [23-26], tetrahedra [27-29], and other types [30,31].

Efficient computer generation of packings of particles
is also a difficult problem. Thus, several algorithms for
generating various types of packings have been developed.
They include the random sequential addition (RSA) algo-
rithm [15,32-36], particle-growth molecular dynamics (MD)
[20,37-39], and Monte Carlo (MC) schemes [21,22,40,41].
Many of the issues relevant to packings of solid ob-
jects have been reviewed comprehensively by Torquato and
Stillinger [42].

In this paper, we study the characterization of packings of
cubic particles. The problem was motivated by a method of
fabrication of porous materials developed recently by one of us
(M.S.) and his collaborators [43]. Briefly, in this method, a salt
(e.g., NaCl) that consists of cubic crystals and is suspended in a
nonsoluble medium, such as alcohol or ketone, is used to coat
a nonporous surface that can be, for example, plastic films,
metal foils, or glass. A thermoplastic polymeric film, e.g.,
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FIG. 1. (a) Salt suspension printed on a polyethylene terephtha-
late carrier. (b) Porous pattern formed by a cast vinyl film [43].

polyolefins or polyvinyl chloride (vinyl), is then hot-pressed
over the salt layer. The polymeric material fills the void space
between the salt crystals and solidifies upon cooling. The salt is
then washed off with water. The voids created by removing the
salt crystals create and expose the porous medium. Note that,
as the melting temperature of most salt crystals is very high,
they preserve their shapes and structure when the polymeric
material is hot-pressed over the salt layer. The salt-coating
process may be performed using various methods, and various
porous patterns can be fabricated on a single surface. For
example, a checkerboard porous pattern was created on vinyl
using screen printing of a salt paste; see Fig. 1. In this case, not
all of the surface was covered by the salt layer, rather a certain
mesh pattern on it was covered. Note that, instead of salt, one
can use other types of powders, as long as its particles do not
melt during hot-pressing and can be easily washed off, and the
thickness of the porous materials fabricated using this method
can be established at the outset.

It is known [3] that, depending on the viscosity contrast
between a fluid that invades a porous medium and the fluid (gas
or liquid) that occupies the medium, a wide variety of patterns
of displacements may be created, ranging from completely
compact structures to highly branched and fractal-like patterns.
Since in the context of the fabrication method that we are
describing here the invaded portion of the packing constitutes
the solid matrix of the eventual porous material after the
invading fluid solidifies, one can fabricate porous materials
with a wide variety of microstructures for various applications
by using various fluids as the displacing and displaced agents
[43]. It is for these reasons that the study of packings of cubic
crystals is important.

The proposed fabrication method has many distinct advan-
tages over practically all of the previous methods. (i) Since
the porous medium is prepared by invading the salt packing,
washing it off is easy, as all the crystals are accessible through
their contact with each other. (ii) The pore-size distribution
and pore connectivity of the porous sample are controlled
completely by the size distribution of the salt crystals and
their packing. The voids that are created by washing off the
salt are the pores through which fluid flow and transport,
as well as sorption, reaction, and mixture separation, occur
in any particular application. Thus, the size distribution of
the pores is exactly the same as that of the salt crystals,
which can be measured before the porous medium is even
fabricated. (iii) One has complete information on the pore
space morphology. Therefore, one no longer needs to use such
methods as mercury porosimetry in order to determine the
pore-size distribution. Such methods either do not provide

complete information, or they are limited to certain ranges
of pore sizes. (iv) One can design any size distribution by
selecting the appropriate crystal shapes and size distribution.
Note that the size of the salt crystals can be controlled, so that
the desired particle-size distribution is obtained. One method
for doing so is recrystallization or precipitation, which is done
by dissolving the salt in water. If we then add the solution to a
nonsolvent (such as acetone), the salt begins to precipitate. By
controlling the amount of the salt solution, the temperature and
other thermodynamic factors, as well as the mixing conditions,
we can obtain a wide range of sizes for the salt crystals. Further
control of the particle size is achieved by either fractionation
or sieving.

Since the pore space fabricated by the aforementioned
method is exactly the same as the packing of the cubic salt
crystals, the characterization of such a packing provides deep
insight into the morphology of the pore space, and perhaps
affords one even more control of the type and structure of the
porous materials that are produced. In addition, packing of
cubic particles is encountered in biological materials, colloids
[44], and other types of systems of scientific importance. An
important practical example is the evaporation of saline water.
As evaporation proceeds, salt crystallizes and precipitates on
the surface of the system in which the water is flowing, giving
rise to a packing of cubic salt crystals that damages the surface.
Understanding this phenomenon and how the packing changes
the morphology of the system in which salt has precipitated,
and hence its flow and transport properties, is of fundamental
importance to the preservation of pavements, paintings, and
historical monuments, mineral-fluid interactions, CO2 seques-
tration in rock, and intrusion of groundwater aquifers by saline
water, as the world faces increasing difficulty in obtaining
drinking water [45].

The rest of the paper is organized as follows. In Sec. II,
the RSA algorithm to generate the random packings of
nonoverlapping equal-size cubic particles is presented. We
also discuss the possibility of using other methods to generate
random packings of cubes. Then, a variety of important
statistical descriptors for the characterization of packings of
cubic particles are described in Sec. III. The results are reported
and discussed in Sec. IV. Section V summarizes the paper and
discusses possible further research.

II. THE RSA ALGORITHM

We first note that various MD and MC methods that
have been used for hard-particle packings are not applicable
to the generation of packing of cubes, because the overlap
potential functions cannot be constructed for particles with
nonsmooth shapes including all the Platonic and Archimedean
solids. For such types of particles, Torquato and Jiao [23,46]
developed an optimization algorithm that they referred to as
the adaptive shrinking cell (ASC) method, which is based on
an MC method with the Metropolis acceptance rule. Except for
tetrahedra, packings of other Platonic solids (cube, octahedra,
dodecahedra, and icosahedra) generated by the ASC algorithm
are their lattice packings. Since a cube is the only Platonic
object that tiles the space, its lattice packing generated by the
ASC algorithm is of densities close to unity and is highly
ordered [23,46]. Indeed, in their paper, Torquato and Jiao state
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FIG. 2. Packing of nonoverlapping equal-sized cubic particles
generated by the ASC algorithm. The packing fraction is 0.97.

[46] that, “We note that MRJ [maximally random jammed]
packings of cubes were not studied here because such packings
produced via our ASC algorithm generally possess a very
high degree of order due to the cubic symmetry of the solid
and its ability to fill all of the space (emphasis ours). This
could be a deficiency of our ASC algorithm or any known
hard-particle-packing algorithm in not being able to generate
MRJ cube packings, or it is possible that the MRJ packings of
hard cubes are intrinsically highly ordered. These issues will
be examined in future work.” An example is shown in Fig. 2.

Another algorithm for generating packings of cubic par-
ticles is the dynamic particle expansion (DPE) technique
proposed by Delaney and Cleary [47]. The algorithm was
originally developed for the so-called superellipsoids, defined
by (x

a

)m

+
(y

b

)m

+
(z

c

)m

= 1, (1)

where m is referred to as the shape parameter, and a, b, and c

are the semimajor axes lengths. As m increases, the particles
take on shapes that approach, for large values m, cubiclike. The
DPE method utilizes a fully dynamic linear spring discrete-
element method [48] to describe the interactions between the
particles and a constant rate γ for their volumetric growth,
and it is related to the algorithm developed by Lubachevsky
and Stillinger [20] for hard particles. However, as Delaney and
Cleary [47] note, “For superellipsoids with larger values of m

(increasingly cubic shapes), we also observe an increase in �

[the particle fraction in the model] as γ is reduced. However,
the system forms substantially denser packings at low growth
rates and these packings exhibit clear signs of ordering,
with highly ordered arrangements observed for large values
of m” (emphasis ours). Indeed, although cubiclike particles
are generated, the overlap potential function introduced by
Delaney and Cleary cannot generate packings of cubes with
sharp vertices and nonsmooth edges.

We reported recently our preliminary results of a computer
simulation of random packing of cubic particles of equal size
and its microstructural characterization [49]. Since our goal
is not generating highly ordered packings, we used neither
the ASC algorithm of Torquato and Jiao [23,46] nor the
DPE technique of Delaney and Cleary [47]. Therefore, we
developed a version of the RSA algorithm to generate random
packings of nonoverlapping monodisperse cubic particles. As
long as one can introduce a nonoverlapping constraint for the
particles, the RSA algorithm can be used to generate their
random packings. Note, however, that the RSA algorithm
is a computationally intensive method that results in a
nonequilibrium system (frozen state), and it cannot be used
to study the kinetics of a particle system.

The maximum packing fraction that we computed by our
RSA algorithm was �0.57, which represents the boundary
between a liquid-crystal phase and a crystalline structure.
This was consistent with the previously reported packing
fractions for the random packings of cubic particles [24,50].
Furthermore, a variety of microstructural descriptors of the
packings were reported, such as the radial distribution func-
tion, the face-normal correlation, and the two-point probability
functions, along with the specific surface and mean chord
length of the packings. In addition, we studied the effect
of the porosity and finite system size on the characteristics,
demonstrating that the packings possess both spatial and
orientational long-range order at high packing fractions. In the
present paper, we report further results for several other impor-
tant microstructural descriptors of such packings, namely the
two-point probability and cluster functions, the lineal-path and
the pore-size distribution, as well as the surface-surface and
surface void correlation functions. The correlation functions
are, of course, among the key characteristics of any particle
system.

The RSA algorithm that we have developed [49] begins with
a large, empty region of volume V in R3, it generates cubic
particles with randomly selected centers and orientations, and
it places them sequentially in the volume. The deposition is
subject to the nonoverlapping constraint, so that no newly
inserted particle may overlap with any existing one. The
addition process may be stopped at any time or step. The
computational details of the RSA algorithm to generate
random packings of nonoverlapping cubic particles are as
follows, where we assume that all the cubic particles have
the same size with the length of their edge being d0.

Step 1. Specify the total number of cubic particles, N , and
the cubes’ length d0, along with the size of the simulation cell,
Lx × Ly × Lz.

Step 2. Generate three random numbers xc ∈ (0,Lx), yc ∈
(0,Ly), and zc ∈ (0,Lz) for the center of a new cubic particle.

Step 3. Generate two random numbers u ∈ [−1,1] and φ ∈
[0,2π ) for the normal vector n of the upper face of the cubes,
expressed by

n =
√

1 − u2 cos φi +
√

1 − u2 sin φj + uk, (2)

where i, j, and k are the three unit vectors in Cartesian
coordinates (x,y,z).
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Step 4. Determine the matrix R that rotates the unit vector
k into the unit vector n through

R = I + A + A2 (1 − k) · n
‖v‖2

, (3)

where I is the identity matrix, and the unit vector v =
(v1,v2,v3) is defined by k × n. Furthermore,

A =
⎡
⎣ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤
⎦. (4)

Note that if n = k, then R = I, and if n = −k, we have
R = −I.

Step 5. The coordinates of the cube’s eight vertices, Vi ,
i = [1,2, . . . ,8], are computed by

Vi = Vi,n + Vc, (5)

where Vc is the coordinate vector of the cube’s cen-
ter, and Vi,n = RWi , in which W1 = (−d0/2,−d0/2,

−d0/2), . . . ,W8 = (d0/2,d0/2,d0/2).
Step 6. Check to see if all the cube’s vertices are outside

the previously inserted particles. If so, accept the particle,
and increase n → n + 1, where n is the current number of
accepted particles. If n � N , go to step 2, or else terminate
the simulation if the number of particles in the packing has
reached its target.

It should be noted that the nonoverlapping constraint (NOC)
in step 6 may be replaced by any other constraint. Various
NOCs result, however, in diverse packing configurations and
microstructural properties. For example, one may define the
NOC as the distance between a new cube’s vertices and those
of the previously inserted particles’ centers that must be greater
than or equal to d0

√
3/2. Such a constraint results in a smaller

packing density than the aforementioned constraint.

III. MICROSTRUCTURAL DESCRIPTORS

To characterize the packings of cubic particles, the fol-
lowing microstructural descriptors and characteristic functions
have been computed. We refer to the pore space and the solid
particles as phases 1 and 2, respectively. Thus, the structure
of the random packings depends on the packing density φ2 or,
equivalently, the porosity φ1 = 1 − φ2.

A. Two-particle probability density function

The most basic statistical descriptor for statistically homo-
geneous and isotropic systems of N particles is the two-particle
probability density function ρ(r), which is related to the radial
distribution function g(r) by

ρ(r) = ρ2g(r), (6)

where ρ2 is the number density of the particles, and g(r)r2dr

is proportional to the conditional probability that a particle’s
centroid is in a spherical shell of thickness dr at a radial
distance r from another particle’s centroid at the origin. If
there is no long-range order in the system, ρ(r) → ρ2, and
thus g(r) decays to unity very rapidly. For crystalline and
quasicrystalline materials, however, in which remote portions
of the same sample exhibit correlated behavior, g(r) contains

pronounced fluctuations around unity. Furthermore, it can be
shown that ∫ ∞

0
ρ(r)�(d)rd−1dr = N − 1, (7)

where �(d) = 2πd/2/�(d/2) is the volume of the
d-dimensional spherical coordinate system, and it is equal
to 4π for d = 3. Equation (7) implies that integrating ρ2g(r)
over the volume of a finite system yields the number of all the
particles, except the one at the origin.

The contact number Z, defined as the mean number of the
nearest neighbors of a given particle, is given by

Z =
∫ rm

r0

ρ(r)�(d)rd−1dr, (8)

where r0 is the rightmost position starting from r = 0 at which
ρ(r) = 0, and rm is the position of the first minimum after the
first peak.

B. Face-normal correlation function

An important statistical descriptor for packings of non-
spherical particles is the face-normal correlation function
CFN(r), defined as the average of the largest negative value
of the inner product of two face normals of a pair of cubes p

and q, separated by a distance r:

CFN(r) = min(np,1,...,6 · nq,1,...,6). (9)

The face-normal correlation function measures the extent to
which a cube’s orientation affects the orientation of another
cube at a different position.

C. Two-point probability function

The two-point probability function S
(i)
2 (x1,x2) for phase i

of a multiphase system, defined as

S
(i)
2 (x1,x2) = 〈I (i)(x1)I (i)(x2)〉, (10)

is one of the most important statistical descriptors of disordered
media, representing the probability of finding two randomly
selected points x1 and x2 in phase i, separated by a distance
r . The indicator function is I (i)(x) = 1 if x belongs to phase
i, and it is zero otherwise. For statistically homogeneous and
isotropic media, S

(i)
2 (x1,x2) depends only on the distance r ,

S
(i)
2 (x1,x2) = S

(i)
2 (r). (11)

One also has S
(i)
2 (0) = φi , where φi is the volume fraction of

phase i. In addition, S(i)
2 must satisfy limr→∞ S

(i)
2 (r) → φ2

i . In
particular, for two-phase disordered media, one has

S
(2)
2 (r) = S

(1)
2 (r) − 2φ1 + 1. (12)

Note that there are certain relations between S
(i)
2 and other

microstructural descriptors [6,8], so that any knowledge of
S

(i)
2 leads directly to information about such descriptors.

D. Two-point cluster function

The two-point cluster function C2(x1,x2), defined as the
probability of finding two points at x1 and x2 in the same cluster
of phase i, is important to the macroscopic properties of the
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packing. It is the analog of the two-point probability function
S

(2)
2 (r) for the particle phase, but it contains connectedness

information at the fine scale. Hence, its computation follows
that of S

(2)
2 (r), except that only those events belonging to the

same cluster must be counted. The two-point cluster function
has been used in the reconstruction of disordered materials
[51,52].

The mean cluster size S, defined as the average number of
particles in the same cluster containing a randomly selected
occupied particle, is also computed from the two-point cluster
function via

S = ρ2

φ2
2

∫ ∞

0
C2(r)�(d)rd−1dr. (13)

E. Lineal-path function

Another useful statistical descriptor of random packing of
solid objects, which has also been utilized in the reconstruction
of heterogeneous materials, is the lineal-path function L(i)(z),
the probability of finding a randomly thrown line segment
of length z entirely in phase i. Since L(i)(z) indicates
connectedness along a lineal path of length z in phase i, it
is also known as the coarse-scale connectedness function. The
limiting values of the lineal-path function are L(i)(0) = φi and
L(i)(∞) = 0.

F. Chord-length distribution function

Chords are line segments between intersections of an in-
finitely long line with the two-phase interface. The cord-length
probability density function p(i)(z) is defined for statistically
isotropic media, such that p(i)(z)dz is the probability of finding
a chord with a length between z and z + dz in phase i. One
of the most important factors affecting flow and transport
properties of porous media is the mean chord length [3,53],
defined by

l
(i)
C =

∫ ∞

0
zp(i)(z)dz. (14)

It can be shown that for any statistically isotropic system of
arbitrary geometry, the chord-length distribution function is
related to the lineal-path function according to

p(i)(z) = l
(i)
C

φi

d2L(i)(z)

dz2
. (15)

Furthermore, it is straightforward to show that for such
systems, the mean chord length l

(i)
C is related to the slope

of the two-point probability function S
(i)
2 at the origin via

l
(i)
C = φi

−dS
(i)
2 /dr

∣∣
r=0

. (16)

G. Pore-size distribution function

The pore-size distribution function P (δ) for a porous
medium is defined such that P (δ)dδ is the probability that
a randomly chosen point in the pore phase lies at a distance
between δ and δ + dδ from the nearest point on the pore-solid
interface. Note that P (δ) is not the same as the classical
pore-size distribution that is used to quantify the statistical

distribution of the effective sizes of the pore bodies and pore
throats of a pore space, and it is measured using a variety of
techniques [3]. Since P (δ) is a probability density function, it
normalizes to unity.

The associated cumulative distribution function F (δ) is the
fraction of the pore space that has a pore radius larger than δ:

F (δ) =
∫ ∞

δ

P (r)dr. (17)

Hence, its limiting values are F (0) = 1 and F (∞) = 0.

H. Surface correlation functions

Surface correlation functions contain valuable information
about the interface between the solid and pore phases, and
they are of high importance in flow and transport properties
of porous media [3,6,8]. As the one-point surface correlation
function, the specific surface s(x), defined as the interfacial
area per unit volume, is proportional to the probability that
x lies in a dilated space around the particles by a differential
amount δd0. In fact, the probability of finding a point in the
dilated region around the particles in a homogeneous and
isotropic packing is given by sδd0. Moreover, another way of
computing the specific surface s for d-dimensional isotropic
porous media is based on using the first derivative of the
two-point probability function S

(i)
2 with respect to r ,

s = − ωdd

ωd−1

dS
(i)
2

dr

∣∣∣∣
r=0

, (18)

where ωd = πd/2/�(1 + d/2) is the volume of a d-
dimensional sphere of unit radius. After angular averaging,
Eq. (18) is applicable to anisotropic media as well. Using
the two-point probability function S

(i)
2 of each of the pore and

solid phases in Eq. (18) leads to the same results for the specific
surface.

Two-point surface correlation functions, namely the
surface-surface correlation function Fss(x1,x2) and the surface-
void correlation function Fsv(x1,x2), have important roles
in rigorous bounds on various flow and transport parame-
ters, such as trapping constant and fluid permeability [6,8].
Fss(x1,x2)δd0δd0 is defined as the probability that x1 and
x2 both lie in a dilated space δd0 around the particles.
Furthermore, the probability that x1 lies in the dilated region
and x2 lies in the void region (pore phase) is given by
Fsv(x1,x2)δd0. For statistically homogeneous and isotropic
media, the two probabilities depend only on the distance
r , and they take on the asymptotic forms Fss(r) → s2 and
Fsv(r) → sφ1.

IV. RESULTS AND DISCUSSION

The densest random packing of cubic particles that we could
generate by the RSA algorithm has a particle volume fraction
of φ2 � 0.57. Figure 3 presents an example of such a packing
of cubic particles of size d0 = 0.05L and packing density of
φ2 = 0.3, in a simulation cell of size L × L × L. The packing
structure is homogeneous and isotropic.

Before presenting our results, let us first discuss the most
important aspects of microstructural characterization of the
packings reported previously [49]. We found [49] for the radial
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FIG. 3. Packing of nonoverlapping equal-sized cubic particles
with N = 2600 and d0 = 0.05L, where N is the number of particles.
The packing density is φ2 = 0.3.

distribution function g(r), which describes how the density of
a system varies as a function of the distance r , that although
for all packing densities the first peak of g(r) appears at
r≈1.4d0, its magnitude varies from 4.8 for φ2 = 0.45 to 3.6
for φ2 = 0.35 and 2.4 for φ2 = 0.25. Furthermore, the contact
number Z, Eq. (8), turned out, respectively, to be Z = 4.31,
3.46, and 2.4 for the same particle fractions. In addition, the
fluctuations of g(r) beyond the first peak indicated long-range
order in the system. We deduced that the denser packings
exhibit better spatial long-range order, and that the crystallinity
of the packing is better at higher packing fractions.

All the results that are presented here represent averages
over at least 10 different realizations for each packing. The
standard deviation of the results was at most 2% of the
averages. The computed face-normal correlation function
CFN(r) indicated that orientational long-range order is present
in the system, and that the particles have many face-to-face
contacts, and hence the largest angle between two normals
to their faces is π . Therefore, CFN is approximately 1, and
the approximation is more accurate when the packing density
is higher. The computed two-point probability function S

(1)
2 (r)

for the pore phase of the same packings satisfied the theoretical
prediction, limr→∞ S

(1)
2 (r) = φ2

1 . For porosities φ1 ≈ 0.55,
0.65, and 0.75 and large radial distances r , we obtained
S

(1)
2 (r) ≈ 0.31, 0.43, and 0.57, respectively.

The probability function S
(2)
2 for the solid phase of the

packings, i.e., the pore space of the porous materials fabricated
by the method described in the Introduction, is presented in
Fig. 4, in which rin is the cube insphere radius, i.e., rin = d0/2.
The results are for packing densities, φ2 = 0.45, 0.35 and
0.25, and they are in excellent agreements with Eq. (11).
In addition, for large distances r , S

(2)
2 (r) approaches 0.2,

0.13, and 0.07, respectively, hence satisfying the relation
limr→∞ S

(2)
2 (r) = φ2

2 . The minima of the functions occur at

FIG. 4. Dependence on the packing density φ2 of the two-point
probability function S2(r) for the solid phase. rin is the radius of the
cubes’ insphere.

a radial distance equal to the particle size, i.e., r = 2rin = d0.
Moreover, with increasing pore sizes, S(2)

2 (r) is a weak function
of the distance, since the pore space has been enlarged, and
therefore the probability that two points separated by a distance
r are both in the solid phase becomes more or less independent
of r .

Figure 5 presents the two-point cluster function C2(r) for
the three packings of Fig. 4. As already mentioned, C2(r)
contains useful information about the size of the clusters of
the particles in a random packing, and it has been used in the
reconstruction of models of random media. For short distances,
C2(r) is an almost linear function of r in the interval [0,rin],
but it approaches zero as r ≈ 1.2rin. As Eq. (13) indicates,
since for higher packing densities φ2 the area under the C2(r)
curve is greater, the cluster sizes are also larger.

The lineal-path function L(1)(z) is the probability of finding
a randomly thrown line segment of length z entirely in the
pore phase. At z = 0, the function represents the porosity
of the packing φ1, and its tail, as it approaches zero, yields
information about the largest possible line segment in the

FIG. 5. Dependence on the packing density φ2 of the two-point
cluster function C2(r). rin is the radius of the cubes’ insphere.
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FIG. 6. Dependence on the packing density φ2 of the lineal-path
function L(z) for the pore phase of the packing. rin is the radius of
the cubes’ insphere.

pore space of the packing. Figure 6 shows the function for
three packing densities. As expected, the largest possible line
segment that is entirely in the pore space is larger for the looser
packings. The maximum possible length of a line segment in
this phase is around 0.5d0, which should be compared with
the results for the solid phase, L(2)(z), presented in Fig. 7. As
illustrated, the largest line segment z in the solid phase is less
than the edge length of each cubic particle. Moreover, due to
the nonoverlapping constraint, the tail is almost the same for
all the packing densities.

The specific surface s and mean cord length lC were
already computed for the pore phase of the same packings
and presented elsewhere [49]. They are important to fluid
flow and transport through the pore space. Here, we report
the results of the two characteristics for the solid phase
of the packing, which could be useful to conduction and
other transport processes through that phase, as well as to
fluid flow and transport in the pore space of the porous
media as the fabrication method described in the Introduction.

FIG. 7. Dependence on the packing density φ2 of the lineal-path
function L(z) for the solid phase of the packing. rin is the radius of
the cubes’ insphere.

TABLE I. Dependence on the packing density φ2 of the specific
surface s and mean chord length l

(2)
C of the solid phase.

φ2 = 0.45 φ2 = 0.35 φ2 = 0.25

s (L−1) 46.86 34.11 25.28
lC (L) 3.81 × 10−2 4.06 × 10−2 3.93 × 10−2

Table I presents the two quantities for the three packings of
Fig. 4. For fixed particle sizes, the denser the packings is, the
larger is the specific surface. However, the pore space of the
same packings also has smaller chord lengths. The computed
results may be approximated by s(φ2) ≈ 107.87φ2 − 2.34 and
l
(2)
C (φ2) ≈ 0.04. While the specific surface is independent of

the pore and solid phases, i.e., the results are the same for
both the pore and solid phases, the mean chord length in the
solid phase of the packing is almost constant and smaller than
the particle size (d0 = 0.05L). This is once again due to the
nonoverlapping constraint imposed on the packing.

Figure 8 illustrates the cumulative pore-size distribution
function F (δ) for the three packings. As shown, F (0) equals
unity for all the packing densities. The tail of F (δ) at which
it vanishes depends, however, on the packing fraction. In
particular, for the denser packings, F (δ) is smaller than that
of the looser ones. While F (δ) vanishes at δ ≈ 0.3d0 for
φ2 = 0.45, it does so at δ ≈ 0.4d0 and 0.6d0 for φ2 = 0.35
and 0.25, respectively. This implies that no fraction of the pore
space has a pore radius greater than δ ≈ 0.3d0, 0.4d0, and
0.6d0, respectively, for the three packing fractions.

The surface-surface correlation function Fss(r), which is
proportional to the probability of finding two end points of
a line r that are both in the dilated region around the cubic
particles, contains useful information about the internal surface
of the porous media, and it has the dimensions of the inverse
surface area. Figure 9 shows the two-body contribution to the
surface-surface correlation function Fss(r) for three packing
densities, scaled by the large-distance asymptotic value s2.
The two-body contribution to Fss(r) refers to the state in which
points 1 and 2 are located on the surfaces of two different cubes.

FIG. 8. Dependence on the packing density φ2 of the cumulative
pore-size distribution function F (δ). rin is the radius of the cubes’
insphere.
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FIG. 9. Dependence on the packing density φ2 of the scaled two-
body contribution to the surface-surface correlation function Fss(r).
rin is the radius of the cubes’ insphere.

Theoretically, since limr→∞ Fss(r) is equal to the square of
the specific surface s, one has Fss(r)/s2 → 1 for large radial
distances r . As illustrated, the values of Fss(r) are greater and
their approach to unity is faster for higher packing densities.
In particular, Fss(r) approaches s2 at r ≈ d0 for φ2 = 0.45,
implying that at distances greater than ≈d0, the surface-surface
correlation function is the square of the internal surface-to-
volume ratio.

The surface-void correlation function Fsv(r) is the probabil-
ity of finding one end point of a line r in the pore space and the
other one in the dilated region around the particles. Figure 10
presents the scaled two-body contribution to the surface-void
correlation function Fsv(r)/(sφ1) for the same three packing
densities as before. In a manner similar to the surface-surface
correlation function, Fsv(r)/(sφ1) → 1 for large distances r ,
which Fig. 10 confirms. In addition, Fig. 10 indicates that
values of Fsv(r) are greater and their approach to unity is
sharper for higher packing densities. Both Fss(r) and Fsv(r)
have many applications in determining the fluid permeability

FIG. 10. Dependence on the packing density φ2 of the scaled
two-body contribution to the surface-void correlation function Fsv(r).
rin is the radius of the cubes’ insphere.

and bounds for the reactive trapping constant of porous
media [6,8].

V. SUMMARY

This paper presented the results of a detailed simulation
of the microstructural descriptors for random packings of
nonoverlapping and equal-size cubic particles. A version of the
RSA algorithm was introduced to generate random packings,
and some of the most important statistical descriptors were
calculated and analyzed, including the two-point probability
and cluster functions, the lineal-path and pore-size distribution
functions, as well as the surface-surface and surface-void
correlation functions. Furthermore, the specific surface and
mean cord length were computed and analyzed for different
packing fractions.

The random packings that we have studied possess both
spatial and orientational long-range order. The results reveal
that the denser packings have a structure similar to liquid
crystals at a particle volume fraction of φ2 � 0.45. As long
as the densest achievable packing is about φ2 ≈ 0.57, the
packings with fixed density but smaller particle sizes have
larger specific surfaces (which is expected) but smaller chord
lengths for the pore phase. This feature is the same for denser
packings with fixed particle sizes.

While the microstructural descriptors for such packings
have never been computed and analyzed before, the maximum
particle volume fraction of random packings of hard cubes
has been reported by Baker and Kudrolli [24] and Agarwal
and Escobedo [50]. Hence, our computed maximum packing
fraction may be compared with theirs. The maximum packing
fractions reported previously [24,50] are 0.45 for the isotropic
phase and 0.57 for the liquid-crystal state (the mesophase),
hence agreeing with what we have computed. According to
Agarwal and Escobedo [50], the maximum packing exhibits
mesophase behavior. Hence, the upper limit for our random
packings of hard cubes (φ2 � 0.57) is a boundary between the
liquid-crystal phase and crystalline structure.

Comparison of our results with those of dense packings of
other Platonic solids [23,24], and in particular with packings
of tetrahedral particles, indicates that random packings of
cubic particles have better-structured configurations. In fact,
although the radial distribution function for such packings
exhibits behavior similar to our results but with a faster decay
to unity, their orientational correlation function indicates face-
to-face contacts between only neighboring particles, implying
short-range orientational correlations. This is in contrast with
the random packings studied here, which exhibit both spatial
and orientational long-range order.
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