پیگیری

استانسازی رام‌داری کنترل‌سازی

دراسته‌ی صنعتی سیف - دی - 1378

تیم ۳ ماه

اگر مواردی محرمانه‌ای وجود داشت، ساختار ۳۸ درصد، هر ۵ درصد رمسایی به‌جای گذاشته می‌گردد. اگر مواردی حساسی یا محرمانه‌ای وجود داشت، ساختار ۴۰ درصد رمسایی به‌جای گذاشته می‌گردد. اگر مواردی حساسی یا محرمانه‌ای وجود داشت، ساختار ۴۲ درصد رمسایی به‌جای گذاشته می‌گردد.

الف - برای رسادن در برج مراکز صنعتی چه چیزی ضروری است؟
ب - ساختارها اندازه‌ی را برسازی را در (م.) که می‌تواند برای تولید اندازه‌ی مورد نظر مناسب باشد؟
ج - در صورتی که نیاز به استفاده از روش‌های تولید باشد، چه چیزی ضروری است؟
د - به‌چشم‌اندازه‌ی تولید، برای رسادن در این صنایع، چه چیزی ضروری است؟
(۵ نفر)

۲. کم‌ترین الکلی و کم‌ترین dc که امکانی است که می‌تواند به‌طور کامل به‌کار رود:

۳. h پیما: سفر ۱۸۹ درصد، ۴۰۴ دنیا، ۱۲۰ rpm

\[
X = \frac{45 \times 2 \times 4}{2 \times 2} = 225 \text{ ولت}
\]

• تمسک: ۱۰۰، ۱۵۰، ۲۵۰ کلوترا

\[
R = \frac{100}{120} \text{ کلوترا}
\]

الف - هنگامی که رمق (ساختار معمولی) دارای کم‌ترین dc برای نصب به‌کار رود:
ب - هنگامی که رمق (ساختار معمولی) دارای کم‌ترین dc برای نصب به‌کار رود:
(۱۰ نفر)

بیان دستی، دستگاه و نصب رماه‌ای را با استاد این دانشگاهی را واردکرده‌ایم.
آورید. چهار نفر صبح طوفان است؟

1. تلفات اسکیور راهبردی از طرف امیر اجرا چهار نفر است؟

2. اسکیور راهبردی از همدوران‌اش ۸۰ درصد را از سراسر امور را مسئولیت دارد.

3. کسی شرکت طوفان، باری به یک واحدهای در حوزه ۴۰ درصدی که از مرزهای محدود بسیاری در حال استفاده است. گزارش‌های مالی تنها ۱۵ درصد از مالیات پرداخت شده است.

4. بحثی درباره از طرف امیر اجرا چهار نفر صبح طوفان است. هر یک از این چهار نفر صبح طوفان، به‌صورت جداگانه، مسئولیت مالیاتی خود را به‌قسمت‌های مختلفی از امور را مسئولیت دارد.

5. چهار نفر صبح طوفان هر یک از امور از طرف امیر اجرا چهار نفر صبح طوفان است. هر یک از این چهار نفر صبح طوفان، به‌صورت جداگانه، مسئولیت مالیاتی خود را به‌قسمت‌های مختلفی از امور را مسئولیت دارد.


\[ T_m = \frac{y}{w_3} \cdot \frac{R_y y}{(R_{th} + R_y y)^r + (X_{th} + X_y y)^r} \]

\[ T_{\text{rated}} = \frac{S_{\text{max}}}{S_{\text{rated}}} \cdot \frac{R_{th} + R_y y}{(R_{th} + R_y y)^r + (X_{th} + X_y y)^r} \]

\[ T_{\text{max}} = \frac{S_{\text{rated}}}{S_{\text{rated}}} \cdot \frac{R_{th} + R_y y}{(R_{th} + R_y y)^r + (X_{th} + X_y y)^r} \]

\[ R_y y = \sqrt{R_{th}^r + (X_{th} + X_y y)^r} \]

\[ T_{\text{rated}} = \frac{y S_{\text{rated}}}{S_{\text{rated}} + S_{\text{max}}} \cdot \frac{S_{\text{max}}}{S_{\text{max}}} \rightarrow \frac{1}{\nu} = \frac{1}{S_{\text{max}}} \rightarrow S = \frac{\nu}{1 - \nu} \cdot 1914 \]

\[ n_s = \frac{1}{y} \cdot \frac{\phi_0}{h} \rightarrow \frac{n}{n_{\text{max}}} = (1 - \nu/1914) \times 1914 = 1914 \text{ r/min} \]

\[ \omega_{\text{min}} = \frac{(1 - \nu/1914) \times 1914}{9} = 1979 \text{ rad/s} \]

\[ T_{\text{st}} = \frac{y S_{\text{max}}}{1 + S_{\text{max}}} \rightarrow T_{\text{st}} = \frac{y \omega_{\text{min}}}{1 + y/1914} = 1914 \text{ Pu} \]

\[ \frac{R_y y + R_{\text{ext}}}{S_{\text{max}}} = \sqrt{R_{th}^r + (X_{th} + X_y y)^r} \]

\[ \begin{cases} R_{\text{ext}} = 0 \rightarrow S_{\text{max}} = 1/1914 \\ S_{\text{max}} = 1 \rightarrow R_{\text{ext}} = ? \end{cases} \]

\[ \frac{R_y y + R_{\text{ext}}}{S_{\text{max}}} = \frac{0}{1914} = 0 \]

\[ R_y y + R_{\text{ext}} = \frac{\nu}{1} \cdot (0) = \frac{0}{1 + \nu} \]
\[ I = \frac{V_{ac}}{Z_{in}} = \frac{\frac{V_s}{\sqrt{2}}}{\frac{Z_s}{\sqrt{2}}} = 178.13 \angle -78.13^\circ A \]

\[ P_f = 0.781 = 0.771 \]

\[ P_e = \sqrt{F} \times 178.13 \times 178.13 \times 0.771 \times 3.76 = 3.011 \text{ kW} \]

\[ P_{ag} = P_e - 3R_1I_1 = 3.011 - 3 \times 23 \times 178.13 = 17.045 \text{ W} \]

\[ P = sP_{ag} = 1.92 \times 17.045 = 32.848 \text{ W} \]

\[ Z_{in} = \frac{V_{ac}}{I} = \frac{178.13}{3.76 + j1.772} = 45.38 + j38.39 \text{ ohms} \]

\[ I_1 = \frac{V_s}{\sqrt{2}Z_{in}} = 178.13 \angle -78.13^\circ A \]

\[ P_e = \sqrt{F} \times 178.13 \times 178.13 \times 0.771 \times 3.76 = 13.87 W \]

\[ P_{ag} = 13.87 - 3 \times 23 \times 178.13 = 13.19 W \]

\[ P_{sh} = P_e - P = 13.87 - 10.97 = 13.33 W \]

\[ I = \frac{E_a - V_{de}}{R_a} \]

\[ S = 0.4 \rightarrow Z_{in} = R + jX = \frac{\frac{1}{4} + j0.76}{\frac{1}{4} + j1.25} = 9.185 + j5.71 \text{ ohms} \]

\[ I_1 = \frac{\frac{V_s}{\sqrt{2}}}{9.185 + j5.71} = 178.13 \angle -78.13^\circ A \]

\[ P_e = \sqrt{F} \times 178.13 \times 178.13 \times 0.771 \times 3.76 = 13.87 W \]

\[ P_{ag} = 13.87 - 3 \times 23 \times 178.13 = 13.19 W \]

\[ P_{sh} = P_e - P = 13.87 - 10.97 = 13.33 W \]

\[ I = \frac{E_a - V_{de}}{R_a} \]

\[ \frac{V_{de}}{V} R_a = 0.771 \rightarrow I = \frac{\frac{1}{4} V}{A} \]
\[ T_m = \frac{r}{\omega} \frac{s V_t'}{R_1'} \]

\[ \frac{T_{mA}}{T_{mB}} = \frac{s_A V_t}{s_B V_{tB}} = \frac{0.6 V_{tA}}{s_B (0.6 V_{tB})} = \frac{0.6 V_{tA}}{s_B} \]

\[ S = \frac{0.6 V_{tA}}{s_B} \]

\[ \frac{T_{mA}}{T_{mB}} = \frac{P_{gA}}{P_{gB}} = \frac{R_3' I_{1A}}{R_3' I_{1B}} \]

\[ \frac{I_{1B}}{I_{1A}} \approx 1.18 \]

\[ T_{max} = \frac{\frac{r}{\omega}}{R_{th} + [R_{th} + (x_{th} + x_{t}')]^{1/2}} \]

\[ \approx \frac{r}{\omega} \frac{V_t'}{x_{t} + x_{t}'} \]

\[ \frac{T_{max}}{f} = \frac{V_t'}{\omega s f} \]

\[ V_i \approx E_i = 4.44 \frac{k N f}{\phi_p} \]

\[ \phi_p \approx \frac{V_i}{f} \]

و در اینجا (سیم تاریک) نشان داده شده است که نیرویی که بر روی سیم اعمال می‌شود کم‌تر از نیروی نسبیت در دستگاه‌های الکتریکی را دارد.

(در اینجا، مثالی از آموزش‌های نیروی نسبیت در دستگاه‌های الکتریکی می‌شود.)
$Z_{el} = Z_{w} \parallel Z_{w} = \frac{Z_{w}}{2}$ per phase $y$

$Z_{eh} = \frac{2Z_{w}}{3}$ per phase $y$

$P = \sqrt{3} V_{ll} \cdot I_{1} \cos \phi, \quad I_{1} = \frac{V_{l}}{Z_{e}}$

$\rightarrow \frac{P_{L}}{P_{H}} = \frac{I_{1} L}{I_{1} H} = \frac{Z_{eh}}{Z_{el}} = \frac{\frac{2}{3}Z_{w}}{\frac{1}{2}Z_{w}} = \frac{\frac{2}{3}}{\frac{1}{2}}$

$T_{max} = \frac{P_{L}}{P_{H}}$ est.

$P_{L} = \sqrt{3} V_{ll} \cdot I_{1} \cos \phi$ est.

$I_{L} = 2I_{W}, \quad V_{L} = \phi$

$I_{L} = \sqrt{3} I_{W}, \quad V_{L} = \phi$

$P_{L} = \sqrt{3} V_{ll} \cdot I_{1} \cos \phi$ est.