
Chapter Eight
Transfer Functions

The typical regulator system can frequently be described, in essentials, by differential equa-
tions of no more than perhaps the second, third or fourth order. . . . In contrast, the order
of the set of differential equations describing the typical negative feedback amplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to
find out what the order of the set of equations in an amplifier I had just designed would have
been, if I had worked with the differential equations directly. It turned outto be 55.

Henrik Bode, 1960 [42].

This chapter introduces the concept of thetransfer function, which is a compact
description of the input/output relation for a linear system. Combining transfer
functions with block diagrams gives a powerful method for dealing with complex
linear systems. The relationship between transfer functions and other system de-
scriptions of system dynamics is also discussed.

8.1 FREQUENCY DOMAIN MODELING

Figure 8.1 shows a block diagram for a typical control system,consisting of a
process to be controlled and a (dynamic) compensator, connected in a feedback
loop. We saw in the previous two chapters how to analyze and design such systems
using state space descriptions of the blocks. As was mentioned in Chapter 2, an
alternative approach is to focus on the input/output characteristics of the system.
Since it is the inputs and outputs that are used to connect the systems, one could
expect that this point of view would allow an understanding of the overall behavior
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Figure 8.1: A block diagram for a feedback control system. The reference signal r is fed
through a reference shaping block, which produces the signal that willbe tracked. The
error between this signal and the output is fed to a controller, which produces the input
to the process. Disturbances and noise are included at the input and output of the process
dynamics, as external signals.
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of the system. Transfer functions are the main tool in implementing this point of
view for linear systems.

The basic idea of the transfer function comes from looking at the frequency
response of a system. Suppose that we have an input signal thatis periodic. Then
we can decompose this signal into the sum of a set of sines and cosines,

u(t) =
∞

∑
k=0

ak sin(kωt)+bk cos(kωt),

whereω is the fundamental frequency of the periodic input. Each of the terms
in this input generates a corresponding sinusoidal output (in steady state), with
possibly shifted magnitude and phase. The gain and phase at each frequency is
determined by the frequency response, given in equation (5.23):

G(s) = C(sI−A)−1B+D, (8.1)

where we sets= i(kω) for eachk = 1, . . . ,∞ andi =
√
−1. If we know the steady

state frequency responseG(s), we can thus compute the response to any (periodic)
signal using superposition.

The transfer function generalizes this notion to allow a broader class of input
signals besides periodic ones. As we shall see in the next section, the transfer
function represents the response of the system to an “exponential input”, u = est.
It turns out that the form of the transfer function is precisely the same as equa-
tion (8.1). This should not be surprising since we derived equation (8.1) by writing
sinusoids as sums of complex exponentials. Formally, the transfer function corre-
sponds to the Laplace transform of the steady state response of a system, although
one does not have to understand the details of Laplace transforms in order to make
use of transfer functions.

Modeling a system through its response to sinusoidal and exponential signals is
known asfrequency domain modeling. This terminology stems from the fact that
we represent the dynamics of the system in terms of the generalized frequencys
rather than the time domain variablet. The transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a particularly convenient
representation for manipulating and analyzing complex feedback systems. As we
shall see, there are many graphical representations of transfer functions that cap-
ture interesting properties of dynamics. Transfer functions also make it possible
to express the changes in a system because of modeling error,which is essential
when discussing sensitivity to process variations of the sort discussed in Chap-
ter 12. More specifically, using transfer functions it is possible to analyze what
happens when dynamic models are approximated by static models or when high
order models are approximated by low order models. One consequence is that we
can introduce concepts that express the degree of stabilityof a system.

While many of the concepts for state space modeling and analysis directly ap-
ply to nonlinear systems, frequency domain analysis applies primarily to linear
systems. The notions of gain and phase can be generalized to nonlinear systems
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and, in particular, propagation of sinusoidal signals through a nonlinear system
can approximately be captured by an analog of the frequency response called the
describing function. These extensions of frequency response will be discussed in
Section 9.5.

8.2 DERIVATION OF THE TRANSFER FUNCTION

As we have seen in previous chapters, the input/output dynamics of a linear system
has two components: the initial condition response and the forced response. In ad-
dition, we can speak of the transient properties of the system and its steady state
response to an input. The transfer function focuses on the steady state response
due to a given input, and provides a mapping between inputs and their correspond-
ing outputs. In this section, we will derive the transfer function in terms of the
“exponential response” of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we will make use of a
special type of signal, called anexponential signal,of the form est wheres =
σ + iω is a complex number. Exponential signals play an important role in linear
systems. They appear in the solution of differential equations and in the impulse
response of linear systems, and many signals can be represented as exponentials
or sums of exponentials. For example, a constant signal is simply eαt with α = 0.
Damped sine and cosine signals can be represented by

e(σ+iω)t = eσteiωt = eσt(cosωt + i sinωt),

whereσ < 0 determines the decay rate. Figure 8.2 give examples of signals that
can be represented by complex exponentials; many other signals can be repre-
sented by linear combinations of these signals. As in the case of sinusoidal signals,
we will allow complex valued signals in the derivation that follows, although in
practice we always add together combinations of signals that result in real-valued
functions.

To investigate how a linear system responds to an exponential input u(t) = est

we consider the state space system

dx
dt

= Ax+Bu, y = Cx+Du. (8.2)

Let the input signal beu(t) = est and assume thats 6= λ j(A), j = 1, . . . ,n, where
λ j(A) is the jth eigenvalue ofA. The state is then given by

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Besτ dτ = eAtx(0)+eAt

∫ t

0
e(sI−A)τBdτ.
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Figure 8.2: Examples of exponential signals. The top row corresponds to exponential sig-
nals with a real exponent and the bottom row corresponds to those with complex exponents.
In each case, if the real part is negative then the signal decays, while ifthe real part is positive
then it grows.

If s 6= λ (A) the integral can be evaluated and we get

x(t) = eAtx(0)+eAt(sI−A)−1
(

e(sI−A)t − I
)

B

= eAt
(

x(0)− (sI−A)−1B
)

+(sI−A)−1Best.

The output of equation (8.2) is thus

y(t) = Cx(t)+Du(t)

= CeAt
(

x(0)− (sI−A)−1B
)

+
(

C(sI−A)−1B+D
)

est, (8.3)

a linear combination of the exponential functionsest andeAt. The first term in
equation (8.3) is the transient response of the system. Recall that eAt can be written
in terms of the eigenvalues ofA (using the Jordan form in the case of repeated
eigenvalues) and hence the transient response is a linear combination of terms of
the formeλ j t , whereλ j are eigenvalues ofA. If the system is stable theneAt → 0
ast → ∞ and this term dies away.

The second term of the output (8.3) is proportional to the input u(t) = est. This
term is called thepure exponential response. If the initial state is chosen as

x(0) = (sI−A)−1B,

then the output only consists of the pure exponential response and both the state
and the output are proportional to the input:

x(t) = (sI−A)−1Best = (sI−A)−1Bu(t)

y(t) =
(
C(sI−A)−1B+D

)
est =

(
C(sI−A)−1B+D

)
u(t).
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This is also the output we see in steady state, when the transients represented by
the first term in equation (8.3) have died out. The map from the input to output,

Gyu(s) = C(sI−A)−1B+D, (8.4)

is the transfer functionfrom u to y for the system (8.2) and we can writey(t) =
Gyu(s)u(t) for the case thatu(t) = est. Compare with the definition of frequency
response given by equation (5.23).

An important point in the derivation of the transfer function is the fact that
we have restricteds so thats 6= λ j(A), the eigenvalues ofA. At those values of
s, we see that the response of the system is singular (sincesI−A will fail to be
invertible). If s= λ j(A), the response of the system to the exponential inputu =

eλ j t is y = p(t)eλ j t , wherep(t) is a polynomial of degree less than or equal to the
multiplicity of the eigenvalueλ j (see Exercise 8.3).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whose state space dynamics
were studied in Section 6.3:

ẋ =




0 ω0

−ω0 −2ζ ω0



x+




0

k/ω0



u

y =


1 0


x.

(8.5)

This system is stable ifζ > 0 and so we can look at the steady state response to an
inputu = est,

Gyu(s) = C(sI−A)−1B =


1 0







s ω0

−ω0 s+2ζ ω0





−1


1

k/ω0





=


1 0




(
1

s2 +2ζ ω0s+ω2
0




s −ω0

ω0 s+2ζ ω0





)


1

k/ω0





=
k

s2 +2ζ ω0s+ω2
0

.

(8.6)

To compute the steady state response to a step function, we set s= 0 and we see
that

u = 1 =⇒ y = Gyu(0)u =
k

ω2
0

.

If we wish to compute the steady state response to a sinusoid,we write

u = sinωt =
1
2

(
ie−iωt − ieiωt)

y =
1
2

(
iGyu(−iω)e−iωt − iGyu(iω)eiωt) .

We can now writeG(s) in terms of its magnitude and phase,

G(iω) =
k

s2 +2ζ ω0s+ω2
0

=: Meiθ ,
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where the magnitudeM and phaseθ satisfy

M =
k

√

(ω2
0 −ω2)2 +(2ζ ω0ω)2

, (ω2
0 −ω2)cosθ − (2ζ ω0ω)sinθ = 0.

We can also make use of the fact thatG(−iω) is given by its complex conjugate
G∗(iω) and it follows thatG(−iω) = Me−iθ . Substituting these expressions into
our output equation, we obtain

y =
1
2

(

i(Me−iθ )e−iωt − i(Meiθ )eiωt
)

= M ·
1
2

(

ie−i(ωt+θ)− iei(ωt+θ)
)

= M sin(ωt +θ).

The responses to other signals can be computed by writing the input as an appro-
priate combination of exponential responses and using linearity. ∇

Coordinate Changes

The matricesA, B andC in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relates input to outputs, it should
be invariant to coordinate changes in the state space. To show this, consider the
model (8.2) and introduce new coordinatesz by the transformationz= Tx, where
T is a nonsingular matrix. The system is then described by

dz
dt

= T(Ax+Bu) = TAT−1z+TBu=: Ãz+ B̃u

y = Cx+DU = CT−1z+Du =: C̃z+Du

This system has the same form as equation (8.2) but the matrices A, B andC are
different:

Ã = TAT−1 B̃ = TB C̃ = CT−1. (8.7)

Computing the transfer function of the transformed model weget

G̃(s) = C̃(sI− Ã)−1B̃+ D̃ = CT−1(sI−TAT−1)−1TB+D

= C
(
T−1(sI−TAT−1)T

)−1
B+D = C(sI−A)−1B+D = G(s),

which is identical to the transfer function (8.4) computed from the system descrip-
tion (8.2). The transfer function is thus invariant to changes of the coordinates in
the state space.

Another property of the transfer function is that it corresponds to the portion of�
the state space dynamics that are both reachable and observable. In particular, if
we make use of the Kalman decomposition (Section 7.5), then the transfer func-
tion only depends on the dynamics in the reachable and observable subspace,Σro

(Exercise 8.2).
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Transfer Functions for Linear Systems

Consider a linear input/output system described by the differential equation

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any = b0

dmu
dtm

+b1
dm−1u
dtm−1 + · · ·+bmu, (8.8)

whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Section 2.2; bicycle dynamics and AFM mod-
eling are two specific examples. Note that here we have generalized our previous
system description to allow both the input and its derivatives to appear.

To determine the transfer function of the system (8.8), let the input beu(t) =
est. Since the system is linear, there is an output of the system that is also an
exponential functiony(t) = y0est. Inserting the signals into equation (8.8) we find

(sn +a1sn−1 + · · ·+an)y0est = (b0sm+b1sm−1 · · ·+bm)e−st

and the response of the system can be completely described bytwo polynomials

a(s) = sn +a1sn−1 + · · ·+an

b(s) = b0sm+b1sm−1 + · · ·+bm.
(8.9)

The polynomiala(s) is the characteristic polynomial of the ordinary differential
equation. Ifa(s) 6= 0 it follows that

y(t) = y0est =
b(s)
a(s)

est (8.10)

The transfer function of the system (8.8) is thus the rationalfunction

G(s) =
b(s)
a(s)

, (8.11)

where the polynomialsa(s) and b(s) are given by equation (8.9). Notice that
the transfer function for the system (8.8) can be obtained byinspection, since the
coefficients ofa(s) andb(s) are precisely the coefficients of the derivatives ofu
andy.

Equations (8.8)–(8.11) can be used to compute the transfer functions of many
simple ODEs. Table 8.1 gives some of the more common forms. The first five
of these follow directly from the analysis above. For the proportional-integral-
derivative (PID) controller, we make use of the fact that the integral of an expo-
nential input is given by(1/s)est. The last entry in Table 8.1 is for a pure time
delay, in which the output is identical to the input at an earlier time. Time delays
appear in many systems: typical examples are delays in nervepropagation, com-
munication and mass transport. A system with a time delay hasthe input/output
relation

y(t) = u(t − τ). (8.12)

As before, let the input beu(t) = est. Assuming that there is an output of the form
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Table 8.1: Laplace transforms for come common ordinary differential equations.

Type ODE Transfer Function

Integrator ˙y = u
1
s

Differentiator y = u̇ s

First order system ˙y+ay= u
1

s+a

Double Integrator ¨y = u
1
s2

Damped oscillator ¨y+2ζ ωnẏ+ω2
ny = u

1
s2 +2ζ ωns+ω2

n

PID controller y = kpu+kdu̇+ki
∫

u kp +kds+
ki

s

Time delay y(t) = u(t − τ) e−τs

y(t) = y0est and inserting into equation (8.12) we get

y(t) = y0est = es(t−τ) = e−sτest = e−sτu(t).

The transfer function of a time delay is thusG(s) = e−sτ , which is not a rational
function but is analytic except at infinity. (A complex function isanalytic if it has
no singularities in the closed left half plane.)

Example 8.2 Electrical circuit elements
Modeling of electrical circuits is a common use of transfer functions. Consider for
example a resistor modeled by Ohm’s lawV = IR, whereV is the voltage across
the resister,I is the current through the resistor andR is the resistance value. If
we consider current to be the input and voltage to be the output the resistor has the
transfer functionZ(s) = R. Z(s) is also called theimpedanceof the circuit element.

Next we consider an inductor whose input/output characteristic is given by

L
dI
dt

= V.

Letting the current beI(t) = est, we find that the voltage isV(t) = Lsest and the
transfer function of an inductor is thusZ(s) = Ls. A capacitor is characterized by

C
dV
dt

= I

and a similar analysis gives a transfer function from current to voltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuits can be analyzed alge-
braically by using the complex impedanceZ(s) just as one would use the resistance
value in a resistor network. ∇
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Figure 8.3: Stable amplifier based on negative feedback around an operational amplifier.
The block diagram on the left shows a typical amplifier with low frequency gain R2/R1. If
we model the dynamic response of the op amp asG(s) = ak/(s+ a) then the gain falls off
at frequencyω = a, as shown in the gain curves on the right. The frequency response is
computed fork = 107, a = 100 rad/s,R2 = 106Ω, andR1 = 1, 102, 104 and 106Ω.

Example 8.3 Operational amplifiers
To further illustrate the use of exponential signals, we consider the operational
amplifier circuit introduced in Section 3.3 and reproduced in Figure 8.3a. The
model introduced in Section 3.3 is a simplification because thelinear behavior
of the amplifier was modeled as a constant gain. In reality there are significant
dynamics in the amplifier and the static modelvout =−kv(equation (3.10)), should
therefore be replaced by a dynamic model. In the linear rangethe amplifier, we
can model the operational amplifier as having a steady state frequency response

vout

v
= − ak

s+a
=: G(s). (8.13)

This response corresponds to a first order system with time constant 1/a. The
parameterk is called the theopen loop gainand the productak is called thegain-
bandwidth product; typical values for these parameters arek = 107 andak= 107–
109 rad/s.

Since all of the elements of the circuit are modeled as being linear, if we drive
the inputv1 with an exponential signalest then in steady state all signals will
be exponentials of the same form. This allows us to manipulatethe equations
describing the system in an algebraic fashion. Hence we can write

v1−v
R1

=
v−v2

R2
and v2 = G(s)v, (8.14)

using the fact that the current into the amplifier is very small, as we did in Sec-
tion 3.3. Eliminatingv between these equation gives the following transfer func-
tion of the system

v2

v1
=

R2G(s)
R1 +R2 +R1G(s)

=
R2ak

R1ak+(R1 +R2)(s+a)
.

The low frequency gain is obtained by settings= 0, hence

G(0) =
v2

v1
= − kR2

(k+1)R1 +R2
≈−R2

R1
,

which is the result given by (3.11) in Section 3.3. The bandwidth of the amplifier
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circuit is
ωb = a

R1(k+1)+R2

R1 +R2
≈ a

R1k
R2

,

where the approximation holds forR2/R1 ≫ 1. The gain of the closed loop system
drops off at high frequencies asR2/(ω(R1 +R2)). The frequency response of the
transfer function is shown in Figure 8.3 fork = 107, a = 100 rad/s,R2 = 106Ω,
andR1 = 1, 102, 104 and 106 Ω.

Note that in solving this example, we bypassed explicitly writing the signals as
v = v0est and instead worked directly withv, assuming it was an exponential. This
shortcut is handy in solving problems of this sort. A comparison with Section 3.3,
where we made the same calculation whenG(s) was a constant, shows analysis of
systems using transfer functions is as easy as to deal with asstatic systems. The
calculations are the same if the resistancesR1 andR2 are replaced by impedances,
as discussed in Example 8.2.

∇

Although we have focused thus far on ordinary differential equations, transfer�
functions can also be used for other types of linear systems.We illustrate this
via an example of a transfer function for a partial differential equation.

Example 8.4 Transfer function for heat propagation
Consider the problem of one dimensional heat propagation ina semi-infinite metal
rod. Assume that the input is the temperature at one end and that the output is
the temperature at a point along the rod. Letθ(x, t) be the temperature at position
x and timet. With proper choice of length scales and units, heat propagation is
described by the partial differential equation

∂θ
∂ t

=
∂ 2θ
∂ 2x

, (8.15)

and the point of interest can be assumed to havex = 1. The boundary condition
for the partial differential equation is

θ(0, t) = u(t).

To determine the transfer function we choose the input asu(t) = est. Assume that
there is a solution to the partial differential equation of the formθ(x, t) = ψ(x)est,
and insert this into equation (8.15) to obtain

sψ(x) =
d2ψ
dx2 ,

with boundary conditionψ(0) = est. This ordinary differential equation (with
independent variablex) has the solution

ψ(x) = Aex
√

s+Be−x
√

s.

Matching the boundary conditions givesA = 0 andB = est, so the solution is

y(t) = θ(1, t) = ψ(1)est = e−
√

sest = e−
√

su(t).
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The system thus has the transfer functionG(s) = e−
√

s. As in the case of a time
delay, the transfer function is not a rational function but it is an analytic function.

∇

Gains, Poles and Zeros

The transfer function has many useful interpretations and the features of a transfer
function are often associated with important system properties. Three of the most
important features are the gain and locations of the poles and zeros.

Thezero frequency gainof a system is given by the magnitude of the transfer
function ats= 0. It represents the ratio of the steady state value of the output with
respect to a step input (which can be represented asu = est with s= 0). For a state
space system, we computed the zero frequency gain in equation (5.22):

G(0) = D−CA−1B.

For a system written as a linear ODE, as in equation (8.8),

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any = b0

dmu
dtm

+b1
dm−1u
dtm−1 + · · ·+bmu,

if we assume that the input and output of the system are constantsy0 andu0, then
we find thatany0 = bmu0. Hence the zero frequency gain is

G(0) =
y0

u0
=

bm

an
. (8.16)

Next consider a linear system with the rational transfer function

G(s) =
b(s)
a(s)

.

The roots of the polynomiala(s) are calledpolesof the system and the roots of
b(s) are called thezerosof the system. Ifp is a pole it follows thaty(t) = ept

is a solution of equation (8.8) withu = 0 (the homogeneous solution). A polep
corresponds to amodeof the system with corresponding modal solutionept. The
unforced motion of the system after an arbitrary excitationis a weighted sum of
modes.

Zeros have some what different interpretation. Since the pureexponential out-
put corresponding to the inputu(t) = est with a(s) 6= 0 is G(s)est, it follows that
the pure exponential output is zero ifb(s) = 0. Zeros of the transfer function thus
block the transmission of the corresponding exponential signals.

For a state space system with transfer functionG(s) = C(sI−A)−1B+ D, the
poles of the transfer function are the eigenvalues of the matrix A in the state space
model. One easy way to see this is to notice that the value ofG(s) is unbounded
whens is an eigenvalue of a system, since this is precisely the set of points where
the characteristic polynomialλ (s) = det(sI−A) = 0 (and hencesI−A is non-
invertible). It follows that the poles of a state space system depend only on the
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Figure 8.4: A pole zero digram for a transfer function with zeros at−5 and−1, and poles at
−3 and−2±2 j. The circles represent the locations of the zeros and the crosses the locations
of the poles. A complete characterization requires we also specify the gainof the system.

matrix A, which represents the intrinsic dynamics of the system. We say that a
transfer function is stable if all of its poles have negativereal part.

To find the zeros of a state space system, we observe that the zeros are complex
numberss such that the inputu(t) = est gives zero output. Inserting the pure
exponential responsex(t) = x0est andy(t) = 0 in equation (8.2) gives

sestx0 = Ax0est +Bu0est, 0 = Cestx0 +Destu0,

which can be written as



sI−A B

C D








x0
u0



 = 0.

This equation has a solution with nonzerox0, u0 only if the matrix on the left does
not have full rank. The zeros are thus the valuess such that

det




sI−A B

C D



 = 0. (8.17)

Since the zeros depend onA, B, C andD, they therefore depend on how the inputs
and outputs are coupled to the states. Notice in particular that if the matrixB has
full rank then the matrix in equation (8.17) hasn linearly independent rows for
all values ofs. Similarly there aren linearly independent columns if the matrix
C has full rank. This implies that systems where the matricesB or C are of full
rank do not have zeros. In particular it means that a system has no zeros if it is
fully actuated (each state can be controlled independently) or if the full state is
measured.

A convenient way to view the poles and zeros of a transfer function is through
a pole zero diagram, as shown in Figure 8.4. In this diagram, each pole is marked
with a cross and each zero with a circle. If there are multiplepoles or zeros at
a fixed location, these are often indicated with overlapping crosses or circles (or
other annotations). Poles in the left half plane correspond to stable modes of the
system and poles in the right half plane correspond to unstable modes. Notice that
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Figure 8.5: Poles and zeros for a balance system. The balance system (a) can be modeled
around its vertical equilibrium point by a fourth order linear system. The poles and zeros for
the transfer functionHθ ,F andHθ ,p are shown on the right top and bottom, respectively.

the gain must also be given to have a complete description of the transfer function.

Example 8.5 Balance system
Consider the dynamics for a balance system, shown in Figure 8.5a. The trans-
fer function for a balance system can be derived directly from the second order
equations, given in Example 2.1:

Mt
d2p
dt2

−ml
d2θ
dt2

cosθ +c
dp
dt

+mlsinθ
(dq

dt

)2
= F

−mlcosθ
d2p
dt2

+Jt
d2θ
dt2

−mglsinθ + γθ̇ = 0.

If we assume thatθ andq̇ are small, we can approximate this nonlinear system by
a set of linear second order differential equations,

Mt
d2p
dt2

−ml
d2θ
dt2

+c
dp
dt

= F

−ml
d2p
dt2

+Jt
d2θ
dt2

+ γ
dθ
dt

−mglθ = 0.

If we let F be an exponential signal, the resulting response satisfies

Mts
2 p−mls2 θ +cs p= F

Jts
2 θ −mls2 p+ γsθ −mglθ = 0,

where all signals are exponential signals. The resulting transfer functions for the
position of the cart and orientation of the pendulum are given by solving forp and
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Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) and feedback (c)
connections are shown. The transfer functions for the composite systems can be derived by
algebraic manipulations assuming exponential functions for all signals.

θ in terms ofF to obtain

HθF =
mls

−(MtJt −m2l2)s3− (γMt +cJt)s2 +(mglMt −cγ)s+mglc

HpF =
−Jts2− γs+mgl

−(MtJt −m2l2)s4− (γMt +cJt)s3 +(mglMt −cγ)s2 +mglcs
,

where each of the coefficients is positive. The pole zero diagrams for these two
transfer functions are shown in Figures 8.5 using the parameters from Example 6.7.

If we assume the damping is small and setc = 0 andγ = 0, we obtain

HθF =
ml

−(MtJt −m2l2)s2 +mglMt

HpF =
−Jts2 +mgl

s2
(
−(MtJt −m2l2)s2 +mglMt

) .

This gives nonzero poles and zeros at

p = ±
√

mglMt

MtJt −m2l2 ≈±2.68, z= ±
√

mgl
Jt

≈±2.09.

We see that these are quite close to the pole and zero locations in Figure 8.5. ∇

8.3 BLOCK DIAGRAMS AND TRANSFER FUNCTIONS

The combination of block diagrams and transfer functions is apowerful way to
represent control systems. Transfer functions relating different signals in the sys-
tem can be derived by purely algebraic manipulations of the transfer functions of
the blocks usingblock diagram algebra. To show how this can be done, we will
begin with simple combinations of systems.

Consider a system that is a cascade combination of systems with the transfer
functionsG1(s) andG2(s), as shown in Figure 8.6a. Let the input of the system
beu = est. The pure exponential output of the first block is the exponential signal
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G1u, which is also the input to the second system. The pure exponential output of
the second system is

y = G2(G1u) = (G2G1)u.

The transfer function of the system is thusG = G2G1, i.e. the product of the trans-
fer functions. The order of the individual transfer functions is due to the fact that
we place the input signal on the right hand side of this expression, hence we first
multiply by G1 and then byG2. Unfortunately, this has the opposite ordering from
the diagrams that we use, where we typically have the signal flow from left to
right, so one needs to be careful. The ordering is important ifeitherG1 or G2 is a
vector-valued transfer function, as we shall see in some examples.

Consider next a parallel connection of systems with the transfer functionsG1
andG2, as shown in Figure 8.6b. Lettingu = est be the input to the system, the
pure exponential output of the first system is theny1 = G1u and the output of the
second system isy2 = G2u. The pure exponential output of the parallel connection
is thus

y = G1u+G2u = (G1 +G2)u

and the transfer function for a parallel connection isG = G1 +G2.
Finally, consider a feedback connection of systems with the transfer functions

G1 andG2, as shown in Figure 8.6c. Letu = est be the input to the system,y
the pure exponential output, andebe the pure exponential part of the intermediate
signal given by the sum ofu and the output of the second block. Writing the
relations for the different blocks and the summation unit wefind

y = G1e e= u−G2y.

Elimination ofegives

y = G1(u−G2y) =⇒ (1+G1G2)y = G1u =⇒ y =
G1

1+G1G2
u.

The transfer function of the feedback connection is thus

G =
G1

1+G1G2
.

These three basic interconnections can be used as the basis for computing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 8.7, which was given already at the beginning of
the chapter. The system has three blocks representing a process P, a feedback
controllerC and a feedforward controllerF . There are three external signals: the
referencer, the load disturbanced and the measurement noisen. A typical problem
is to find out how the errore is related to the signalsr, d andn.

To derive the relevant transfer functions we assume that allsignals are expo-
nential functions, drop the arguments of signals and transfer functions and trace
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Figure 8.7: Block diagram of a feedback system. The inputs to the system are the reference
signal r, the process disturbanced and the process noisen. The remaining signals in the
system can all be chosen as possible outputs and transfer functions canbe used to relate the
system inputs to the other labeled signals.

the signals around the loop. We begin with the signal in whichwe are interested,
in this case the errore, given by

e= Fr −y.

The signaly is the sum ofn andη , whereη is the output of the process:

y = n+η η = P(d+u) u = Ce.

Combining these equations gives

e= Fr −y = Fr − (n+η) = Fr −
(
n+P(d+u)

)

= Fr −
(
n+P(d+Ce)

)

and hence
e= Fr −n−Pd−PCe.

Finally, solving this equation foregives

e=
F

1+PC
r − 1

1+PC
n− P

1+PC
d = Gerr +Genn+Gedd (8.18)

and the error is thus the sum of three terms, depending on the referencer, the
measurement noisen and the load disturbanced. The functions

Ger =
F

1+PC
Gen =

−1
1+PC

Ged =
−P

1+PC
(8.19)

are the transfer functions from referencer, noisen and disturbanced to the error
e.

We can also derive transfer functions by manipulating the block diagrams di-
rectly, as illustrated in Figure 8.8. Suppose we wish to compute the transfer func-
tion between the referencer and the outputy. We begin by combining the process
and controller blocks in Figure 8.7 to obtain the diagram in Figure 8.8a. We can
now eliminate the feedback loop using the algebra for a feedback interconnection
(Figure 8.8b) and then use the series interconnection rule toobtain

Gyr =
PCF

1+PC
. (8.20)
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Figure 8.8: Example of block diagram algebra. Figure (a) results from multiplying the
process and controller transfer functions (from Figure 8.7). Replacing the feedback loop
with its transfer function equivalent yields (b) and finally multiplying the two remaining
blocks gives the reference to output representation in (c).

Similar manipulations can be used to obtain the other transfer functions (Exer-
cise 8.10).

The derivation illustrates an effective way to manipulate the equations to obtain
the relations between inputs and outputs in a feedback system. The general idea is
to start with the signal of interest and to trace signals around the feedback loop until
coming back to the signal we started with. With some practice, equations (8.18)
and (8.19) can be written directly by inspection of the blockdiagram. Notice, for
example, that all terms in equation (8.19) have the same denominators and that the
numerators are the blocks that one passes through when goingdirectly from input
to output (ignoring the feedback). This type of rule can be used to compute transfer
functions by inspection, although for systems with multiple feedback loops it can
be tricky to compute them without writing down the algebra explicitly.

Example 8.6 Vehicle steering
Consider the linearized model for vehicle steering introduced in Example 5.12. In
Examples 6.4 and 7.3 we designed a state feedback compensatorand state estima-
tor for the system. A block diagram for the resulting controlsystem is given in
Figure 8.9. Note that we have split the estimator into two components,Gx̂u(s) and
Gx̂y(s), corresponding to its inputsu andy. The controller can be described as the
sum of two (open loop) transfer functions

u = Guy(s)y+Gur(s)r.

The first transfer function,Guy(s), describes the feedback term and the second,
Gur(s), describes the feedforward term. We call these “open loop” transfer func-
tions because they represent the relationships between thesignals without consid-
ering the dynamics of the process (e.g., removingP(s) from the system descrip-
tion). To derive these functions, we compute the the transfer functions for each
block and then use block diagram algebra.

We begin with the estimator, which takesu andy as its inputs and produces an
estimate ˆx. The dynamics for this process was derived in Example 7.3 and isgiven
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Figure 8.9: Block diagram for the steering control system. The control system is designed to
maintain the lateral position of the vehicle along a reference curve (left). The structure of the
control system is shown on the right as a block diagram of transfer functions. The estimator
consists of two components that compute the estimated state ˆx from the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commanded steering angle,u.

by
dx̂
dt

= (A−LC)x̂+Ly+Bu

x̂ =
(
sI− (A−LC)

)−1
B

︸ ︷︷ ︸

Gx̂u

u+
(
sI− (A−LC)

)−1
L

︸ ︷︷ ︸

Gx̂y

y.

Using the expressions forA, B, C andL from Example 7.3, we obtain

Gx̂u(s) =





γs+1
s2 + l1s+ l2

s+ l1− γ l2
s2 + l1s+ l2





Gx̂y(s) =





l1s+ l2
s2 + l1s+ l2

l2s
s2 + l1s+ l2





,

wherel1 and l2 are the observer gains andγ is the scaled position of the center
of mass from the rear wheels. The controller was a state feedback compensator,
which can be viewed as a constant, multi-input, single output transfer function of
the formu = −Kx̂.

We can now proceed to compute the transfer function for the overall control
system. Using block diagram algebra, we have

Guy(s) =
−KGx̂y(s)

1+KGx̂u(s)
= − s(k1l1 +k2l2)+k1l2

s2 +s(γk1 +k2 + l1)+k1 + l2 +k2l1− γk2l2

and

Gur(s) =
kr

1+KGx̂u(s)
=

k1(s2 + l1s+ l2)
s2 +s(γk1 +k2 + l1)+k1 + l2 +k2l1− γk2l2

,

wherek1 andk2 are the controller gains.
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Finally, we compute the full closed loop dynamics. We begin byderiving the
transfer function for the process,P(s). We can compute this directly from the state
space description of the dynamics, which was given in Example6.4. Using that
description, we have

P(s) = Gyu(s) = C(sI−A)−1B+D =


1 0







s −1
0 s





−1


γ
1



 =
γs+1

s2 .

The transfer function for the full closed loop system betweenthe inputr and the
outputy is then given by

Gyr =
krP(s)

1+P(s)Guy(s)
=

k1(γs+1)

s2 +(k1γ +k2)s+k1
.

Note that the observer gainsl1 andl2 do not appear in this equation. This is because
we are considering steady state analysis and, in steady state, the estimated state
exactly tracks the state of the system assuming perfect models. We will return to
this example in Chapter 12 to study the robustness of this particular approach. ∇

Pole/Zero Cancellations

Because transfer functions are often polynomials ins, it can sometimes happen
that the numerator and denominator have a common factor, which can be can-
celed. Sometimes these cancellations are simply algebraic simplifications, but in
other situations these cancellations can mask potential fragilities in the model. In
particular, if a pole/zero cancellation occurs due to termsin separate blocks that
just happen to coincide, the cancellation may not occur if one of the systems is
slightly perturbed. In some situations this can result in severe differences between
the expected behavior and the actual behavior, as illustrated in this section.

To illustrate when we can have pole/zero cancellations, consider the block di-
agram shown in Figure 8.7 withF = 1 (no feedforward compensation) andC and
P given by

C(s) =
nc(s)
dc(s)

P(s) =
np(s)

dp(s)
.

The transfer function fromr to e is then given by

Ger(s) =
1

1+PC
=

dc(s)dp(s)

dc(s)dp(s)+nc(s)np(s)
.

If there are common factors in the numerator and denominatorpolynomials, then
these terms can be factored out and eliminated from both the numerator and de-
nominator. For example, if the controller has a zero ats= a and the process has a
pole ats= a, then we will have

Ger(s) =
(s+a)d′

c(s)dp(s)

(s+a)dc(s)d′
p(s)+(s+a)n′c(s)np(s)

=
d′

c(s)dp(s)

dc(s)d′
p(s)+n′c(s)np(s)

,
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wheren′c(s) andd′
p(s) represent the relevant polynomials with the terms+a fac-

tored out. In the case whena< 0 (so that the zero or pole is in the right half plane),
we see that there is no impact on the transfer functionGer.

Suppose instead that we compute the transfer function fromd to e, which repre-
sents the effect of a disturbance on the error between the reference and the output.
This transfer function is given by

Ged(s) =
d′

c(s)np(s)

(s+a)dc(s)d′
p(s)+(s+a)n′c(s)np(s)

.

Notice that ifa< 0 then the pole is in the right half plane and the transfer function
Ged is unstable. Hence, even though the transfer function fromr to eappears to be
OK (assuming a perfect pole/zero cancellation), the transfer function fromd to e
can exhibit unbounded behavior. This unwanted behavior is typical of anunstable
pole/zero cancellation.

It turns out that the cancellation of a pole with a zero can also be understood
in terms of the state space representation of the systems. Reachability or observ-
ability is lost when there are cancellations of poles and zeros (Exercise 8.13). A
consequence is that the transfer function only represents the dynamics in the reach-
able and observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control with pole-zero cancellation
The linearized model from throttle to velocity for the linearized model for a car
has the transfer functionG(s) = b/(s−a). A simple way (but not necessarily good
way) to design a PI controller is to choose the parameters of the PI controller so
that the controller zero ats=−k1/kp cancels the process pole ats= a. The transfer
function from reference to velocity isGvr(s) = bkp/(s+ bkp) and control design
is simply a matter of choosing the gainkp. The closed loop system dynamics is of
first order with the time constant 1/bkp.

Figure 8.10 shows the velocity error when the car encounters an increase in
the road slope. A comparison with the controller used in Figure 3.3b (reproduced
in dashed curves) show that the controller based on pole-zero cancellation has
very poor performance. The velocity error is larger and it takes a long time to
settle. Notice that the control signal remains practicallyconstant aftert = 15 even
if the error is large after that time. To understand what happens we will analyze
the system. The parameters of the system area = −0.0101, b = 1.32 and the
controller parameters arekp = 0.3 andki = 0.005. The closed loop time constant
is 1/(bkp) = 2.5 s and we would expect that the error would settle in about 10 s
(4 time constants). The transfer functions from road slope tovelocity and control
signals are

Gvθ (s) =
bgkps

(s−a)(s+bkp)
Guθ (s) =

bkp

s+bkp
.

Notice that the canceled modes = a = −0.0101 appears inGvθ but not inGuθ ,
which explains whyv settles very slowly. The reason why the control signal re-
mains constant is that the controller has a zero ats= −0.0101 which cancels the
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Figure 8.10: Car with PI cruise control encountering a sloping road. Figure 8.10a shows the
velocity error and Figure 8.10b shows the throttle. Results with a PI controller with kp = 0.3
andki = 0.0051, where the process poles= −0.101 is shown in full lines and a controller
with kp = 0.3 andki = 0.5 are shown in dashed lines. Compare with Figure 3.3b on page 71.

slowly decaying process mode. Notice that the error would diverge if the canceled
pole is unstable. ∇

The lesson we can learn from this example is that it is a bad ideato try to
cancel unstable or slow process poles. A more detailed discussion of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a block diagram it is neces-
sary to form the differential equations that describe the complete system. In many
cases the equations can be obtained by combining the differential equations that
describe each subsystem and substituting variables. This simple procedure cannot
be used when there are closed loops of subsystems that all have a direct connection
between inputs and outputs, a so-calledalgebraic loop.

To see what can happen, consider a system with two blocks, a first order non-
linear system

dx
dt

= f (x,u), y = g(x), (8.21)

and a proportional controller described byu = −ky. There is no direct term since
the functiong does not depend onu. In that case we can obtain the equation for
the closed loop system simply by substitutingu by−ky in (8.21) to give

dx
dt

= f (x,−ky), y = g(x).

Such a procedure can easily be automated using simple formulamanipulation.
The situation is more complicated if there is a direct term. Ify = g(x,u) then

substitutingu by −kygives

dx
dt

= f (x,−ky), y = g(x,−ky),

To obtain a differential equation forx, the algebraic equationy = g(x,−ky) must
be solved to givey = h(x), which in general is a complicated task.
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When algebraic loops are present it is necessary to solve algebraic equations
to obtain the differential equations for the complete system. Resolving algebraic
loops is a non-trivial problem because it requires symbolicsolution of algebraic
equations. Most block-diagram oriented modeling languages cannot handle alge-
braic loops and they simply give a diagnosis that such loops are present. In the
era of analog computing, algebraic loops were eliminated byintroducing fast dy-
namics between the loops. This created differential equations with fast and slow
modes that are difficult to solve numerically. Advanced modeling languages like
Modelica use several sophisticated methods so resolve algebraic loops.

8.4 THE BODE PLOT

The frequency response of a linear system can be computed fromits transfer func-
tion by settings= iω, corresponding to a complex exponential

u(t) = eiωt = cos(ωt)+ i sin(ωt).

The resulting output has the form

y(t) = G(iω)eiωt = Meiωt+ϕ = M cos(ωt +ϕ)+ iM sin(ωt +ϕ)

whereM andϕ are the gain and phase ofG:

M = |G(iω)| ϕ = arctan
ImG(iω)

ReG(iω)
.

The phase ofG is also called theargumentof G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single sinusoid (sin or cos) is
amplified byM and phase shifted byϕ. Note that−π < ϕ ≤ π, so the arctangent
must be taken respecting the signs of the numerator and denominator. It will often
be convenient to represent the phase in degrees rather than radians. We will use the
notation∠G(iω) for the phase in degrees and argG(iω) for the phase in radians.
In addition, while we always take argG(iω) to be in the range(−π,π], we will
take∠G(iω) to be continuous, so that it can take on values outside of the range of
-180◦ to 180◦.

The frequency responseG(iω) can thus be represented by two curves: the
gain curve and the phase curve. The gain curve gives|G(iω)| as a function of
frequencyω and the phase curve gives∠G(iω) as a function of frequencyω. One
particularly useful way of drawing these curves is to use a log/log scale for the
magnitude plot and a log/linear scale for the phase plot. Thistype of plot is called
aBode plotand is shown in Figure 8.11.

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy to sketch and interpret.
Since the frequency scale is logarithmic they cover the behavior of a linear system
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Figure 8.11: Bode plot of the transfer functionC(s) = 20+ 10/s+ 10s of an ideal PID
controller. The top plot is the gain curve and bottom plot is the phase curve.The dashed
lines show straight line approximations of the gain curve and the corresponding phase curve.

over a wide frequency range.
Consider a transfer function that is a rational function of the form

G(s) =
b1(s)b2(s)
a1(s)a2(s)

.

We have

log|G(s)| = log|b1(s)|+ log|b2(s)|− log|a1(s)|− log|a2(s)|
and hence we can compute the gain curve by simply adding and subtracting gains
corresponding to terms in the numerator and denominator. Similarly

∠G(s) = ∠b1(s)+∠b2(s)−∠a1(s)−∠a2(s)

and so the phase curve can be determined in an analogous fashion. Since a poly-
nomial can be written as a product of terms of the type

k, s, s+a, s2 +2ζas+a2,

it suffices to be able to sketch Bode diagrams for these terms. The Bode plot of a
complex system is then obtained by adding the gains and phases of the terms.

The simplest term in a transfer function is one of the formsk, wherek > 0 if
the term appears in the numerator andk < 0 if the term is in the denominator. The
magnitude and phase of the term are given by

log|G(iω)| = k logω, ∠G(iω) = 90k.

The gain curve is thus a straight line with slopek and the phase curve is a constant
at 90◦×k. The case whenk= 1 corresponds to a differentiator and has slope 1 with
phase 90◦. The case whenk = −1 corresponds to an integrator and has slope−1
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Figure 8.12: Bode plot of the transfer functionsG(s) = sk for k = −2,−1,0,1,2. On a log-
log scale, the gain curve is a straight line with slopek. Using a log-linear scale, the phase
curves the transfer functions are constants, with phase equal tok·90◦

.

with phase−90◦. Bode plots of the various powers ofk are shown in Figure 8.12.
Consider next the transfer function of a first order system, given by

G(s) =
a

s+a
.

We have

|G(s)| = |a|
|s+a| ∠G(s) = ∠(a)−∠(s+a)

and hence

log|G(iω)| = loga− 1
2

log(ω2 +a2)) ∠G(iω) = −180
π

arctanω/a.

The Bode plot is shown in Figure 8.13a, with the magnitude normalized by the
zero frequency gain. Both the gain curve and the phase curve can be approximated
by the following straight lines

log|G(iω)| ≈
{

loga if ω < a

− logω if ω > a

∠G(iω) ≈







0 if ω < a/10

−45−45(logω − loga) a/10< ω < 10a

−90 if ω > 10a.

The approximate gain curve consists of a horizontal line up tofrequencyω = a,
called thebreakpoint, at which point the curve is a line of slope−1 (on a log-log
scale). The phase curve is zero up to frequencya/10 and then decreases linearly by
45◦/decade up to frequency 10a, at which point it remains constant at 90◦. Notice
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Figure 8.13: Bode plots for first and second order systems. The first order system G(s) =
a/(s+ a) (left) can be approximated by asymptotic curves (dashed) in both the gainand
frequency, with the breakpoint in the gain curve atω = a and the phase decreasing by 90◦

over a factor of 100 in frequency. The second order systemG(s) = ω2
0/(s2 +2ζ ω0s+ ω2

0)
(right) has a peak at frequencya and then a slope of−2 beyond the peak; the phase decreases
from 0◦ to 180◦. The height of the peak and rate of change of phase depending on the
damping factorζ (ζ = 0.02, 0.1, 0.2, 0.5 and 1.0 shown).

that a first order system behaves like a constant for low frequencies and like an
integrator for high frequencies; compare with the Bode plotin Figure 8.12.

Finally, consider the transfer function for a second order system

G(s) =
ω2

0

s2 +2aζs+ω2
0

.

for which we have

log|G(iω)| = 2logω0−
1
2

log
(
ω4 +2ω2

0ω2(2ζ 2−1)+ω4
0

)

∠G(iω) = −180
π

arctan
2ζ ω0ω
ω2

0 −ω2
.

The gain curve has an asymptote with zero slope forω ≪ ω0. For large val-
ues ofω the gain curve has an asymptote with slope−2. The largest gainQ =
maxω |G(iω)| ≈ 1/(2ζ ), called theQ-value, is obtained forω ≈ ω0. The phase
is zero for low frequencies and approaches 180◦ for large frequencies. The curves
can be approximated with the following piecewise linear expressions

log|G(iω)| ≈
{

0 if ω ≪ ω0,

−2logω if ω ≫ ω0
∠G(iω) ≈

{

0 if ω ≪ ω0,

−180 if ω ≫ ω0
.

The Bode plot is shown in Figure 8.13b. Note that the asymptoticapproximation
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for
the transfer functionG(s) = k(s+b)/(s+a)(s2 +2ζ ω0s+ ω2

0), wherea≪ b≪ ω0. Each
segment in the gain and phase curves represents a separate portion ofthe approximation,
where either a pole or a zero begins to have effect. Each segment of theapproximation is a
straight line between these points at a slope given by the rules for computing the effects of
poles and zeros.

is poor nearω = a and the Bode plot depends strongly onζ near this frequency.
Given the Bode plots of the basic functions, we can now sketchthe frequency

response for a more general system. The following example illustrates the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

G(s) =
k(s+b)

(s+a)(s2 +2ζ ω0s+ω2
0)

a≪ b≪ ω0.

The Bode plot for this transfer function is shown in Figure 8.14, with the complete
transfer function shown in as a solid line and a sketch of the Bode plot shown as a
dashed line.

We begin with the magnitude curve. At low frequency, the magnitude is given
by

G(0) =
kb

aω2 .

When we reach the pole ats= a, the magnitude begins to decrease with slope−1
until it reaches the zero ats= b. At that point, we increase the slope by 1, leaving
the asymptote with net slope 0. This slope is used until we reach the second order
pole ats= ωc, at which point the asymptote changes to slope−2. We see that the
magnitude curve is fairly accurate except in the region of the peak of the second
order pole (since for this caseζ is reasonably small).

The phase curve is more complicated, since the effect of the phase stretches out
much further. The effect of the pole begins ats= a/10, at which point we change
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G(s) =
k

s+2ζ ω0s+ω2
0

(a) Low pass filter

G(s) =
ks

s+2ζ ω0s+ω2
0

(b) Band pass filter

G(s) =
ks2

s+2ζ ω0s+ω2
0

(c) High pass filter

Figure 8.15: Bode plots for low pass, band pass and high pass filters. The top plots arethe
gain curves and the bottom plots are the phase curves. Each system passes frequencies in a
different range and attenuates frequencies outside of that range.

from phase 0 to a slope of−45◦/decade. The zero begins to affect the phase at
s= b/10, giving us a flat section in the phase. Ats= 10a the phase contributions
from the pole end and we are left with a slope of+45◦/decade (from the zero). At
the location of the second order pole,s≈ iωc, we get a jump in phase of−180◦.
Finally, at s = 10b the phase contributions of the zero end and we are left with
phase−180 degrees. We see that the straight line approximation forthe phase is
not as accurate as it was for the gain curve, but it does capture the basic features of
the phase changes as a function of frequency. ∇

The Bode plot gives a quick overview of a system. Since any signal can be
decomposed into a sum of sinusoids it is possible to visualize the behavior of a
system for different frequency ranges. The system can be viewed as a filter that can
change the amplitude (and phase) of the input signals according to the frequency
response. For example if there are frequency ranges where the gain curve has
constant slope and the phase is close to zero, the action of the system for signals
with these frequencies can be interpreted as a pure gain. Similarly for frequencies
where the slope is +1 and the phase close to 90◦, the action of the system can be
interpreted as a differentiator, as shown in Figure 8.12.

Three common types of frequency responses are shown in Figure 8.15. The
system in Figure 8.15a is called alow pass filterbecause the gain is constant for
low frequencies and it drops for high frequencies. Notice that the phase is zero for
low frequencies and−180◦ for high frequencies. The systems in Figure 8.15b and
c are called aband pass filterandhigh pass filterfor similar reasons.
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regulated with negative
feedback (repressor). The frequency response for each circuit is shown on the right.

To illustrate how different system behaviors can be read from the Bode plots
we consider the band pass filter in Figure 8.15b. For frequencies aroundω = ω0,
the signal is passed through with no change in gain. However,for frequencies well
below or well aboveω0, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For frequencies belowa/100
there is a phase lead of 90◦ and for frequencies above 100a there is a phase lag
of 90◦. These actions correspond to differentiation and integration of the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation in a biological circuit
Consider a genetic circuit consisting of a single gene. We wish to study the re-
sponse of the protein concentration to fluctuations in the mRNA dynamics. We
consider two cases: aconstitutive promoter(no regulation) and self-repression
(negative feedback), illustrated in Figure 8.16. The dynamics of the system are
given by

dm
dt

= α(p)− γm−u,
dp
dt

= βm−δ p,

wherev is a disturbance term that affects mRNA transcription.
For the case of no feedback we haveα(p) = α0 and the system has an equi-

librium point atme = α0/γ, pe = β/δ ·α0/γ. The transfer function fromv to p is
given by

Gol
pv(s) =

−β
(s+ γ)(s+δ )

.

For the case of negative regulation, we have

α(p) =
α1

1+kpn +α0
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and the equilibrium points satisfy

me =
δ
β

pe,
α

1+kp∗n +α0 = γme =
γδ
β

pe.

The resulting transfer function is given by

Gcl
pv(s) =

β
(s+ γ)(s+δ )+βσ

, σ =
2βαkpe

(1+kpn)2 .

Figure 8.16c shows the frequency response for the two circuits. We see that
the feedback circuit attenuates the response of the system to disturbances with low
frequency content, but slightly amplifies disturbances at high frequency (compared
to the open loop system). Notice that these curves are very similar to the frequency
response curves for the op amp, shown in Figure 8.3 on page 245.

∇

Transfer Functions from Experiments

The transfer function of a system provides a summary of the input/output response
and is very useful for analysis and design. However, modeling from first prin-
ciples can be difficult and time consuming. Fortunately, we can often build an
input/output model for a given application by directly measuring the frequency re-
sponse and fitting a transfer function to it. To do so, we perturb the input to the
system using a sinusoidal signal at a fixed frequency. When steady state is reached,
the amplitude ratio and the phase lag give the frequency response for the excitation
frequency. The complete frequency response is obtained by sweeping over a range
of frequencies.

By using correlation techniques it is possible to determinethe frequency re-
sponse very accurately and an analytic transfer function can be obtained from the
frequency response by curve fitting. The success of this approach has led to in-
struments and software that automate this process, calledspectrum analyzers. We
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope
To illustrate the utility of spectrum analysis, we considerthe dynamics of the
atomic force microscope, introduced in Section 3.5. Experimental determination
of the frequency response is particularly attractive for this system because its dy-
namics are very fast and hence experiments can be done quickly. A typical exam-
ple is given in Figure 8.17, which shows an experimentally determined frequency
response (solid line). In this case the frequency response was obtained in less than
a second. The transfer function

G(s) =
kω2

2ω2
3ω2

5(s2 +2ζ1ω1s+ω2
1)(s2 +2ζ4ω4s+ω2

4)e−sT

ω2
1ω2

4(s2 +2ζ2ω2s+ω2
2)(s2 +2ζ3ω3s+ω2

3)(s2 +2ζ5ω5s+ω2
5)

,

with ω1 = 2420,ζ1 = 0.03, ω2 = 2550,ζ2 = 0.03, ω3 = 6450,ζ3 = 0.042,ω4 =
8250,ζ4 = 0.025,ω5 = 9300,ζ5 = 0.032,T = 10−4 andk = 5, was fit to the data
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an atomicforce mi-
croscope. Figure 8.17a is a schematic which indicates the measured input (the voltage to
the drive amplifier) and output (the output of the amplifier measuring beam deflection). Fig-
ure 8.17b is a Bode plot of the measured transfer function (full lines) and the fitted transfer
function (dashed lines).

(dashed line). The frequencies associated with the zeros arelocated where the gain
curve has minima and the frequencies associated with the poles are located where
the gain curve has local maxima. The relative damping ratios are adjusted to give
a good fit to maxima and minima. When a good fit to the gain curve is obtained
the time delay is adjusted to give a good fit to the phase curve. The piezo drive is
preloaded and a simple model of its dynamics is derived in Exercise 3.7. The pole
at 2500 kHz corresponds to the trampoline mode derived in theexercise; the other
resonances are higher modes. ∇

Example 8.11 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for experiments. It has a control
system that adjusts the pupil opening to regulate the light intensity at the retina.

This control system was explored extensively by Stark in the late 1960s [180].
To determine the dynamics, light intensity on the eye was varied sinusoidally and
the pupil opening was measured. A fundamental difficulty is that the closed loop
system is insensitive to internal system parameters, so analysis of a closed loop
system thus gives little information about the internal properties of the system.
Stark used a clever experimental technique that allowed him to investigate both
open and closed loop dynamics. He excited the system by varying the intensity
of a light beam focused on the eye and he measured pupil area, as illustrated in
Figure 8.18. By using a wide light beam that covers the whole pupil the mea-
surement gives the closed loop dynamics. The open loop dynamics were obtained
by using a narrow beam, which is small enough that it is not influenced by the
pupil opening. The result of one experiment for determining open loop dynamics
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Figure 8.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving the closed loop dynamics. In (b) the light is focused into a
beam which is so narrow that it is not influenced by the pupil opening, giving the open loop
dynamics. In (c) the light beam is focused on the edge of the pupil opening, which has the
effect of increasing the gain of the system since small changes in the pupil opening have a
large effect on the amount of light entering the eye. From [179].

is given in Figure 8.19. Fitting a transfer function to the gaincurves gives a good
fit for G(s) = 0.17/(1+0.08s)3. This curve gives a poor fit to the phase curve as
shown by the dashed curve in Figure 8.19. The fit to the phase curveis improved
by adding a time delay, which leaves the gain curve unchangedwhile substantially
modifying the phase curve. The final fit gives the model

G(s) =
0.17

(1+0.08s)3e−0.2s.

The Bode plot of this is shown with solid curves in Figure 8.19. Modeling of the
pupillary reflex from first principles is discussed in detail in[117]. ∇

Notice that for both the AFM drive and the pupillary dynamics it is not easy
to derive appropriate models from first principles. In practice, it is often fruitful
to use a combination of analytical modeling and experimental identification of
parameters. Experimental determination of frequency response is less attractive
for systems with slow dynamics because the experiment takesa long time.

8.5 LAPLACE TRANSFORMS
�

Transfer functions are typically introduced using Laplace transforms and in this
section we derive the transfer function using this formalism. We assume basic
familiarity with Laplace transforms; students who are not familiar with them can
safely skip this section. A good reference for the mathematical material in this
section is the classic book by Widder [194].

Traditionally, Laplace transforms were also used to computeresponses of lin-
ear systems to different stimuli. Today we can easily generate the responses using
computers. Only a few elementary properties are needed for basic control appli-
cations. There is, however, a beautiful theory for Laplace transforms that makes
it possible to use many powerful tools from the theory of functions of a complex
variable to get deep insights into the behavior of systems.

Consider a functionf (t), f : R
+ → R that is integrable and grows no faster

thanes0t for some finites0 ∈ R and larget. The Laplace transform mapsf to a
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Figure 8.19: Sample curves from open loop frequency response of the eye (left) and Bode
plot for the open loop dynamics (right). The solid curve shows a fit of thedata using a third
order transfer function with time delay. The dashed curve in the Bode plotis the phase of the
system without time delay, showing that the delay is needed to properly capture the phase.
Figure redrawn from the data of Stark [179].

functionF = L f : C → C of a complex variable. It is defined by

F(s) =
∫ ∞

0
e−st f (t)dt, Res> s0. (8.22)

The transform has some properties that makes it well suited todeal with linear
systems.

First we observe that the transform is linear because

L (a f +bg) =
∫ ∞

0
e−st(a f(t)+bg(t))dt

= a
∫ ∞

0
e−st f (t)dt+b

∫ ∞

0
e−stg(t)dt = aL f +bL g.

(8.23)

Next we calculate the Laplace transform of the derivative of afunction. We have

L
d f
dt

=
∫ ∞

0
e−st f ′(t)dt = e−st f (t)

∣
∣
∣

∞

0
+s

∫ ∞

0
e−st f (t)dt = − f (0)+sL f ,

where the second equality is obtained using integration by parts. We thus obtain

L
d f
dt

= sL f − f (0) = sF(s)− f (0). (8.24)

This formula is particularly simple if the initial conditions are zero because it fol-
lows that differentiation of a function corresponds to multiplication of the trans-
form bys.

Since differentiation corresponds to multiplication bys we can expect that in-
tegration corresponds to division bys. This is true, as can be seen by calculating
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the Laplace transform of an integral. Using integration by parts we get

L

∫ t

0
f (τ)dτ =

∫ ∞

0

(

e−st
∫ t

0
f (τ)dτ

)

dt

= −e−st

s

∫ t

0
e−sτ f (τ)dτ

∣
∣
∣

∞

0
+

∫ ∞

0

e−sτ

s
f (τ)dτ =

1
s

∫ ∞

0
e−sτ f (τ)dτ,

hence
L

∫ t

0
f (τ)dτ =

1
s
L f =

1
s
F(s). (8.25)

Next consider a linear time-invariant system with zero initial state. We saw in
Section 5.3 that the relation between the inputu and the outputy is given by the
convolution integral

y(t) =
∫ ∞

0
h(t − τ)u(τ)dτ,

whereh(t) is the impulse response for the system. Taking the Laplace transform
of this expression, we have

Y(s) =
∫ ∞

0
e−sty(t)dt =

∫ ∞

0
e−st

∫ ∞

0
h(t − τ)u(τ)dτ dt

=
∫ ∞

0

∫ t

0
e−s(t−τ)e−sτh(t − τ)u(τ)dτ dt

=
∫ ∞

0
e−sτu(τ)dτ

∫ ∞

0
e−sth(t)dt = H(s)U(s).

Thus, the input/output response is given byY(s) = H(s)U(s) whereH, U andY
are the Laplace transforms ofh, u andy. The system theoretic interpretation is
that the Laplace transform of the output of a linear system is aproduct of two
terms, the Laplace transform of the inputU(s) and the Laplace transform of the
impulse response of the systemH(s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the transforms of the functions
that are convolved. The fact that the formulaY(s) = H(s)U(s) is much simpler
than a convolution is one reason why Laplace transforms have become popular in
engineering.

We can also use the Laplace transform to derive the transfer function for a state
space system. Consider for example a linear state space system described by

ẋ = Ax+Bu, y = Cx+Du.

Taking Laplace transformsunder the assumption that all initial values are zero
gives

sX(s) = AX(s)+BU(s), Y(s) = CX(s)+DU(s).

Elimination ofX(s) gives

Y(s) =
(

C(sI−A)−1B+D
)

U(s). (8.26)

The transfer function isG(s) = C(sI−A)−1B+D (compare with equation (8.4)).
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8.6 FURTHER READING

Heaviside, who introduced the idea of characterizing dynamics by the response
to a unit step function, also introduced a formal operator calculus for analyzing
linear systems. This was a significant advance because it gave the possibility to
analyze linear systems algebraically. Heaviside and his work is described in the
biography [153]. Unfortunately it was difficult to formalizeHeaviside’s calculus
properly and Heaviside’s work was therefore heavily criticized. This was not done
rigorously until the mathematician Laurent Schwartz developeddistribution theory
in the late 1940s. Schwartz was awarded the Fields Medal for this work in 1950.
The idea of characterizing a linear system by its steady stateresponse to sinusoids
was introduced by Fourier in his investigation of heat conduction in solids [77].
Much later it was used by Steinmetz when he introduced theiω method to develop
a theory for alternating currents. The concept of transfer functions was an impor-
tant part of classical control theory; see [108]. It was introduced via the Laplace
transform by Gardner Barnes [82], who also used it to calculate response of linear
systems. The Laplace transform was very important in the earlyphase of control
because it made it possible to find transients via tables. The Laplace transform is of
less importance today when responses to linear systems can easily be generated us-
ing computers. There are many excellent books on the use of Laplace transforms
and transfer functions for modeling and analysis of linear input/output systems.
Traditional texts on control such as [60] and [80] are representative examples.

EXERCISES

8.1 Let G(s) be the transfer function for a linear system. Show that if we apply an
inputu(t)= Asin(ωt) then the steady state output is given byy(t)= |G(iω)|Asin(ωt+
argG(iω)).

�
8.2 Show that the transfer function of a system only depends on thedynamics
in the reachable and observable subspace of the Kalman decomposition. Hint:
Consider the representation given by Equation (7.29).

8.3 Consider the system
dx
dt

= ax+u

Show that the response to the inputu(t) = eat is x(t) = eatx(0)+ teat.

8.4 The linearized model of the pendulum in the upright position is characterized
by the matrices

A =




0 1
1 0



 , B =




0
1



 , C =


1 0


 , D = 0.

Determine the transfer function of the system.
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8.5 Compute the frequency response of a PI controller using an op amp with
frequency response given by equation (8.13).

8.6 The physicistÅngstr̈om, who is associated with the length unitÅ, used fre- �
quency response to determine thermal diffusivity of metals[9]. Heat propagation
in a metal rod is described by the partial differential equation

∂T
∂ t

= a
∂ 2T
∂x2 −µT, (8.27)

wherea = λ
ρC is the thermal diffusivity, and the last term represents thermal loss

to the environment. Show that the transfer function relatingtemperatures at points
with the distancel is

G(s) = e−l
√

(s+µ)/a, (8.28)

and the frequency response is given by

log|G(iω)| = −l

√

µ +
√

ω2 + µ2

2a
argG(iω) = −l

√

−µ +
√

ω2 + µ2

2a
.

Also derive the following equation:

log|G(iω)| argG(iω) =
l2ω
2a

.

This remarkably simple formula shows that diffusivity can bedetermined from
the value of the transfer function at one frequency. It was the key inÅngstr̈om’s
method for determining thermal diffusivity. Notice that the parameterµ represent-
ing the thermal losses does not appear in the formula.

8.7 Consider the linear state space system

ẋ = Ax+Bu

y = Cx.

Show that the transfer function is

G(s) =
b1sn−1 +b2sn−2 + · · ·+bn

sn +a1sn−1 + · · ·+an

where

b1 = CB

b2 = CAB+a1CB

b3 = CA2B+a1CAB+a2CB
...

bn = CAn−1B+a1CAn−1B+ · · ·+an−1CB

andλ (s) = sn +a1sn−1 + · · ·+an is the characteristic polynomial forA.
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8.8 Consider the differential equation

dny
dtn

+a1
dn−1y
dtn−1 +a2

dn−2y
dtn−2 + · · ·+any = 0

Let λ be a root of the polynomial

sn +a1sn−1 + · · ·+an = 0.

Show that the differential equation has the solutiony(t) = eλ t .

8.9 Consider the system

dny
dtn

+a1
dn−1y
dtn−1 + · · ·+any = b1

dn−1u
dtn−1 +b2

dn−2u
dtn−2 + · · ·+bnu,

Let λ be a zero of the polynomial

b(s) = b1sn−1 +b2sn−2 + · · ·+bn.

Show that if the input isu(t) = eλ t then there is a solution to the differential equa-
tion that is identically zero.

8.10 Using block diagram algebra, show that the transfer functions fromd to y
andn to y in Figure 8.8 are given by

P
1+PC

yd
1

1+PC

yn

8.11 Consider the lateral dynamics of a vectored thrust aircraft, as described in
Example 2.9. Show that the dynamics can be described using the following block
diagram:

η
θ

−mg Σ
u ν

r 1
ms2+cs

r
Js2

Use this block diagram to compute the transfer functions from u1 to θ andx
and show that they satisfy

Hθu1 =
r

Js2 , Hxu1 =
Js2−mgr

Js2(ms2 +cs)

8.12 Consider the cruise control system given in Example 6.10. Compute the
transfer function from the throttle positionu and the angle of the roadθ to the
speed of the vehiclev, assuming a nominal speedve with corresponding throttle
positionue.

8.13 Consider a closed loop system of the form of Figure 8.7 withF = 1 andP
andC having a common pole. Show that if each system is written in state space
form, the resulting closed loop system is not reachable and not observable.
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(a) (b) (c)

Figure 8.20: Schematic diagram of thequarter car model(a) and of a vibration absorber
right (b).

8.14 Active and passive damping is used in cars to give a smooth ride on a bumpy
road. A schematic diagram of a car with a damping system in shown in Fig-
ure 8.20b. The car is approximated with two masses, one represents a quarter of
the car body and the other a wheel. The actuator exerts a forceF between the
wheel and the body based on feedback from the distance between body and the
center of the wheel (therattle space). A simple model of the system is given by
Newton’s equations for body and wheel

mbẍb = F, mwẍw = −F +kt(xr −xw),

wheremb is a quarter of the body mass,mw is the effective mass of the wheel
including brakes and part of the suspension system (theunsprung mass), andkt is
the tire stiffness. Furthermore,xb, xw andxr represent the heights of body, wheel,
and road, measured from their equilibria. For a conventional damper consisting of
a spring and a damper we haveF = k(xw−xb)+c(ẋw− ẋb), for an active damper
the forceF can be more general and it can also depend on riding conditions. Rider
comfort can be characterized by the transfer functionGaxr from road heightxr

to body accelerationa = ẍb. Show that this transfer function has the property
Gaxr (iωt) = kt/mb, whereωt =

√

kt/mw (the tire hop frequency). The equation
implies that there are fundamental limitations to the comfort that can be achieved
with any damper. More details are given in [96].

8.15 Damping vibrations is a common engineering problem. A schematic diagram
of a damper is shown in Figure 8.20c. The disturbing vibration is a sinusoidal force
acting on massm1 and the damper consists of massm2 and the springk2. Show
that the transfer function from disturbance force to heightx1 of the massm1 is

Gx1F =
m2s2 +k2

m1m2s4 +m2c1s3 +(m1k2 +m2(k1 +k2))s2 +k2c1s+k1k2

How should the massm2 and the stiffnessk2 be chosen to eliminate a sinusoidal
oscillation with frequencyω0. More details are given on pages 87–93 in the classic
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text on vibrations [57].

8.16 Consider the following simple queue model

dx
dt

= λ −µ
x

x+1

based on continuous approximation, whereλ is the arrival rate andµ the service
rate. Linearize the system around the equilibrium obtained with λ = λe andµ =
µe. The queue can be controlled by influencing the admission rate,λ = uλe, or
the service rateµ = uµe. Compute the transfer functions for service control and
admission control and give the gains and the time constants of the system. Discuss
the particular case when the ratior = λe/µe goes to one.

8.17 Consider the TCP/AQM model described in Section 3.4. Show that the lin-
earized model can be described by the transfer functions

Gbw(s) =
Nw∗e−τ f s

τ∗s+e−τ f s
, Gwq(s) = − N

q∗(τ∗s+q∗w∗)
, Gpb(s) = ρ,

where(w∗,b∗) is the equilibrium point for the system,N is the number of sources,
τ∗ is the steady state round trip time andτ f is the forward propagation time.

8.18(Inverted pendulum with PD control) Consider the normalizedinverted pen-
dulum system, whose transfer function is given byP(s)= 1/(s2−1) (Exercise 8.4).
A proportional-derivative (PD) control law for this system has transfer function
C(s) = kp+kds(see Table 8.1). suppose that we chooseC(s) = α(s−1). Compute
the closed loop dynamics and show that the system has good tracking of reference
signals but does not hae good disturbance rejection properties.


