Chapter Eight

Transfer Functions

The typical regulator system can frequently be described, in essentjadfférential equa-
tions of no more than perhaps the second, third or fourth order. ..olmtrast, the order
of the set of differential equations describing the typical negative fe&dimaplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, ¢ aocnted to
find out what the order of the set of equations in an amplifier | had jusigded would have
been, if | had worked with the differential equations directly. It turnedtoute 55.

Henrik Bode, 1960 [42].

This chapter introduces the concept of tfamsfer functionwhich is a compact
description of the input/output relation for a linear systeCombining transfer
functions with block diagrams gives a powerful method foaldey with complex
linear systems. The relationship between transfer funstéord other system de-
scriptions of system dynamics is also discussed.

8.1 FREQUENCY DOMAIN MODELING

Figure 8.1 shows a block diagram for a typical control systeamsisting of a
process to be controlled and a (dynamic) compensator, ctethén a feedback
loop. We saw in the previous two chapters how to analyze asidgasuch systems
using state space descriptions of the blocks. As was madionChapter 2, an
alternative approach is to focus on the input/output charestics of the system.
Since it is the inputs and outputs that are used to connecl#terss, one could
expect that this point of view would allow an understandihthe overall behavior

reference feedback d process N
shaping controller dynamics
r e u Y n y
— F C P —
1 |l

Figure 8.1: A block diagram for a feedback control system. The reference sigisafed
through a reference shaping block, which produces the signal thabeviliacked. The
error between this signal and the output is fed to a controller, which pesdthe input
to the process. Disturbances and noise are included at the input and ofitpe process
dynamics, as external signals.
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of the system. Transfer functions are the main tool in im@etimg this point of
view for linear systems.

The basic idea of the transfer function comes from lookinghatftequency
response of a system. Suppose that we have an input signa geatodic. Then
we can decompose this signal into the sum of a set of sinesasites,

u(t) = i ay sin(kawt) 4 b cogkat),
K=0

wherew is the fundamental frequency of the periodic input. Each eftdrms
in this input generates a corresponding sinusoidal ouipustéady state), with
possibly shifted magnitude and phase. The gain and phaselatreguency is
determined by the frequency response, given in equati@3)5.

G(s) =C(sl—A)"1B+D, (8.1)

where we se$ = i(kw) for eachk =1,...,0 andi = /—1. If we know the steady
state frequency respon&gs), we can thus compute the response to any (periodic)
signal using superposition.

The transfer function generalizes this notion to allow a desalass of input
signals besides periodic ones. As we shall see in the netibsgethe transfer
function represents the response of the system to an “eriahmput”, u = €.

It turns out that the form of the transfer function is prelighe same as equa-
tion (8.1). This should not be surprising since we derivedatigu (8.1) by writing
sinusoids as sums of complex exponentials. Formally, trester function corre-
sponds to the Laplace transform of the steady state respbasgystem, although
one does not have to understand the details of Laplace tramsfo order to make
use of transfer functions.

Modeling a system through its response to sinusoidal andrexptial signals is
known asfrequency domain modelind his terminology stems from the fact that
we represent the dynamics of the system in terms of the gereztdrequencys
rather than the time domain varialileThe transfer function provides a complete
representation of a linear system in the frequency domain.

The power of transfer functions is that they provide a paldidy convenient
representation for manipulating and analyzing complerlieek systems. As we
shall see, there are many graphical representations dfférafunctions that cap-
ture interesting properties of dynamics. Transfer fumdialso make it possible
to express the changes in a system because of modelingwhich is essential
when discussing sensitivity to process variations of theé digcussed in Chap-
ter 12. More specifically, using transfer functions it is pbkesto analyze what
happens when dynamic models are approximated by staticlsnodahen high
order models are approximated by low order models. One gomesee is that we
can introduce concepts that express the degree of staifilitygystem.

While many of the concepts for state space modeling and sisalyrectly ap-
ply to nonlinear systems, frequency domain analysis apgrmarily to linear
systems. The notions of gain and phase can be generalizedliogar systems
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and, in particular, propagation of sinusoidal signals digito a nonlinear system
can approximately be captured by an analog of the frequersponse called the
describing function. These extensions of frequency respuailsbe discussed in
Section 9.5.

8.2 DERIVATION OF THE TRANSFER FUNCTION

As we have seen in previous chapters, the input/output digseosha linear system
has two components: the initial condition response anddireefl response. In ad-
dition, we can speak of the transient properties of the aysted its steady state
response to an input. The transfer function focuses on tlaelgtstate response
due to a given input, and provides a mapping between inpultthesir correspond-
ing outputs. In this section, we will derive the transferdtian in terms of the
“exponential response” of a linear system.

Transmission of Exponential Signals

To formally compute the transfer function of a system, we wiake use of a
special type of signal, called aexponential signalpf the forme® wheres =
0 +iw is a complex number. Exponential signals play an importaetirolinear
systems. They appear in the solution of differential equatiand in the impulse
response of linear systems, and many signals can be refgdsssnexponentials
or sums of exponentials. For example, a constant signatiglgie® with a = 0.
Damped sine and cosine signals can be represented by

el0HWN _ ot _ o0t (ot +isinwt),

whereo < 0 determines the decay rate. Figure 8.2 give examples oflsigmat
can be represented by complex exponentials; many othealsigan be repre-
sented by linear combinations of these signals. As in the ebsinusoidal signals,
we will allow complex valued signals in the derivation thatiéws, although in
practice we always add together combinations of signatsrésalt in real-valued
functions.

To investigate how a linear system responds to an expomhengia u(t) = e
we consider the state space system

d
d—?[(:ijL Bu, y = Cx+ Du. (8.2)

Let the input signal bei(t) = €™ and assume that= Aj(A), j = 1,...,n, where
Aj(A) is the jth eigenvalue oA. The state is then given by

X(t) = €M(0) + /O CAt-TIgeT g — eMx(0) + e /0 {(S-ATR .
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Figure 8.2: Examples of exponential signals. The top row corresponds to expahsig-
nals with a real exponent and the bottom row corresponds to those witll@oexponents.
In each case, if the real part is negative then the signal decays, wihiéeréal part is positive
then it grows.

If s# A(A) the integral can be evaluated and we get

x(t) = Mx(0) + (sl —A)‘l(e(s"A)t - I)B

v (x(O) (sl —A)*lB) +(sl—A) 1B
The output of equation (8.2) is thus
y(t) = Cx(t) + Du(t)

— ceM (x(O) ~(sl— A)’lB) + (C(sl ~A) B+ D) e, (8.3)
a linear combination of the exponential functiogts ande™. The first term in
equation (8.3) is the transient response of the system.|IReate’ can be written
in terms of the eigenvalues @f (using the Jordan form in the case of repeated
eigenvalues) and hence the transient response is a linedniation of terms of
the formeit, where); are eigenvalues d&. If the system is stable thesi* — 0
ast — oo and this term dies away.

The second term of the output (8.3) is proportional to thetimgt) = €. This
term is called thg@ure exponential responsH the initial state is chosen as

x(0) = (sl—A)"1B,

then the output only consists of the pure exponential respamd both the state
and the output are proportional to the input:

X(t) = (sl —A)~1Be = (sl - A)"1Bu(t)
y(t) = (C(sl —A)"'B+D)e™ = (C(sl —A) !B+ D)u(t).
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This is also the output we see in steady state, when the trassigpresented by
the first term in equation (8.3) have died out. The map from tpatito output,

Gyu(s) = C(sl—A)'B+D, (8.4)

is thetransfer functionfrom u to y for the system (8.2) and we can wrig&) =
Gyu(s)u(t) for the case thati(t) = €. Compare with the definition of frequency
response given by equation (5.23).

An important point in the derivation of the transfer functics the fact that
we have restricted so thats # Aj(A), the eigenvalues oA. At those values of
s, we see that the response of the system is singular (sineé\ will fail to be
invertible). Ifs= Aj(A), the response of the system to the exponential iopst
elitisy = p(t)eMit, wherep(t) is a polynomial of degree less than or equal to the
multiplicity of the eigenvalue\j (see Exercise 8.3).

Example 8.1 Damped oscillator
Consider the response of a damped linear oscillator, whase space dynamics
were studied in Section 6.3:

. O o 0
= [—wo —ZZwo] X+ [k/wo] u (8.5)
y= [1 O] X.

This system is stable ff > 0 and so we can look at the steady state response to an
inputu = €%,

cun-onn (1) [ 1) ()

1 [ — Yy 1
=|(1 0 8.6
[ ] <52+2zwos+wg [wo s+25ab] > [k/wo] 86
k
P +2{wos+ W
To compute the steady state response to a step function,tvse-9& and we see
that K
u=1 = y=Gyp(Ou=—.
w0
If we wish to compute the steady state response to a sinuseidjrite

: 1, i
u=sine = > (et —ie'™)
1. , i RN
y=> (IGyu(—iw)e ' —iGy,(iw)e™).
We can now write5(s) in terms of its magnitude and phase,

k - Md?

Gl = o 2wt @

)
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where the magnitudil and phasé satisfy

M = K . (0f — w?)cosh — (2 wpw) sinB = 0.

V(@ - 0?7+ (2 aww)?

We can also make use of the fact ti@t-iw) is given by its complex conjugate
G*(iw) and it follows thatG(—iw) = Me'®. Substituting these expressions into
our output equation, we obtain

P N PR T NP2
y_§<l(Me e i(Me?)e )
M % (iefi(wt+9) B iei(wt+9)) — Msin(cot + 6).
The responses to other signals can be computed by writingnthe as an appro-
priate combination of exponential responses and usingiitye O

Coordinate Changes

The matricesA, B andC in equation (8.2) depend on the choice of coordinate
system for the states. Since the transfer function relafasg to outputs, it should
be invariant to coordinate changes in the state space. T g, consider the
model (8.2) and introduce new coordinatdsy the transformatioa = T x, where
T is a nonsingular matrix. The system is then described by
gtz = T(Ax+Bu) = TAT 1z+ TBu=: Az+ Bu
y=Cx+DU =CT 1z4+Du=:Cz+Du

This system has the same form as equation (8.2) but the ne#fi¢@andC are
different: _ N B
A=TAT! B=T1TB C=cT % (8.7)

Computing the transfer function of the transformed modebeie
G(s) =C(sl-A) 1B+D=CT }sI-TAT 1)~ 1TB+D
—C(TYsI-TAT HT) 'B+D=C(sl—A)'B+D = G(s),
which is identical to the transfer function (8.4) computezhi the system descrip-

tion (8.2). The transfer function is thus invariant to changéthe coordinates in
the state space.

Another property of the transfer function is that it corresgs to the portion of
the state space dynamics that are both reachable and dbiseriraparticular, if
we make use of the Kalman decomposition (Section 7.5), thetrémsfer func-
tion only depends on the dynamics in the reachable and dddslersubspace,
(Exercise 8.2).
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Transfer Functions for Linear Systems
Consider a linear input/output system described by themifftial equation

d" dn-? d™u d™tu
d—t?]/+alw_i/+--~+any: boﬁ—i-blw
whereu is the input andy is the output. This type of description arises in many
applications, as described briefly in Section 2.2; bicycleatiyics and AFM mod-
eling are two specific examples. Note that here we have gézrestadur previous
system description to allow both the input and its derivegtito appear.
To determine the transfer function of the system (8.8),Hetihput beu(t) =
e, Since the system is linear, there is an output of the systamighalso an
exponential functiory(t) = yoe™. Inserting the signals into equation (8.8) we find

(+ a4+ +an)yoe™ = (bps"+ bys™ L+ by)e S

+ -+ bmu, (8.8)

and the response of the system can be completely describ@lpolynomials

as)=s"+as" ++a,

. (8.9)
b(s) = boS"+b1S™" "+ -+ + by,

The polynomiak(s) is the characteristic polynomial of the ordinary diffeiaht
equation. Ifa(s) # 0 it follows that
b(s)
_ yaest _ D) st
Ww—wé—a®é (8.10)

The transfer function of the system (8.8) is thus the ratifunadtion

b(s)

G(s) = a3 (8.11)
where the polynomials(s) and b(s) are given by equation (8.9). Notice that
the transfer function for the system (8.8) can be obtainemh§yection, since the
coefficients ofa(s) andb(s) are precisely the coefficients of the derivativesuof
andy.

Equations (8.8)—(8.11) can be used to compute the trangietiéins of many
simple ODEs. Table 8.1 gives some of the more common forms. Tstefifie
of these follow directly from the analysis above. For thepamional-integral-
derivative (PID) controller, we make use of the fact that thiegral of an expo-
nential input is given by1/s)e. The last entry in Table 8.1 is for a pure time
delay, in which the output is identical to the input at anieatime. Time delays
appear in many systems: typical examples are delays in peogagation, com-
munication and mass transport. A system with a time delayth@sput/output
relation

y(t) =u(t—1). (8.12)

As before, let the input be(t) = €. Assuming that there is an output of the form



242 CHAPTER 8. TRANSFER FUNCTIONS

Table 8.1: Laplace transforms for come common ordinary differential equations

Type ODE Transfer Function

. 1
Integrator y=u S
Differentiator y=u S
1

First order system fFay=u —_—

Y yray s+a
. 1
Double Integrator y=u 2
1

D d oscillat 12 wny Y 2 2lwmsta?
amped oscillator y-2{ wny + @y = u P+ 2 S+ WP

PID controller y =kpu+Kkgu+Kki [u kp+kds+§

Time delay yt)=ut—r1) e’

y(t) = yoe® and inserting into equation (8.12) we get
y(t) = yoeot = 170 — eSSt — e~ Ty(t).

The transfer function of a time delay is thG$s) = e, which is not a rational
function but is analytic except at infinity. (A complex furaniisanalyticif it has
no singularities in the closed left half plane.)

Example 8.2 Electrical circuit elements

Modeling of electrical circuits is a common use of transterdtions. Consider for

example a resistor modeled by Ohm'’s l&w= IR, whereV is the voltage across

the resister) is the current through the resistor aRds the resistance value. If

we consider current to be the input and voltage to be the tthpuesistor has the

transfer functiorZ(s) = R. Z(s) is also called thempedancef the circuit element.
Next we consider an inductor whose input/output charestterlis given by

dl
L—=V.
dt
Letting the current beé(t) = e, we find that the voltage ¥ (t) = Lse" and the
transfer function of an inductor is th#§s) = Ls. A capacitor is characterized by
dv
C—=I
dt
and a similar analysis gives a transfer function from curtervoltage ofZ(s) =
1/(Cs). Using transfer functions, complex electrical circuita && analyzed alge-
braically by using the complex impedanggs) just as one would use the resistance
value in a resistor network. 0
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Figure 8.3: Stable amplifier based on negative feedback around an operatiopéfi@m

The block diagram on the left shows a typical amplifier with low frequerain B, /R;. If

we model the dynamic response of the op am@é&s = ak/(s+ a) then the gain falls off

at frequencyw = a, as shown in the gain curves on the right. The frequency response is
computed fok = 107, a= 100 rad/sR, = 106Q, andR; = 1, 1(?, 10* and 106Q.

Example 8.3 Operational amplifiers

To further illustrate the use of exponential signals, wesoder the operational
amplifier circuit introduced in Section 3.3 and reproduced iguFé 8.3a. The
model introduced in Section 3.3 is a simplification becauselittear behavior
of the amplifier was modeled as a constant gain. In realityetlage significant
dynamics in the amplifier and the static modg} = —kv (equation (3.10)), should
therefore be replaced by a dynamic model. In the linear réingemplifier, we
can model the operational amplifier as having a steady seqedncy response

Vout ak .

v sta— G(s). (8.13)
This response corresponds to a first order system with timetanaing/a. The
parametek is called the th@pen loop gairand the producakis called thegain-
bandwidth producttypical values for these parameters ke 10’ andak = 10'—
10° rad/s.

Since all of the elements of the circuit are modeled as ben&ali if we drive
the inputvy with an exponential signa¢® then in steady state all signals will
be exponentials of the same form. This allows us to manipufeesquations
describing the system in an algebraic fashion. Hence we cié@ w

Vi1 —V . V—\Vo
RR R
using the fact that the current into the amplifier is very syrasl we did in Sec-

tion 3.3. Eliminatingv between these equation gives the following transfer func-
tion of the system
V2 RoG(s) Roak
Vi Ri+R+RG(S) Rakt (Rit+Ry)(st+a)
The low frequency gain is obtained by settgg 0, hence
Vo kR R,
Tw K DRR TR

which is the result given by (3.11) in Section 3.3. The bandwaftthe amplifier

and v, =G(9)y, (8.14)

G(0)
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circuit is
Ri(k+1)+Ro _ ai:lk
Ri+R> Ry’

where the approximation holds f&/R; > 1. The gain of the closed loop system
drops off at high frequencies & /(w(R1 + Ry)). The frequency response of the
transfer function is shown in Figure 8.3 fee= 10’, a= 100 rad/sR, = 106Q,
andR; =1, 1¢%, 10* and 16 Q.

Note that in solving this example, we bypassed explicitlitimg the signals as
v = Ve and instead worked directly with assuming it was an exponential. This
shortcut is handy in solving problems of this sort. A comgamiwith Section 3.3,
where we made the same calculation wigés) was a constant, shows analysis of
systems using transfer functions is as easy as to deal witatis systems. The
calculations are the same if the resistariReandR, are replaced by impedances,
as discussed in Example 8.2.

(*)0:

O

Although we have focused thus far on ordinary differentiqliaions, transfer
functions can also be used for other types of linear systevids.illustrate this
via an example of a transfer function for a partial diffefah¢quation.

Example 8.4 Transfer function for heat propagation
Consider the problem of one dimensional heat propagatiarsgmi-infinite metal
rod. Assume that the input is the temperature at one end andhé output is
the temperature at a point along the rod. Béxt,t) be the temperature at position
x and timet. With proper choice of length scales and units, heat prapay#s
described by the partial differential equation

08 9%6

" 9% (8.15)
and the point of interest can be assumed to havel. The boundary condition
for the partial differential equation is

0(0,t) = u(t).

To determine the transfer function we choose the inpugs= €. Assume that
there is a solution to the partial differential equationtaf form6(x,t) = @(x)e™,
and insert this into equation (8.15) to obtain

d2
sy =7,

with boundary conditiony(0) = €. This ordinary differential equation (with
independent variabbg) has the solution

P(X) = AeVS 4 Be XS,
Matching the boundary conditions givés= 0 andB = €%, so the solution is
y(t) = 6(Lt) = P(1)et = e Ve = e VSu(t).
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The system thus has the transfer funct®(s) = e V5. As in the case of a time
delay, the transfer function is not a rational function s ian analytic function.
t

Gains, Poles and Zeros

The transfer function has many useful interpretations aadgatures of a transfer
function are often associated with important system pitigserThree of the most
important features are the gain and locations of the polézaros.

Thezero frequency gaiof a system is given by the magnitude of the transfer
function ats= 0. It represents the ratio of the steady state value of theubutith
respect to a step input (which can be represented-as™ with s= 0). For a state
space system, we computed the zero frequency gain in equatR):

G(0)=D-CA1B.
For a system written as a linear ODE, as in equation (8.8),
dy d"ly dMu d™ 1y
if we assume that the input and output of the system are ausgtaandug, then
we find thata,yo = bmug. Hence the zero frequency gain is
_ Yo _ bm
U @
Next consider a linear system with the rational transfectiom

G(s) = @

a(s)

+ -+ bmu,

G(0) (8.16)

The roots of the polynomia(s) are calledpolesof the system and the roots of
b(s) are called thezerosof the system. Ifp is a pole it follows thaty(t) = e™

is a solution of equation (8.8) with = 0 (the homogeneous solution). A pgbe
corresponds to eodeof the system with corresponding modal solut&h The
unforced motion of the system after an arbitrary excitat®a weighted sum of
modes.

Zeros have some what different interpretation. Since the gxpenential out-
put corresponding to the inputt) = e with a(s) # 0 is G(s)e¥, it follows that
the pure exponential output is zerdifs) = 0. Zeros of the transfer function thus
block the transmission of the corresponding exponentigiads.

For a state space system with transfer func@®gs) = C(sl — A)"'B+ D, the
poles of the transfer function are the eigenvalues of theixnAtin the state space
model. One easy way to see this is to notice that the vali&gfis unbounded
whensis an eigenvalue of a system, since this is precisely thefgmtiots where
the characteristic polynomial (s) = defsl — A) = 0 (and hencesl — A is non-
invertible). It follows that the poles of a state space systeepend only on the
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Figure 8.4: A pole zero digram for a transfer function with zeros-& and—1, and poles at
—3and—-2+2j. The circles represent the locations of the zeros and the crossesatierisc
of the poles. A complete characterization requires we also specify thehtie system.

matrix A, which represents the intrinsic dynamics of the system. #yetlsat a
transfer function is stable if all of its poles have negatal part.

To find the zeros of a state space system, we observe that tieearercomplex
numberss such that the inputi(t) = €™ gives zero output. Inserting the pure
exponential responsét) = xoe™ andy(t) = 0 in equation (8.2) gives

s = Axoe™ + Buoe™, 0= Cé%o + Deug,

sl-A B)] (%] 0
C D )
This equation has a solution with nonzeg) ug only if the matrix on the left does
not have full rank. The zeros are thus the valsisach that

si-A B
det[ c D] —0. (8.17)

which can be written as

Since the zeros depend 8nB, C andD, they therefore depend on how the inputs
and outputs are coupled to the states. Notice in partiché&rit the matrixB has
full rank then the matrix in equation (8.17) hadinearly independent rows for
all values ofs. Similarly there aren linearly independent columns if the matrix
C has full rank. This implies that systems where the matriges C are of full
rank do not have zeros. In particular it means that a systembaeros if it is
fully actuated (each state can be controlled independeatlyf the full state is
measured.

A convenient way to view the poles and zeros of a transfertfondés through
apole zero diagramas shown in Figure 8.4. In this diagram, each pole is marked
with a cross and each zero with a circle. If there are mulfgu&es or zeros at
a fixed location, these are often indicated with overlappircgses or circles (or
other annotations). Poles in the left half plane corresporatable modes of the
system and poles in the right half plane correspond to ulestabdes. Notice that
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Figure 8.5: Poles and zeros for a balance system. The balance system (a) cadéledn
around its vertical equilibrium point by a fourth order linear system. Tdlegpand zeros for
the transfer functioflg F andHg , are shown on the right top and bottom, respectively.

the gain must also be given to have a complete descriptidredafansfer function.

Example 8.5 Balance system

Consider the dynamics for a balance system, shown in Figbee 8The trans-
fer function for a balance system can be derived directlynftbe second order
equations, given in Example 2.1:

d?p d20 dp

—ml—_-cosf+c— +m|sm9(dq)2 =F

MGz dt2 dt dt

d?p d?e . :
—mlcosf— e +Jt¥ —mglsin@+y6 = 0.
If we assume tha? andq are small, we can approximate this nonlinear system by
a set of linear second order differential equations,

2 2
d?p_ d%0  dp
dt? dt? dt
dzp d’6  dé

16 =0.

dt2 e ae Vg~ M9

If we let F be an exponential signal, the resulting response satisfies

M =F

M’ p—mlIs0+csp=F
s 0 —mis’p+ys8 —mglo =0,

where all signals are exponential signals. The resultingsfea functions for the
position of the cart and orientation of the pendulum aremylwe solving forp and
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Gy
u y u y u e y
Gy Gy = }— (%) Gy
G, T
-G,
(@) Gyu = GGy (0) Gyu=GC1+G2 _ Gy
© Gyu 1+ GGy

Figure 8.6: Interconnections of linear systems. Series (a), parallel (b) and&e&dc)
connections are shown. The transfer functions for the compositensystn be derived by
algebraic manipulations assuming exponential functions for all signals.

0 in terms ofF to obtain

mls
MR = (M3 —m12)5— (W + o)+ (mgiM — oy)s+ mgic
oo —%s*— ys+mgl
PF—

(M — mPI2)s* — (yM; +cd)s® + (mgIM — cy)s? +mglcs

where each of the coefficients is positive. The pole zero dimgrfar these two
transfer functions are shown in Figures 8.5 using the paensiBbom Example 6.7.
If we assume the damping is small andset 0 andy = 0, we obtain

ml
Hor = Mg — 122+ mgimt
— s> +mgl
HpF ==

(= (Mg — mPI2)? + mgIM) -

This gives nonzero poles and zeros at

_ 4/ _mgM _ 4 /Mgl
P=F\/ iy iz © 1268 2=/~ 4209

We see that these are quite close to the pole and zero losatiétigure 8.5. [

8.3 BLOCK DIAGRAMS AND TRANSFER FUNCTIONS

The combination of block diagrams and transfer functions p@waerful way to
represent control systems. Transfer functions relatiffgreéint signals in the sys-
tem can be derived by purely algebraic manipulations of iénesfer functions of
the blocks usindplock diagram algebraTo show how this can be done, we will
begin with simple combinations of systems.

Consider a system that is a cascade combination of systetinghei transfer
functionsGs (s) andGy(s), as shown in Figure 8.6a. Let the input of the system
beu = €. The pure exponential output of the first block is the expomaéstgnal
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Gzu, which is also the input to the second system. The pure expiahentput of
the second system is
y= Gz(G]_U) = (GzGl)U.

The transfer function of the system is tHas= G,Gy, i.e. the product of the trans-
fer functions. The order of the individual transfer funcgds due to the fact that
we place the input signal on the right hand side of this exgloes hence we first
multiply by G1 and then byG,. Unfortunately, this has the opposite ordering from
the diagrams that we use, where we typically have the signal filom left to
right, so one needs to be careful. The ordering is importagithierG, or G, is a
vector-valued transfer function, as we shall see in sommples.

Consider next a parallel connection of systems with thesfearfunctionsG;
andG,, as shown in Figure 8.6b. Letting= € be the input to the system, the
pure exponential output of the first system is tlygr= G1u and the output of the
second system ¥ = G,u. The pure exponential output of the parallel connection
is thus

y = Giu+ Gou= (G1+ Gy)u

and the transfer function for a parallel connectiofsis- G; + G».

Finally, consider a feedback connection of systems withriduester functions
G; and G, as shown in Figure 8.6¢. Let= €% be the input to the systeny,
the pure exponential output, aadbe the pure exponential part of the intermediate
signal given by the sum af and the output of the second block. Writing the
relations for the different blocks and the summation unitfiwe

y=G1e e=u—Gyy.

Elimination ofe gives

G
= - 1 = =——u
y=Gi(u-Gy) = (1+GG)y=Giu = Yy 1+G1G2u
The transfer function of the feedback connection is thus
Gy
G= 14+G.1Gy

These three basic interconnections can be used as the basisrfputing transfer
functions for more complicated systems.

Control System Transfer Functions

Consider the system in Figure 8.7, which was given alreadlieabeginning of
the chapter. The system has three blocks representing aspi®ca feedback
controllerC and a feedforward controllét. There are three external signals: the
reference, the load disturbanagand the measurement noiseA typical problem
is to find out how the errog is related to the signals d andn.

To derive the relevant transfer functions we assume thaigtflals are expo-
nential functions, drop the arguments of signals and tearfsinctions and trace
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Figure 8.7: Block diagram of a feedback system. The inputs to the system are thenege
signalr, the process disturbanceand the process noise The remaining signals in the
system can all be chosen as possible outputs and transfer functiobs oaad to relate the
system inputs to the other labeled signals.

the signals around the loop. We begin with the signal in wivehare interested,
in this case the erra, given by
e=Fr—y.
The signaly is the sum ofh andn, wheren is the output of the process:
y=n+n n="P(d+u) u==Ce
Combining these equations gives
e=Fr—y=Fr—(n+n)=Fr—(n+P(d+u))
=Fr—(n+P(d+Ce)
and hence
e=Fr—n—Pd—-PCe
Finally, solving this equation fog gives

e= F r— ! n— P

1+PC 1+PC 1+PC

and the error is thus the sum of three terms, depending onrefeesncer, the
measurement noiseand the load disturbanek The functions
F -1 —P

Ce=17pc Ce=13pc e 1ipC

are the transfer functions from referengenoisen and disturbancd to the error

e

d — Gerr + Genn + Gedd (818)

(8.19)

We can also derive transfer functions by manipulating tleelbdiagrams di-
rectly, as illustrated in Figure 8.8. Suppose we wish to comhg transfer func-
tion between the referenceand the outpuy. We begin by combining the process
and controller blocks in Figure 8.7 to obtain the diagram iruFég8.8a. We can
now eliminate the feedback loop using the algebra for a feekimterconnection
(Figure 8.8b) and then use the series interconnection rudbtain

PCF
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r e y r <1
— F PC - — F = T+PC

(b)

PCF
1+PC

(@) (©

Figure 8.8: Example of block diagram algebra. Figure (a) results from multiplying the
process and controller transfer functions (from Figure 8.7). Remathe feedback loop
with its transfer function equivalent yields (b) and finally multiplying the twoagéning
blocks gives the reference to output representation in (c).

Similar manipulations can be used to obtain the other trarfafections (Exer-
cise 8.10).

The derivation illustrates an effective way to manipulategquations to obtain
the relations between inputs and outputs in a feedbackraygtee general idea is
to start with the signal of interest and to trace signalsiaddbe feedback loop until
coming back to the signal we started with. With some practggiations (8.18)
and (8.19) can be written directly by inspection of the bld@gram. Notice, for
example, that all terms in equation (8.19) have the samendigxadors and that the
numerators are the blocks that one passes through when djoéagjy from input
to output (ignoring the feedback). This type of rule can beluseompute transfer
functions by inspection, although for systems with muéifdedback loops it can
be tricky to compute them without writing down the algebraleitly.

Example 8.6 Vehicle steering

Consider the linearized model for vehicle steering inticatlin Example 5.12. In
Examples 6.4 and 7.3 we designed a state feedback compeasdtstate estima-
tor for the system. A block diagram for the resulting consgstem is given in
Figure 8.9. Note that we have split the estimator into two conemts Gg,(s) and
Ggy(s), corresponding to its inputsandy. The controller can be described as the
sum of two (open loop) transfer functions

The first transfer functionGy(s), describes the feedback term and the second,
Gur(s), describes the feedforward term. We call these “open loapisfer func-
tions because they represent the relationships betweesigiiigls without consid-
ering the dynamics of the process (e.g., remo\Rtg) from the system descrip-
tion). To derive these functions, we compute the the traufsfections for each
block and then use block diagram algebra.

We begin with the estimator, which takesndy as its inputs and produces an
estimatex” The dynamics for this process was derived in Example 7.3 agides



252 CHAPTER 8. TRANSFER FUNCTIONS

; ‘ Y v
| K | 3
! , | Gu Ggy | 1!
| R % 1
| -1 = 1
Controller . Estimator |

Figure 8.9: Block diagram for the steering control system. The control system igrkxbto
maintain the lateral position of the vehicle along a reference curve (I¢f§ sfructure of the
control system is shown on the right as a block diagram of transfetifunsc The estimator
consists of two components that compute the estimatedssteden the combination of the
input u and outputy of the process. The estimated state is fed through a state feedback
controller and combined with a reference gain to obtain the commandeihgtaagle u.

by
dg ]
pr (A—LC)X+Ly+Bu
2= (sl—(A—LC)) 'Bu+ (sl— (A—LC)) 'Ly,

Gsu G)?y

Using the expressions féy, B, C andL from Example 7.3, we obtain

ys+1 l1s+15
f+lis+l L +lis+1p
Gau(s) = Gf(y(s) = )
s+|1—ylz los
Sz+|1S+|2 Sz+|1S—|-|2

wherel; andl, are the observer gains apds the scaled position of the center
of mass from the rear wheels. The controller was a state fekdtmmpensator,
which can be viewed as a constant, multi-input, single duitjansfer function of
the formu = —KX.

We can now proceed to compute the transfer function for thezadlvcontrol
system. Using block diagram algebra, we have

—KGgy(s) S(kil1 +kol2) + kil

Guy(s) = =—
W) = T kGl P siykatkot 1) £k 1o+ Kala — Viala

and

B ky B k1(52+|15—|—|2)
1+KGau(s)  S+s(yki+ko+11) + ki + 1o+ koly — ykolo’
wherek; andk, are the controller gains.

Gur(9)
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Finally, we compute the full closed loop dynamics. We begirdbyiving the
transfer function for the proced(s). We can compute this directly from the state
space description of the dynamics, which was given in Exarégle Using that
description, we have

P(S) = Gyu(s) = C(sl~A) "B+ D= (1 0) [8 ‘Sl] 1[‘1’] :%”.

The transfer function for the full closed loop system betw#eninputr and the
outputy is then given by

kP(s) ki(ys+1)

Gy = = .
T 14+P(S)Guyls) P+ (key+ka)s+ke

Note that the observer gaihsandl, do not appear in this equation. This is because
we are considering steady state analysis and, in steady tatestimated state
exactly tracks the state of the system assuming perfect Isodé will return to
this example in Chapter 12 to study the robustness of thigcpsar approach. [

Pole/Zero Cancellations

Because transfer functions are often polynomials,iit can sometimes happen
that the numerator and denominator have a common factoghwdan be can-
celed. Sometimes these cancellations are simply algebinaifications, but in
other situations these cancellations can mask potenggilifies in the model. In
particular, if a pole/zero cancellation occurs due to teimseparate blocks that
just happen to coincide, the cancellation may not occur & ohthe systems is
slightly perturbed. In some situations this can result irese differences between
the expected behavior and the actual behavior, as illgstiatthis section.

To illustrate when we can have pole/zero cancellationssiden the block di-
agram shown in Figure 8.7 with = 1 (no feedforward compensation) aGdnd
P given by

Cls) = gzg P(s) = ”z(s)

(s)
The transfer function from to eis then given by

1 de(S)dp(S)

Ger(s) = 1+PC ~ de(s)dp(S) + Ne(s)Np(s)’

If there are common factors in the numerator and denominpatiynomials, then
these terms can be factored out and eliminated from bothuheerator and de-
nominator. For example, if the controller has a zere-ata and the process has a
pole ats = a, then we will have

(s+2)de(s)dp(s) de(s)dp(S)

Cerls) = (ST @ d(9d5(5) + (5 + ANONp(S  de(SIdp(S) - M(Inp(S)
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wheren;(s) anddj,(s) represent the relevant polynomials with the texma fac-
tored out. In the case wherx O (so that the zero or pole is in the right half plane),
we see that there is no impact on the transfer fundBen

Suppose instead that we compute the transfer functiondrtoe, which repre-
sents the effect of a disturbance on the error between theerefe and the output.
This transfer function is given by

de(s)np(s)
(s+a)dc(s)dp(s) + (s+a)ng(s)np(s) '

Ged(S) =

Notice that ifa < 0 then the pole is in the right half plane and the transfertionc
Geq is unstable Hence, even though the transfer function frotn e appears to be
OK (assuming a perfect pole/zero cancellation), the tearfsinction fromd to e
can exhibit unbounded behavior. This unwanted behaviopis&y of anunstable
pole/zero cancellatian

It turns out that the cancellation of a pole with a zero can aks understood
in terms of the state space representation of the systenachRkility or observ-
ability is lost when there are cancellations of poles andz€Exercise 8.13). A
consequence is that the transfer function only represeaidtamics in the reach-
able and observable subspace of a system (see Section 7.5).

Example 8.7 Cruise control with pole-zero cancellation

The linearized model from throttle to velocity for the line&d model for a car
has the transfer functiodB(s) = b/(s—a). A simple way (but not necessarily good
way) to design a PI controller is to choose the parameterseoPttcontroller so
that the controller zero at= —k1 /k, cancels the process polesat a. The transfer
function from reference to velocity G (s) = bkp/(s+ bkp) and control design
is simply a matter of choosing the gdip. The closed loop system dynamics is of
first order with the time constany fhkj,.

Figure 8.10 shows the velocity error when the car encountelis@ease in
the road slope. A comparison with the controller used in EgiBb (reproduced
in dashed curves) show that the controller based on pote-@@ncellation has
very poor performance. The velocity error is larger and ietak long time to
settle. Notice that the control signal remains practicedlgstant aftet = 15 even
if the error is large after that time. To understand what leagpve will analyze
the system. The parameters of the systemaatre —0.0101,b = 1.32 and the
controller parameters akg = 0.3 andk; = 0.005. The closed loop time constant
is 1/(bky) = 2.5 s and we would expect that the error would settle in abOwst 1
(4 time constants). The transfer functions from road slopeetocity and control

signals are
bgkps bk
(s—a)(s+bkp) ~ s+bky’
Notice that the canceled mode= a = —0.0101 appears iy but not inGyg,

which explains whyv settles very slowly. The reason why the control signal re-
mains constant is that the controller has a zer®-at—0.0101 which cancels the

Gve(s) = Gus(s)
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Figure 8.10: Car with PI cruise control encountering a sloping road. Figure 8.10asthe
velocity error and Figure 8.10b shows the throttle. Results with a P1 contvailie kp, = 0.3

andk; = 0.0051, where the process pae- —0.101 is shown in full lines and a controller
with kp = 0.3 andk; = 0.5 are shown in dashed lines. Compare with Figure 3.3b on page 71.

slowly decaying process mode. Notice that the error wowdrde if the canceled
pole is unstable. O

The lesson we can learn from this example is that it is a bad toldgy to
cancel unstable or slow process poles. A more detailed skgmu of pole/zero
cancellations is given in Section 12.4.

Algebraic Loops

When analyzing or simulating a system described by a bloagrdim it is neces-
sary to form the differential equations that describe thegete system. In many
cases the equations can be obtained by combining the diffekequations that
describe each subsystem and substituting variables. ThEesprocedure cannot
be used when there are closed loops of subsystems that elétdikect connection
between inputs and outputs, a so-cakbégkbraic loop

To see what can happen, consider a system with two blockst arfitsr non-
linear system q

X
a = f(X,U), y:g(x)v (821)
and a proportional controller described loy= —ky. There is no direct term since
the functiong does not depend am In that case we can obtain the equation for
the closed loop system simply by substitutingy —kyin (8.21) to give
dx
a_ f(X,—ky), y—g(X)

Such a procedure can easily be automated using simple fommangulation.

The situation is more complicated if there is a direct termy 4 g(x,u) then
substitutingu by —ky gives

dx
gt = [x—ky),  y=g(x—ky),

To obtain a differential equation fog the algebraic equation= g(x, —ky) must
be solved to givey = h(x), which in general is a complicated task.
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When algebraic loops are present it is necessary to solebi@iy equations
to obtain the differential equations for the complete syst®esolving algebraic
loops is a non-trivial problem because it requires symbsidilution of algebraic
equations. Most block-diagram oriented modeling langaaganot handle alge-
braic loops and they simply give a diagnosis that such loopgeesent. In the
era of analog computing, algebraic loops were eliminatethtvgpducing fast dy-
namics between the loops. This created differential egusirath fast and slow
modes that are difficult to solve numerically. Advanced mindelanguages like
Modelica use several sophisticated methods so resolvberaigdoops.

8.4 THE BODE PLOT

The frequency response of a linear system can be computedtftransfer func-
tion by settings = iw, corresponding to a complex exponential

u(t) = €“* = coq wt) +isin(wt).
The resulting output has the form
y(t) = G(iw)e™ = Mé? — Mcog wt + @) +iM sin(wt + ¢)

whereM and¢ are the gain and phase Gf

ImG(iw)

ReG(iw)
The phase of is also called thargumenbf G, a term that comes from the theory
of complex variables.

It follows from linearity that the response to a single siids(sin or cos) is
amplified byM and phase shifted bfy. Note that—m < ¢ < 1, so the arctangent
must be taken respecting the signs of the numerator and deatam It will often
be convenient to represent the phase in degrees rathegttians. \We will use the
notation/G(iw) for the phase in degrees and &(@w) for the phase in radians.
In addition, while we always take a@fiw) to be in the rangé—r, 11, we will
take ZG(iw) to be continuous, so that it can take on values outside ofihger of
-180 to 180.

The frequency respongg(iw) can thus be represented by two curves: the
gain curve and the phase curve. The gain curve giégv)| as a function of
frequencyw and the phase curve give$s(iw) as a function of frequenayp. One
particularly useful way of drawing these curves is to useddldg scale for the

magnitude plot and a log/linear scale for the phase plot. fijpis of plot is called
aBode plotand is shown in Figure 8.11.

M= |G(iw)| ¢ = arcta

Sketching and Interpreting Bode Plots

Part of the popularity of Bode plots is that they are easy &ictkand interpret.
Since the frequency scale is logarithmic they cover the behata linear system
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Figure 8.11: Bode plot of the transfer functio@(s) = 20+ 10/s+ 10s of an ideal PID
controller. The top plot is the gain curve and bottom plot is the phase ciitve.dashed
lines show straight line approximations of the gain curve and the comdsmpphase curve.

over a wide frequency range.

Consider a transfer function that is a rational functionhaf form
by (s)b2(S)

G(s) = ———.
= a9

We have
log|G(s)| = log|ba(s)| +log|b(s)| —loglai(s)| —log|az(s)|

and hence we can compute the gain curve by simply adding dtchsting gains
corresponding to terms in the numerator and denominatoiilesiyn

ZG(S) = £b1(8) + £Lba(s) — Zai(s) — Zax(s)

and so the phase curve can be determined in an analogousrfashince a poly-
nomial can be written as a product of terms of the type

k, s, s+a S +2las+a’

it suffices to be able to sketch Bode diagrams for these termes Bolde plot of a
complex system is then obtained by adding the gains and ploftlee terms.

The simplest term in a transfer function is one of the fatirwherek > 0 if
the term appears in the numerator &nd O if the term is in the denominator. The
magnitude and phase of the term are given by

log|G(iw)| =klogw, ZG(iw)=90k.

The gain curve is thus a straight line with sldpand the phase curve is a constant
at 90 x k. The case whek= 1 corresponds to a differentiator and has slope 1 with
phase 90. The case whek = —1 corresponds to an integrator and has slefie
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Figure 8.12: Bode plot of the transfer functiors(s) = fork=—2,-1,0,1,2. On a log-
log scale, the gain curve is a straight line with sldpdJsing a log-linear scale, the phase
curves the transfer functions are constants, with phase eqkad@®

with phase-90°. Bode plots of the various powerslofire shown in Figure 8.12.
Consider next the transfer function of a first order systenergby

a
=53
We have al
a
G(s)| = /G(s)=/(a)— Z(s+a
6O =5 (9= 24(a) - £(s+a)
and hence

log|G(iw)| =loga— % log(w?+a?)) /G(iw) = —Llsi()arctam/a.

The Bode plot is shown in Figure 8.13a, with the magnitude nbret by the
zero frequency gain. Both the gain curve and the phase carvbeapproximated
by the following straight lines

. loga ifw<a
IOgG(Iw)‘%{—logw if w>a
0 if w<a/l0
/G(iw) =~ ¢ —45—45(logw—loga) a/10< w < 10a
-90 if w> 10a.

The approximate gain curve consists of a horizontal line ufpeiguencyw = a,
called thebreakpoint at which point the curve is a line of slopel (on a log-log
scale). The phase curve is zero up to frequexid and then decreases linearly by
45°/decade up to frequency 40at which point it remains constant at"9Notice
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Figure 8.13: Bode plots for first and second order systems. The first orderryG{s) =

a/(s+ a) (left) can be approximated by asymptotic curves (dashed) in both theagdin
frequency, with the breakpoint in the gain curvesat a and the phase decreasing by 90
over a factor of 100 in frequency. The second order sysgésh = w?/(* + 2{ wos+ &f)

(right) has a peak at frequenaynd then a slope 6f2 beyond the peak; the phase decreases
from O° to 18C0°. The height of the peak and rate of change of phase depending on the
damping facto ({ =0.02, 0.1, 0.2, 0.5 and 1.0 shown).

that a first order system behaves like a constant for low frecjes and like an
integrator for high frequencies; compare with the Bode pldiigure 8.12.
Finally, consider the transfer function for a second ordsteay

2

_ W
Gls) = P+2als+wh’

for which we have
log|G(iw)| = 2logan — % log (w* + 2afw?(20% — 1) + wf)

G(iw) = —@arctanzzﬂ.
m — w?

wh
The gain curve has an asymptote with zero slopediox . For large val-
ues ofw the gain curve has an asymptote with slep2. The largest gaiQ =
max, |G(iw)| ~ 1/(2¢), called theQ-value is obtained forw ~ wy. The phase
is zero for low frequencies and approaches®1f®@ large frequencies. The curves
can be approximated with the following piecewise linearrespions

'|fw<< y, /Gliw) ~ 0 |.fw<< wo,‘
if w> wy —-180 ifw> an

The Bode plot is shown in Figure 8.13b. Note that the asympémtaroximation

. 0
log|G(iw)| ~ {—Zlogw
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Figure 8.14: Asymptotic approximation to a Bode plot. The thin line is the Bode plot for

the transfer functioiB(s) = k(s+ b)/(s+a)(s* + 2{ wps+ wp), wherea < b < wp. Each
segment in the gain and phase curves represents a separate pottienapproximation,
where either a pole or a zero begins to have effect. Each segmentagpheximation is a
straight line between these points at a slope given by the rules for coghéreffects of
poles and zeros.

is poor neaww = a and the Bode plot depends strongly ®mear this frequency.

Given the Bode plots of the basic functions, we can now skistetirequency
response for a more general system. The following exampistifites the basic
idea.

Example 8.8 Asymptotic approximation for a transfer function
Consider the transfer function given by

- k(s+b)
Gl9) = (s+a)(s?+ 2{ woS+ wp)

The Bode plot for this transfer function is shown in Figure 8\&ith the complete
transfer function shown in as a solid line and a sketch of theéeBplot shown as a
dashed line.

We begin with the magnitude curve. At low frequency, the nitagie is given

b
Y kb

aw?’
When we reach the pole at= a, the magnitude begins to decrease with slefde
until it reaches the zero at= b. At that point, we increase the slope by 1, leaving
the asymptote with net slope 0. This slope is used until wehrdae second order
pole ats = w, at which point the asymptote changes to slefZ We see that the
magnitude curve is fairly accurate except in the region efghak of the second
order pole (since for this cageis reasonably small).

The phase curve is more complicated, since the effect of tasgéiretches out
much further. The effect of the pole beginssat a/10, at which point we change

ak b< ay.

G(0)
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Figure 8.15: Bode plots for low pass, band pass and high pass filters. The top pldtsare
gain curves and the bottom plots are the phase curves. Each systeys foragsencies in a
different range and attenuates frequencies outside of that range.

from phase 0 to a slope of45°/decade. The zero begins to affect the phase at
s=Db/10, giving us a flat section in the phase. $At 10a the phase contributions
from the pole end and we are left with a slopejef5°/decade (from the zero). At
the location of the second order po$es: i, we get a jump in phase 6f180C.
Finally, ats = 10b the phase contributions of the zero end and we are left with
phase—180 degrees. We see that the straight line approximatiothéophase is
not as accurate as it was for the gain curve, but it does @fitarbasic features of
the phase changes as a function of frequency. O

The Bode plot gives a quick overview of a system. Since any bicgra be
decomposed into a sum of sinusoids it is possible to viseidhiz behavior of a
system for different frequency ranges. The system can beedias a filter that can
change the amplitude (and phase) of the input signals aogpta the frequency
response. For example if there are frequency ranges whergatin curve has
constant slope and the phase is close to zero, the actior afyftem for signals
with these frequencies can be interpreted as a pure gainlaBinfor frequencies
where the slope is +1 and the phase close tg 8 action of the system can be
interpreted as a differentiator, as shown in Figure 8.12.

Three common types of frequency responses are shown in Figlise he
system in Figure 8.15a is called@wv pass filterbecause the gain is constant for
low frequencies and it drops for high frequencies. Notiga the phase is zero for
low frequencies and-180 for high frequencies. The systems in Figure 8.15b and
c are called dand pass filteandhigh pass filtefor similar reasons.
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Figure 8.16: Noise attenuation in a genetic circuit. The open loop system (a) consists
of a constitutive promoter, while the closed loop circuit (b) is self-regdlatgh negative
feedback (repressor). The frequency response for eaclitégsthown on the right.

To illustrate how different system behaviors can be reachftibee Bode plots
we consider the band pass filter in Figure 8.15b. For frequsrari®undw = wy,
the signal is passed through with no change in gain. Howeweirequencies well
below or well abovewy, the signal is attenuated. The phase of the signal is also
affected by the filter, as shown in the phase curve. For fretjasrelowa/100
there is a phase lead of 9@nd for frequencies above 1®there is a phase lag
of 90°. These actions correspond to differentiation and integmnati the signal in
these frequency ranges.

Example 8.9 Transcriptional regulation in a biological circuit

Consider a genetic circuit consisting of a single gene. Wghwo study the re-
sponse of the protein concentration to fluctuations in the mkRjnhamics. We
consider two cases: eonstitutive promotefno regulation) and self-repression
(negative feedback), illustrated in Figure 8.16. The dynamoitthe system are
given by

dm dp
G AP -ym-u  F=pm-ap,

wherev is a disturbance term that affects mRNA transcription.

For the case of no feedback we havép) = ap and the system has an equi-
librium point atme = ag/y, pe = B/9d-0p/y. The transfer function fromr to p is
given by
-B

ol = oyt o)

For the case of negative regulation, we have

o
a(p) = 1+lip1+0!o
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and the equilibrium points satisfy

o o« VB
me—BIOe, 1+ kp™ 0=YMe= Bpe-
The resulting transfer function is given by
2Bakpe
GCI _ B _ )
S (s+y)(s+0)+Bo’ ° (1+kp)?

Figure 8.16¢ shows the frequency response for the two citciie see that
the feedback circuit attenuates the response of the systdisttirbances with low
frequency content, but slightly amplifies disturbancesgt friequency (compared
to the open loop system). Notice that these curves are vaiiasito the frequency
response curves for the op amp, shown in Figure 8.3 on page 245.

O

Transfer Functions from Experiments

The transfer function of a system provides a summary of thetloptput response
and is very useful for analysis and design. However, modefiom first prin-
ciples can be difficult and time consuming. Fortunately, we cfien build an
input/output model for a given application by directly maasg the frequency re-
sponse and fitting a transfer function to it. To do so, we pbrthe input to the
system using a sinusoidal signal at a fixed frequency. Whelgt&ate is reached,
the amplitude ratio and the phase lag give the frequencynsspfor the excitation
frequency. The complete frequency response is obtained &gpEng over a range
of frequencies.

By using correlation techniques it is possible to deterntireefrequency re-
sponse very accurately and an analytic transfer functiorbeaobtained from the
frequency response by curve fitting. The success of this apiproas led to in-
struments and software that automate this process, cgectrum analyzerdhVe
illustrate the basic concept through two examples.

Example 8.10 Atomic force microscope

To illustrate the utility of spectrum analysis, we considee dynamics of the
atomic force microscope, introduced in Section 3.5. Expentaledetermination
of the frequency response is particularly attractive fag #ystem because its dy-
namics are very fast and hence experiments can be doneyyuicklpical exam-
ple is given in Figure 8.17, which shows an experimentallgdeined frequency
response (solid line). In this case the frequency respoaseobtained in less than
a second. The transfer function

G(s) = kel Wi (S? + 201015+ wf)(S + 2{4a4s+ wf)e ST
WP+ 2000+ w2) (P + 203wsS+ W) (2 + 255+ )

with w = 2420,{; = 0.03, awp = 2550,(» = 0.03, wz = 6450,{3 = 0.042, wy =
8250, = 0.025, s = 9300,(s = 0.032,T = 104 andk = 5, was fit to the data
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Figure 8.17: Frequency response of a preloaded piezoelectric drive for an aforoemi-
croscope. Figure 8.17a is a schematic which indicates the measureédtmpwoltage to
the drive amplifier) and output (the output of the amplifier measuringntaetiection). Fig-
ure 8.17b is a Bode plot of the measured transfer function (full lineg)tike fitted transfer
function (dashed lines).

(dashed line). The frequencies associated with the zerdsaaed where the gain
curve has minima and the frequencies associated with tles poé located where
the gain curve has local maxima. The relative damping ratiesdjusted to give
a good fit to maxima and minima. When a good fit to the gain curvéisioed
the time delay is adjusted to give a good fit to the phase curve.pigro drive is
preloaded and a simple model of its dynamics is derived indisei3.7. The pole
at 2500 kHz corresponds to the trampoline mode derived iexbecise; the other
resonances are higher modes. O

Example 8.11 Pupillary light reflex dynamics
The human eye is an organ that is easily accessible for exgetsmit has a control
system that adjusts the pupil opening to regulate the ligienisity at the retina.
This control system was explored extensively by Stark in tte2e1860s [180].
To determine the dynamics, light intensity on the eye wageudasinusoidally and
the pupil opening was measured. A fundamental difficulty & the closed loop
system is insensitive to internal system parameters, slysaa@f a closed loop
system thus gives little information about the internalgandies of the system.
Stark used a clever experimental technique that allowed himviestigate both
open and closed loop dynamics. He excited the system byngtiie intensity
of a light beam focused on the eye and he measured pupil avelhysdrated in
Figure 8.18. By using a wide light beam that covers the wholeilghe mea-
surement gives the closed loop dynamics. The open loop dgsasmdre obtained
by using a narrow beam, which is small enough that it is not @mfted by the
pupil opening. The result of one experiment for determinipgroloop dynamics
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Figure 8.18: Light stimulation of the eye. In (a) the light beam is so large that it always
covers the whole pupil, giving the closed loop dynamics. In (b) the lightdsiged into a
beam which is so narrow that it is not influenced by the pupil openingngihe open loop
dynamics. In (c) the light beam is focused on the edge of the pupil ogewinich has the
effect of increasing the gain of the system since small changes in thileopeping have a
large effect on the amount of light entering the eye. From [179].

is given in Figure 8.19. Fitting a transfer function to the gaumves gives a good
fit for G(s) = 0.17/(1+ 0.08s)3. This curve gives a poor fit to the phase curve as
shown by the dashed curve in Figure 8.19. The fit to the phase mumwvgproved

by adding a time delay, which leaves the gain curve unchanéd substantially
modifying the phase curve. The final fit gives the model

_ 0.17 —0.2s
(9= 17 0.0897°
The Bode plot of this is shown with solid curves in Figure 8.1%ddling of the
pupillary reflex from first principles is discussed in detai[1417]. O

Notice that for both the AFM drive and the pupillary dynamitgsinot easy
to derive appropriate models from first principles. In prestiit is often fruitful
to use a combination of analytical modeling and experimddentification of
parameters. Experimental determination of frequency mespds less attractive
for systems with slow dynamics because the experiment talasy time.

8.5 LAPLACE TRANSFORMS @

Transfer functions are typically introduced using Laplaems$forms and in this
section we derive the transfer function using this fornrmaliswe assume basic
familiarity with Laplace transforms; students who are notifaar with them can
safely skip this section. A good reference for the matherahtnaterial in this
section is the classic book by Widder [194].

Traditionally, Laplace transforms were also used to compegponses of lin-
ear systems to different stimuli. Today we can easily gdadlee responses using
computers. Only a few elementary properties are neededafic lcontrol appli-
cations. There is, however, a beautiful theory for Laplacesfiams that makes
it possible to use many powerful tools from the theory of tiorts of a complex
variable to get deep insights into the behavior of systems.

Consider a functiorf (t), f : R* — R that is integrable and grows no faster
thane®! for some finitesy € R and larget. The Laplace transform magfsto a
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Figure 8.19: Sample curves from open loop frequency response of the eye (eftfBade
plot for the open loop dynamics (right). The solid curve shows a fit ofitita using a third
order transfer function with time delay. The dashed curve in the Bodésginé phase of the
system without time delay, showing that the delay is needed to properlyreghtiphase.
Figure redrawn from the data of Stark [179].

functionF = £ f : C — C of a complex variable. It is defined by

F(s):/oooe‘Stf(t)dt, Res > 5. (8.22)

The transform has some properties that makes it well suitetbad with linear
systems.

First we observe that the transform is linear because

Z(af +bg) = /0 e t(af(t) + bg(t)) dt o2
:a/oooeStf(t)dt+b/oooeStg(t)dt:a.,iﬂerb.Zg. '

Next we calculate the Laplace transform of the derivative fofretion. We have

.,zﬂdf:/ e‘Stf’(t)dt:e‘Stf(t)’ers/ e S (t)dt = — f(0) +s£f,
dt 0 0 0

where the second equality is obtained using integrationaoispWe thus obtain

.,2”(;: =sZf —(0) =sF(s) - f(0). (8.24)
This formula is particularly simple if the initial conditisrare zero because it fol-
lows that differentiation of a function corresponds to nplitcation of the trans-
form bys.
Since differentiation corresponds to multiplication $we can expect that in-
tegration corresponds to division By This is true, as can be seen by calculating
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the Laplace transform of an integral. Using integration byipae get

z/ dr—/ (e‘St/Otf( )dr)dt

e st
e > f(r dr

1 ® —ST
5/0 e > f(r)dr,
hence

t 1
z/o f(r)dr=_2F = F(9). (8.25)

Next consider a linear time-invariant system with zeroahistate. We saw in
Section 5.3 that the relation between the inp@nd the outpuy is given by the

convolution integral -
:/ h(t—1)u(t)dt
0

whereh(t) is the impulse response for the system. Taking the Laplaosftam
of this expression, we have

Y(s):/o / St/ (t—1)u(r)drdt
:/0 /()efsu*r e STh(t — T)u(T)drdt

:/me*STu(r)dr/wefsth(t)dt: H(s)U(s).
0 0

Thus, the input/output response is givenYys) = H(s)U (s) whereH, U andY
are the Laplace transforms bf u andy. The system theoretic interpretation is
that the Laplace transform of the output of a linear system psoaluct of two
terms, the Laplace transform of the infpuifs) and the Laplace transform of the
impulse response of the systeti{s). A mathematical interpretation is that the
Laplace transform of a convolution is the product of the tiamss of the functions
that are convolved. The fact that the formiés) = H(s)U(s) is much simpler
than a convolution is one reason why Laplace transforms hewerbe popular in
engineering.

We can also use the Laplace transform to derive the trangifetifun for a state
space system. Consider for example a linear state spaegrsgsiscribed by

X = Ax+ Bu, y=Cx+Du.

Taking Laplace transformsnder the assumption that all initial values are zero
gives

sX(s) = AX(s) +BU(s), Y(s) =CX(s)+DU(s).
Elimination of X(s) gives
Y(s) = (C(sl A B D)U (9). (8.26)

The transfer function i§(s) = C(sl — A)~'B -+ D (compare with equation (8.4)).



268 CHAPTER 8. TRANSFER FUNCTIONS

8.6 FURTHER READING

Heaviside, who introduced the idea of characterizing dyinarhy the response
to a unit step function, also introduced a formal operatdeutas for analyzing
linear systems. This was a significant advance because it lgaymssibility to
analyze linear systems algebraically. Heaviside and hikweodescribed in the
biography [153]. Unfortunately it was difficult to formalizéeaviside’s calculus
properly and Heaviside’s work was therefore heavily drgd. This was not done
rigorously until the mathematician Laurent Schwartz devedigfistribution theory
in the late 1940s. Schwartz was awarded the Fields Medal femtbrk in 1950.
The idea of characterizing a linear system by its steady staf@nse to sinusoids
was introduced by Fourier in his investigation of heat cantidun in solids [77].
Much later it was used by Steinmetz when he introduceddimethod to develop
a theory for alternating currents. The concept of transfections was an impor-
tant part of classical control theory; see [108]. It wasddtrced via the Laplace
transform by Gardner Barnes [82], who also used it to caleukssponse of linear
systems. The Laplace transform was very important in the @ddge of control
because it made it possible to find transients via tables. Thiat@pansform is of
less importance today when responses to linear systemsisiylee generated us-
ing computers. There are many excellent books on the use oataplansforms
and transfer functions for modeling and analysis of linegout/output systems.
Traditional texts on control such as [60] and [80] are repnéstive examples.

EXERCISES

8.1 Let G(s) be the transfer function for a linear system. Show that if wayagn
inputu(t) = Asin(wt) then the steady state output is given/y) = |G(iw)|Asin(wt +
argG(iw)).

8.2 Show that the transfer function of a system only depends omyhamics
in the reachable and observable subspace of the Kalman gesdgian. Hint:
Consider the representation given by Equation (7.29).

8.3 Consider the system

—X—ax+u
dt

Show that the response to the inpiit) = € is x(t) = €*'x(0) +te.

8.4 The linearized model of the pendulum in the upright posit@oharacterized
by the matrices

A= [8 é] B:[i’], cz[l o], D=0

Determine the transfer function of the system.
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8.5 Compute the frequency response of a PI controller using anngp with
frequency response given by equation (8.13).

8.6 The physicisngstm, who is associated with the length uAitused fre- @
guency response to determine thermal diffusivity of me@jlsHeat propagation
in a metal rod is described by the partial differential egurat

oT adZT

ot ox?
wherea = p"—c is the thermal diffusivity, and the last term representsritad loss
to the environment. Show that the transfer function relatémgperatures at points

with the distancé is
G(s) =e ' VIStH/A (8.28)

and the frequency response is given by

/ 2 _ / 2
log|G(iw)| = —I m argG(iw):—I\/ Ht 2:>2+“.

2a

Also derive the following equation:
log|G(iw)| argG(iw) = Iz—w
2a
This remarkably simple formula shows that diffusivity candegermined from
the value of the transfer function at one frequency. It waskiey in Angstiom’s
method for determining thermal diffusivity. Notice thaetparamete represent-
ing the thermal losses does not appear in the formula.

8.7 Consider the linear state space system
X = Ax+Bu
y=Cx

Show that the transfer function is

69 — bas™ 4+ bps™ 2+ + by
St as i+t

where

b, =CB
b, = CAB+ a;CB
bs = CA’B+ a;CAB+ a,CB

by, =CA" B+ a;CA" !B+ +a, 1CB
andA (s) = 8"+ a;s" 1+ - -- + ay is the characteristic polynomial féx.
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8.8 Consider the differential equation
dny dnfly dnfzy
dn gt T2 g2
Let A be a root of the polynomial
St 4 +a,=0.

Show that the differential equation has the solutjn = et

+-tany=0

8.9 Consider the system

dny dn—ly dn—lu dn—2u
—b b
g g1 T Ty =gt T e

Let A be a zero of the polynomial
b(s) = bys" 1+ b2+ .- + by,

Show that if the input isi(t) = € then there is a solution to the differential equa-
tion that is identically zero.

+ -+ bnu,

8.10 Using block diagram algebra, show that the transfer funstivomd to y
andntoy in Figure 8.8 are given by

d 5 y n 1 y
HWH —_— e

1+PC

8.11 Consider the lateral dynamics of a vectored thrust airceaftdescribed in
Example 2.9. Show that the dynamics can be described usingltbeihg block

diagram:
6 u % % L
r — — =
hES = —mg m&+cs 1

Use this block diagram to compute the transfer functionmftg to 8 andx
and show that they satisfy

oo oo J< —mgr
i = 3¢ X I2(m +cs)

8.12 Consider the cruise control system given in Example 6.10. [@aenthe

transfer function from the throttle positiamand the angle of the roafl to the

speed of the vehiclg, assuming a nominal spe&d with corresponding throttle
positionue.

8.13 Consider a closed loop system of the form of Figure 8.7 Wwith 1 andP
andC having a common pole. Show that if each system is written ite Space
form, the resulting closed loop system is not reachable ahdlservable.
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Figure 8.20: Schematic diagram of thguarter car modela) and of a vibration absorber
right (b).

8.14 Active and passive damping is used in cars to give a smoogonca bumpy
road. A schematic diagram of a car with a damping system invsha Fig-
ure 8.20b. The car is approximated with two masses, one m=sea quarter of
the car body and the other a wheel. The actuator exerts a Fotoetween the
wheel and the body based on feedback from the distance betwasty and the
center of the wheel (thmttle spacé. A simple model of the system is given by
Newton’s equations for body and wheel

mMpXp = F, MyXw = —F + ke (% — Xw),

wheremy, is a quarter of the body massy, is the effective mass of the wheel
including brakes and part of the suspension systemufisprung magsandk; is
the tire stiffness. Furthermorg,, x, andx, represent the heights of body, wheel,
and road, measured from their equilibria. For a conventidamper consisting of
a spring and a damper we have= K(Xy — Xp) + C(Xw — Xp), for an active damper
the forceF can be more general and it can also depend on riding conslitRider
comfort can be characterized by the transfer functBg from road heightx

to body acceleratiom = X,. Show that this transfer function has the property
Gax (im) = k/my, wherewr = /k/my (thetire hop frequency The equation
implies that there are fundamental limitations to the cattfwat can be achieved
with any damper. More details are given in [96].

8.15 Damping vibrations is a common engineering problem. A sat@ndiagram
of a damper is shown in Figure 8.20c. The disturbing vibratsansinusoidal force
acting on massm and the damper consists of magss and the spring,. Show
that the transfer function from disturbance force to heighif the massm is

mps? + ko
mMymps? + My S3 + (Meko + mp (kg + k) )S? + kaci s+ kiko

How should the massy and the stiffnes&, be chosen to eliminate a sinusoidal
oscillation with frequencyw. More details are given on pages 87-93 in the classic

GX]_F -
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text on vibrations [57].

8.16 Consider the following simple queue model

dx X

at " THT
based on continuous approximation, whares the arrival rate angi the service
rate. Linearize the system around the equilibrium obtainild v= A¢ andu =
Ue. The queue can be controlled by influencing the admission Aate uAe, or
the service rater = ute. Compute the transfer functions for service control and
admission control and give the gains and the time constéthe gystem. Discuss
the particular case when the ratie= A¢/ e go€s to one.

8.17 Consider the TCP/AQM model described in Section 3.4. Show tlealirih
earized model can be described by the transfer functions

NweT's N

_ Gwg(S) =—————, Gpp(S) = p,
where(w*,b*) is the equilibrium point for the systery, is the number of sources,
T* is the steady state round trip time anfis the forward propagation time.

Gow(S) =

8.18(Inverted pendulum with PD control) Consider the normalizeerted pen-
dulum system, whose transfer function is giverFigg) = 1/(s?> — 1) (Exercise 8.4).
A proportional-derivative (PD) control law for this systerashtransfer function
C(s) =kp+kys(see Table 8.1). suppose that we chadd&® = a(s—1). Compute
the closed loop dynamics and show that the system has gaxkingeof reference
signals but does not hae good disturbance rejection piepert



