
Chapter Ten

PID Control

Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and
paper industries, 97% of regulatory controllers utilize PID feedback.

Desborough Honeywell, 2000 [58].

This chapter treats the basic properties of proportional-integral-derivative (PID)
control and the methods for choosing the parameters of the controllers. We also
analyze the effects of actuator saturation and time delay, two important features of
many feedback systems, and methods for compensating for these effects. Finally,
we will discuss the implementation of PID controllers as an example of how to
implement feedback control systems using analog or digitalcomputation.

10.1 BASIC CONTROL FUNCTIONS

PID control, which was introduced already in Section 1.5 and has been used in
several examples, is by far the most common way of using feedback in engineer-
ing systems. It appears in simple devices and in large factories with thousands
of controllers. PID controllers appear in many different forms: as a standalone
controller, as part of hierarchical, distributed control systems or built into embed-
ded components. Most PID controllers do not use derivative action so they should
strictly speaking be called PI controllers; we will however use PID as a generic
term for this class of controller. There is also growing evidence that PID control
appears in biological systems [201].

Block diagrams of closed loop systems with PID controllers are shown in Fig-
ure 10.1. The control signalu for the system in Figure 10.1a is formed entirely
from the errore; there is no feedforward term (which would correspond tokr r in
the state feedback case). A common alternative in which proportional and deriva-
tive action do not act on the reference is shown in Figure 10.1;combinations of
the schemes will be discussed in Section 10.5. The command signal r is called the
reference value in regulation problems, or thesetpointin literature of PID control.
The input-output relation for an ideal PID controller with error feedback is

u = kpe+ki

∫ t

0
e(τ)dτ +kd f racdedt= kp

(

e+
1
Ti

∫ t

0
e(τ)dτ +Td

de
dt

)

. (10.1)

The control action is thus the sum of three terms: proportional feedback, the in-
tegral term, and derivative action. For this reason PID controllers were originally
calledthree term controllers. The controller parameters are the proportional gain
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Figure 10.1: Block diagrams of closed loop systems with ideal PID controllers. Both con-
troller have one output the control signalu. The controller in (a), which is based on error
feedback, has one input, the control errore= r −y. For this controller proportional, integral
and derivative action acts on the errore= r − y. The two-degree-of-freedom controller in
(b), has two inputs, the referencer and the process outputy. Integral action acts on the error,
but proportional and derivative action acts on the process outputy.

kp, the integral gainki and the derivative gainkd. The time constantsTi andTd,
called integral time (constant) and derivative time (constant), are sometimes used
instead of the integral and derivative gains.

The controller (10.1) represents an idealized controller. It is a useful abstrac-
tion for understanding the PID controller, but several modifications must be made
in order to obtain a controller that is practically useful. Before discussing these
practical issues we we will develop some intuition about PID control.

We start by considering pure proportional feedback. Figure 10.2a shows the
responses of the process output to a unit step in the reference value for a system
with pure proportional control at different gain settings.All of the systems have
error feedback. In the absence of a feedforward term, the output never reaches the
reference and hence we are left with nonzero steady state error. Letting the process
and the controller have transfer functionsP(s) andC(s), the transfer function from
reference to output is

Gyr =
PC

1+PC
. (10.2)

and thus the steady state error for a unit step is

1−Gyr(0) =
1

1+kpP(0)
.

For the system in Figure 10.2a with gainskp = 1, 2 and 5, the steady state error is
0.5, 0.33 and 0.17. The error decreases with increasing gain,but the system also
becomes more oscillatory. Notice in the figure that the initial value of the control
signal equals the controller gain.

To avoid having a steady state error, the proportional term can be changed to

u(t) = kpe(t)+uff , (10.3)
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Figure 10.2: Responses to step changes in the reference value for system with a proportional
controller (a), PI controller (b) and PID controller (c). The process has the transfer function
P(s) = 1/(s+ 1)3, the proportional controller (left) had parameterskp = 1, 2 and 5, the PI
controller has parameterskp = 1,ki = 0, 0.2, 0.5 and 1, and the PID controller has parameters
arekp = 2.5, ki = 1.5 andkd = 0, 1, 2 and 4.

whereuff is a feedforward term that is adjusted to give the desired steady state
value. If we chooseuff = r/P(0) = kr r, then the output will be exactly equal to
the reference value, as it was in the state space case, provided that there are no
disturbances. However, this requires exact knowledge of the process dynamics,
which is usually not available. The parameteruff , calledresetin the PID literature,
must therefore be adjusted manually.

As we saw in Sections 6.4, integral action guarantees that theprocess output
agrees with the reference in steady state and provides an alternative to the feed-
forward term. Since this result is so important we will provide a general proof.
Consider the controller given by equation (10.1). Assume that there exist a steady
state withu = u0 ande= e0. It then follows from equation (10.1) that

u0 = kpe0 +kie0t,

which is a contradiction unlesse0 or ki are zero. We can thus conclude that with
integral action the error will be zero if it reaches a steady state. Notice that we have
not made any assumptions about linearity of the process or the disturbances. We
have, however assumed that an equilibrium exists. Using integral action to achieve
zero steady state error is much better than using feedforward, which requires pre-
cise knowledge of process parameters.

The effect of integral action can also be understood from frequency domain
analysis. The transfer function of the PID controller is

C(s) = kp +
ki

s
+kds. (10.4)
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Figure 10.3: Implementation of PI and PD controllers. The block diagram on the left shows
how integral action is implemented usingpositive feedbackwith a first order system, some-
times called automatic reset. The block diagram on the right shows how derivative action
can be implemented by taking differences between a static system and a first order system.

The controller has infinite gain at zero frequency (C(0) = ∞) and it then follows
from equation (10.2) thatGyr(0) = 1, which implies that there is no steady state
error for a step input.

Integral action can also be viewed as a method for generatingthe feedforward
term uff in the proportional controller (10.3) automatically. One way to do this
is shown in Figure 10.3a, where the controller output is low-pass filtered and fed
back with positive gain. This implementation, calledautomatic reset, was one
of the early inventions of integral control. The transfer function of the system in
Figure 10.3a is obtained by block diagram algebra; we have

Gue = kp
1+sTi

sTi
= kp +

kp

sTi
,

which is the transfer function for a PI controller.
The properties of integral action are illustrated in Figure 10.2b for a step input.

The proportional gain is constant,kp = 1, and the integral gains areki = 0, 0.2,
0.5 and 1. The caseki = 0 corresponds to pure proportional control, with a steady
state error of 50%. The steady state error is eliminated when integral gain action is
used. The response creeps slowly towards the reference for small values ofki and
goes faster for larger integral gains, but the system also becomes more oscillatory.

Integral gainki is a useful measure for attenuation of load disturbances. Con-
sider a closed loop system under PID control and assume that the system is stable
and initially at rest with all signals being zero. Apply a unit step disturbance at
the process input. After a transient the process output goesto zero and the con-
troller output settles at a value that compensates for the disturbance. It follows
from (10.1) that

u(∞) = ki

∫ ∞

0
e(t)dt.

The integrated error is thus inversely proportional to integral gainki . The integral
gain is thus a measure of the effectiveness of disturbance attenuation. A large gain
ki attenuates disturbances effectively but too large a gain gives oscillatory behavior,
poor robustness and possibly instability.

We now return to the general PID controller and consider the effect of the
derivative term,kd. Recall that the original motivation for derivative feedback was
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to provide predictive action. Notice that the combination of the proportional and
the derivative terms can be written as

u = kpe+kd
de
dt

= kp
(

e+Td
de
dt

)

= kpep,

whereep(t) can be interpreted as a prediction of the error at timet +Td by linear
extrapolation. The prediction timeTd = kd/kp is the derivative time constant of
the controller.

Derivative action can be implemented by taking the difference between the
signal and its low-pass filtered version as shown in Figure 10.3b. The transfer
function for the system is

Gue(s) = kp

(

1−
1

1+sTd

)

= kp
sTd

1+sTd
. (10.5)

The system thus has the transfer functionG(s) = sTd/(1+ sTd), which approxi-
mates a derivative for low frequencies (|s| < Td).

Figure 10.2c illustrates the effect of derivative action: the system is oscillatory
when no derivative action is used and it becomes more damped as derivative gain is
increased. Performance deteriorates if derivative gain is too high. When the input
is a step the controller output generated by the derivative term will be an impulse.
This is clearly visible in Figure 10.2c. The impulse can be avoided by using the
controller configuration shown in Figure 10.1b.

Although PID control was developed in the context of engineering applications,
it also appears in nature. Disturbance attenuation by feedback in biological sys-
tems is often called adaptation. A typical example is the pupillary reflex discussed
in Example 8.11 where it is said that the eye adapts to changinglight intensity.
Analogously, feedback with integral action is called perfect adaptation [201]. In
biological systems proportional, integral and derivativeaction is generated by com-
bining subsystems with dynamical behavior similar to what is done in engineering
systems. For example, PI action can be generated by the interaction of several
hormones [69].

Example 10.1 PD action in the retina
The response of cone photo receptors in the retina is an example where propor-
tional and derivative action is generated by a combination of cones and horizon-
tal cells. The cones are the primary receptors stimulated by light, the cones in
turn stimulate the horizontal cells and the horizontal cells give inhibitory (nega-
tive) feedback to the cones. A schematic diagram of the system is shown in Fig-
ure 10.4a. The system can be modeled by ordinary differentialequations by repre-
senting neuron signals by continuous variables representing the average pulse rate.
In [199] it is shown that the system can be represented by the differential equations

dx1

dt
=

1
Tc

(−x1−kx2 +u),
dx2

dt
=

1
Th

(x1−x2),

whereu is the light intensity andx1 andx2 are the average pulse rates from the
cones and the horizontal cells. A block diagram of the systemis shown in Fig-



304 CHAPTER 10. PID CONTROL

(a)

1
1+sTc

Σ
u x1

−
k

1+sTh

(b)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

Time [s]

y
[m

V
]

(c)

Figure 10.4: Schematic diagram of cone photo receptors (C) and horizontal cells (H)in the
retina. Excitatory feedback is indicated by arrows and inhibitory feedback by circles in the
schematic diagram in (a). A block diagram is shown in (b) and the step response in (c).

ure 10.4b. The step response of the system shown in Figure 10.4cshows that the
system has a large initial response followed by a lower constant steady state re-
sponse typical of proportional and derivative action. The parameters used in the
simulation arek = 4, Tc = 0.025 andTc = 0.08. ∇

10.2 SIMPLE CONTROLLERS FOR COMPLEX SYSTEMS

Many of the design methods discussed in previous chapters have the property
that the complexity of the controller is directly reflected bythe complexity of the
model. When designing controllers by output feedback in Chapter 7 we found for
single-input single-output systems that the order of the controller was the same as
the order of the model, possibly one order higher if integralaction was required.
Applying similar design methods for PID control will requirethat we have have
low order models of the processes to be able to easily analyzethe results.

Low order models can be obtained from first principles. Any stable system
can be modeled by a static system if its inputs are sufficientlyslow. Similarly
a first order model is sufficient if storage of mass, momentum or energy can be
captured by only one variable; typical examples are the velocity of a car on a road,
angular velocity of a stiff rotational systems, level in a tank and concentration
in a volume with good mixing. System dynamics are of second order if storage
of mass, energy and momentum can be captured by two state variable; typical
examples are position of a car on the road, stabilization of stiff satellites, levels in
two connected tanks and two compartment models. A wide rangeof techniques for
model reduction also available. In this chapter we will focus on design techniques
were we simplify the models to capture the essential properties that are needed for
PID design.

We begin by analyzing the case of integral control. A stable system can be con-
trolled by an integrating controller provided that the requirements on the closed
loop system are modest. To design the controller we assume that the transfer func-
tion of the process is a constantK = P(0). The loop transfer function under integral
control then becomesKki/s and the closed loop characteristic polynomial is sim-
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ply s+Kki . Specifying performance by the desired time constantTcl of the closed
loop system we find that the integral gain is given by

ki = 1/(TclP(0)).

The analysis requires thatTcl is large enough that the process transfer function can
be approximated by a constant.

For systems that are not well-represented by a constant gain, another way to
find a suitable value of integral gain is to make a Taylor seriesexpansion of the
loop transfer function

L(s) =
kiP(s)

s
≈

ki(P(0)+sP′(0))

s
= kiP

′(0)+
kiP(0)

s
.

ChoosingkiP′(0) =−0.5 gives a system with good robustness as will be discussed
in Section??. The controller gain is then given by

ki = −
1

2P′(0)
(10.6)

and the expected closed loop time constant isTcl ≈−2P′(0)/P(0). This approach
is useful when the process has a pole at the origin, as illustrated in the following
example.

Example 10.2 Integrating control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Exercise 9.5. The transfer function
for the system dynamics is

P(s) =
a(1−e−sτ)

sτ(s+a)
,

wherea = ζ ω0, andτ = 2πn/ω0 and the gain has been normalized to 1. We have
P(0) = 1 andP′(0) =−τ/2−1/a, and it follows from (10.6) that the integral gain
is ki = a/(2+ aτ). A Nyquist plot and Bode plot for the resulting loop transfer
function are shown in Figure 10.5. ∇

A first order system has the transfer function

P(s) =
b

s+a
.

With a PI controller the closed loop system has the characteristic polynomial

s(s+a)+bkps+bkis= s2 +(a+bkp)s+bki .

The closed loop poles can thus be assigned arbitrary values byproper choice of
the controller gains. Requiring that the closed loop systemhas the characteristic
polynomial

s2 +a1s+a2
2,
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Figure 10.5: Integral control for AFM in tapping mode. An integral controller is designed
based on the slope of the process transfer function at 0. The controllergives good robustness
properties based on a very simple analysis.

we find that the controller parameters are

kp =
a1−a

b
, ki =

a2

b
. (10.7)

If we require a response of the closed loop system that is slower than that of the
open loop system, a reasonable choice isa1 = a+ α anda2 = αa. If a response
that is faster that the open loop system is required, it is reasonable to choosea1 =
2ζ0ω0 anda2 = ω2

0 , whereω0 andζ0 are undamped natural frequency and relative
damping of the dominant mode. These choices have significant impact on the
robustness of the system and will be discussed in Section 12.4. An upper limit
to ω0 is given by the validity of the model. Large values ofω0 will require fast
control actions and actuators may saturate if the value is too large. A first order
model is unlikely to represent the true dynamics for high frequencies. We illustrate
the design by an example.

Example 10.3 Cruise control using PI feedback
Consider the problem of maintaining the speed of a car as it goes up a hill. In
Example 5.14 we found that there was little difference between the linear and non-
linear models when investigating PI control provided that the throttle did not reach
the saturation limits. A simple linear model of a car was given in Example 5.11:

d(v−ve)

dt
= −a(v−ve)+b(u−ue)−gθ , (10.8)

wherev is the velocity of the car,u is the input from the engine andθ is the slope
of the hill. The parameters werea = 0.0101,b = 1.3203,g = 9.8, ve = 20, and
ue = 0.1616. This model will be used to find suitable parameters of a vehicle
speed controller. The transfer function from throttle to velocity is thus a first order
system. Since the open loop dynamics is so slow it is natural tospecify a faster
closed loop system by requiring that the closed loop system is of second order with
relative dampingζ and undamped natural frequencyω0. The controller gains are
given by (10.7).
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Figure 10.6: Cruise control using PI feedback. The step responses for the errorand input
illustrate the effect of parametersζ0 = 1 andω0 on the response of a car with cruise control.
A change in road slope from 0◦ to 4◦ is applied betweent = 5 and 6 s. The plot on the left
shows the response forω0 = 0.5 andζ0 = 0.5, 1 and 2. Choosingζ0 = 1 gives no overshoot.
The plot on the right shows the response forζ0 = 1 andω0 = 0.2, 0.5 and 1.0.

Figure 10.6 shows the velocity and the throttle for a car that initially moves
on a horizontal road and encounters a hill with slope 4◦ at time t = 6 sec. To
design a PI controller we chooseζ0 = 1 to obtain a response without overshoot, as
shown in Figure 10.6a. The choice ofω0 is a compromise between response speed
and control actions: a large value gives a fast response but it requires fast control
action. The trade-off is is illustrated in Figure 10.6b. The largest velocity error
decreases with increasingω0, but the control signal also changes more rapidly. In
the simple model (10.8) it was assumed that the force responds instantaneously to
throttle commands. For rapid changes there may be additional dynamics that have
to be accounted for. There are also physical limitations to the rate of change of the
force, which also restricts the admissible value ofω0. A reasonable choice ofω0 is
in the range of 0.5 to 1.0. Notice in Figure 10.6 that even withω0 = 0.2 the largest
velocity error is only 1 m/s.

∇

A PI controller can also be used for a process with second orderdynamics,
but there will be restrictions on possible locations of closed loop poles, as shown
in Exercise 10.2. Using a PID controller it is possible to control a system of
second order in such a way that the closed loop poles have arbitrary locations, see
Exercise 10.3.

Instead of finding a low order model and designing controllersfor them we
can also use a high order model and only attempt to place a few dominant poles.
An integrating controller has one parameter and it is possible to position one pole.
Consider a process with the transfer functionP(s). The loop transfer function
with an integrating controller isL(s) = kiP(s)/s. The roots of the closed loop
characeristic polynomial are the roots ofs+kiP(s) = 0. Requiring thats= −a is
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Figure 10.7: Illustration of Ziegler-Nichols step and frequency response experiments. The
unit step response in (a) is characterized by the parametersa andTdel. The frequency re-
sponse method characterizes process dynamics by the point of the Nyquist curve of the
process transfer function first intersects the negative real axis and the frequencyωc where
this occurs.

a root, we find that the controller gain should be chosen as

ki =
a

P(−a)
. (10.9)

The poles= −a will be dominant ifa is small. A similar approach can be applied
to PI and PID controllers.

10.3 PID TUNING

Users of control systems are frequently faced with the task of adjusting the con-
troller parameters to obtain a desired behavior. There are many different ways
to do this. One approach is to go through the conventional steps of modeling
and control design as described in the previous section. Since the PID controller
has so few parameters, a number of special empirical methodshave also been de-
veloped for direct adjustment of the controller parameters. The first tuning rules
were developed by Ziegler and Nichols [204]. Their idea was to make a simple
experiment, extract some features of process dynamics fromthe experiment and
determine controller parameters from the features.

Ziegler-Nichols’ Tuning

Ziegler and Nichols developed two methods for controller tuning in the 1940s
based on simple characterization of process dynamics in thetime and frequency
domains.

The time domain method is based on a measurement of part of the open loop
unit step response of the process, as shown in Figure 10.7a. Thestep response is
measured by applying a unit step input to the process and recording the response.
The response is characterized by parametersa andτ, which are the intercepts of
the steepest tangent of the step response with the coordinate axes. The parame-
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Table 10.1: Ziegler-Nichols tuning rules. (a) The step response methods give the parameters
in terms of the intercepta and the apparent time delayτ. (b) The frequency response method
gives controller parameters in terms of critical gainkc and critical periodTc.

Type akp Ti/τ Td/τ

P 1

PI 0.9 3

PID 1.2 2 0.5

(a) Step response method

Type kp/kc Ti/Tc Td/Tc

P 0.5

PI 0.4 0.8

PID 0.6 0.5 0.125

(b) Frequency response method

ter τ is an approximation of the time delay of the system anda/τ is the steepest
slope of the step response. Notice that it is not necessary towait until steady state
is reached to find the parameters, it suffices to wait until the response has had an
inflection point. The controller parameters are given in Table10.1. The parame-
ters were obtained by extensive simulation of a range of representative processes.
A controller was tuned manually for each process and it was then attempted to
correlate the controller parameters witha andτ.

In the frequency domain method a controller is connected to the process, the
integral and derivative gains are set to zero, and the proportional gain is increased
until the system starts to oscillate. The critical value of the proportional gainkc

is observed together with the period of oscillationTc. It follows from Nyquist’s
stability criterion that the loop transfer functionL = kcP(s) intersects the critical
point for the frequencyωc = 2π/Tc. The experiment thus gives the point on the
Nyquist curve of the process transfer function where the phase lag is 180◦, as
shown in Figure 10.7b.

The Ziegler-Nichols methods had a huge impact when they were introduced in
the 1940s. The rules were simple to use and gave initial conditions for manual
tuning. The ideas were adopted by manufacturers of controllers for routine use.
The Ziegler-Nichols tuning rules have unfortunately two severe drawbacks: too
little process information is used and the closed loop systems that are obtained
lack robustness.

The step response method can be improved significantly by characterizing the
unit step response by parametersK, τ andT in the model

P(s) =
K

1+sT
e−τs. (10.10)

The parameters can be obtained by fitting the model to a measuredstep response.
Notice that the experiment takes longer time than the experiment in Figure 10.7a
because to determineK it is necessary to wait until the steady state has been
reached. Also notice that the intercepta in the Ziegler-Nichols rule is given by
a = Kτ/T.

The frequency response method can be improved by measuring more points
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on the Nyquist curve, for example the zero frequency gainK or the point where
the process has 90◦ phase lag. This latter point can be obtained by connecting an
integrating controller and increasing its gain until the system reaches the stability
limit. The experiment can also be automated by using relay feedback, as will be
discussed later in this section.

There are many versions of improved tuning rules. As an illustration we give
the following rules for PI control from [18]:

kp =
0.17τ +0.28T

Kτ

(0.9T
Kτ

)

, ki =
0.46τ +0.02T

Kτ2

(0.3
Kτ

)

kp = 0.16kc

(

0.4kc

)

, ki =
0.16kc +0.72K

Tc

(0.5kc

Tc

)

(10.11)

The values for the Ziegler-Nichols rule are given in parentheses. Notice that the
improved formulas typically give lower controller gains than the Ziegler-Nichols
method. The integral gain is higher for systems whose dynamics are delay domi-
nated,τ ≫ T.

Example 10.4 PI control of AFM in tapping mode
A simplified model of the dynamics of the vertical motion of an atomic force
microscope in tapping mode was discussed in Example 10.2. The transfer function
is normalized by choosing 1/a as the time unit. The normalized transfer function
is

P(s) =
1−e−sTn

sTn(s+1)
.

whereTn = 2nπa/ω0 = 2nπζ . The Nyquist plot of the transfer function is shown
in Figure 10.8a forz= 0.002 andn = 20. The leftmost intersection of the Nyquist
curve with the real axis occurs at Res= −0.0461 forω = 13.1. The critical gain
is thuskc = 21.7 the critical period isTc = 0.48. Using Ziegler-Nichols tuning rule
we find the parameterskp = 8.87 andki = 22.6 (Ti = 0.384) for a PI controller.
With this controller the stability margin issm = 0.31, which is quite small. The
step response of the controller is shown in Figure 10.8. Notice in particular that
there is a large overshoot in the control signal.

The modified Ziegler-Nichols rule (10.11) gives the controllerparametersk =
3.47 andki = 8.73 (Ti = 0.459) and the stability margin becomessm = 0.61. The
step response with this controller is shown in Figure 10.8. A comparison of the
responses obtained with the original Ziegler Nichols rule shows that the overshoot
has been reduced. Notice that the control signal reaches itssteady state value
almost instantaneously. It follows from Example 10.2 that a pure integrating con-
troller has the normalized gainki = 1/(2+ Tn) = 0.44. Comparing this with the
gains of a PI controller we can conclude that a PI controller gives much better
performance than a pure integrating controller. ∇
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Figure 10.8: PI control of an AFM in tapping mode. Nyquist plots (a) and step responses
(b) for PI control of the vertical motion of an atomic force microscope intapping mode. The
averaging parameter isn = 20. Results with Ziegler-Nichols tuning are shown in dashed
lines, and modified Ziegler-Nichols tuning is shown in full lines. The Nyquistplot of the
process transfer function is shown in dotted lines.

Relay Feedback

The Ziegler-Nichols frequency response method increases thegain of a propor-
tional controller until oscillation to determine the critical gainkc and the corre-
sponding periodTc or equivalently the point where the Nyquist curve intersects the
negative real axis. One way to obtain this information automatically is to connect
the process in a feedback loop with a nonlinear element having a relay function
as shown in Figure 10.9a. For many systems there will then be anoscillation, as
shown in Figure 10.9b, where the relay outputu is a square wave and the process
outputy is close to a sinusoid. Moreover the input and the output are out of phase,
which means that the system oscillates with the critical period Tc, where the pro-
cess has a phase lag of 180◦. Notice that an oscillation with constant period is
established quickly.

The critical period is simply the period of the oscillation. To determine the
critical gain we expand the square wave relay output in a Fourier series. Notice

G(s)Σ
r ye u

−1
0 10 20 30

−1

−0.5

0

0.5

1

u,
y

Time [s]

Figure 10.9: Block diagram of a process with relay feedback (left) and typical signals
(right). The process outputy is solid and the relay outputu is dashed. Notice that the
signalsu andy have opposite phase.
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in the figure that the process output is practically sinusoidal because the process
attenuates higher harmonics effectively. It is then sufficient to consider only the
first harmonic component of the input. Lettingd be the relay amplitude, the first
harmonic of the square wave input has amplitude 4d/π. If a is the amplitude
of the process output, the process gain at the critical frequency ωc = 2π/Tc is
|P(iωc)| =

πa
4d and the critical gain is

Kc =
4d
aπ

. (10.12)

Having obtained the critical gainKc and the critical periodTc the controller param-
eters can then be determined using the Ziegler-Nichols rules. Improved tuning can
be obtained by fitting a model to the data obtained from the relay experiment.

The relay experiment can be automated. Since the amplitude of the oscillation
is proportional to the relay output, it is easy to control it by adjusting the relay
output. Automatic tuning based on relay feedback is used in many commercial PID
controllers. Tuning is accomplished simply by pushing a button that activates relay
feedback. The relay amplitude is automatically adjusted to keep the oscillations
sufficiently small and the relay feedback is switched to a PID controller as soon as
the tuning is finished.

10.4 INTEGRATOR WINDUP

Many aspects of a control system can be understood from linear models. There
are, however, some nonlinear phenomena that must be taken into account. These
are typically limitations in the actuators: a motor has limited speed, a valve cannot
be more than fully opened or fully closed, etc. For a system that operates over
a wide range of conditions, it may happen that the control variable reaches the
actuator limits. When this happens the feedback loop is broken and the system
runs in open loop because the actuator will remain at its limit independently of the
process output as long as the actuator remains saturated. Theintegral term will also
build up since the error is typically nonzero. The integral term and the controller
output may then become very large. The control signal will then remain saturated
even when the error changes and it may take a long time before the integrator
and the controller output come inside the saturation range.The consequence is
that there are large transients. This situation is referred to asintegrator windup,
illustrated in the following example.

Example 10.5 Cruise control
The windup effect is illustrated in Figure 10.10, which shows what happens when
a car encounters a hill that is so steep (6◦) that the throttle saturates when the cruise
controller attempts to maintain speed. When encountering the slope at timet = 5
the velocity decreases and the throttle increases to generate more torque. However,
the torque required is so large that the throttle saturates.The error decreases slowly
because the torque generated by the engine is just a little larger than the torque
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(a) Windup
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(b) Anti-windup

Figure 10.10: Simulation of PI cruise control with windup (left) and anti-windup (right).
The figure shows the speedv and the throttleu for a car that encounters a slope that is so
steep that the throttle saturates. The controller output is dashed. The controller parameters
arekp = 0.5 andki = 0.1.

required to compensate for the gravity. The error is large andthe integral continues
to build up until the error reaches zero at time 30, but the controller output is still
larger than the saturation limit and the actuator remains saturated. The integral
term starts to decrease and at time 45 and the velocity settles quickly to the desired
value. Notice that it takes considerable time before the controller output comes
into the range where it does not saturate, resulting in a large overshoot. ∇

There are many ways to avoid windup. One method is illustratedin Fig-
ure 10.11: the system has an extra feedback path that is generated by measuring
the actual actuator output, or the output of a mathematical model of the saturating
actuator, and forming an error signales as the difference between the output of
the controllerv and the actuator outputu. The signales is fed to the input of the
integrator through gainkt . The signales is zero when there is no saturation and the
extra feedback loop has no effect on the system. When the actuator saturates, the
signales is fed back to the integrator in such a way thates goes towards zero. This
implies that controller output is kept close to the saturation limit. The controller
output will then change as soon as the error changes sign and integral windup is
avoided.

The rate at which the controller output is reset is governed bythe feedback
gain,kt ; a large value ofkt gives a short reset time. The parameterkt cannot be too
large because measurement error can then cause an undesirable reset. A reasonable
choice is to chooseki as a fraction of 1/Ti . We illustrate how integral windup can
be avoided by investigating the cruise control system.

Example 10.6 Cruise control
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Figure 10.11: PID controller with filtered derivative and anti-windup. The input to the
integrator (1/s) consists of the error term plus a “reset” based on input saturation. If the
actuator is not saturated thenes = u− ν , otherwisees will decrease the integrator input to
prevent windup.

Figure 10.10b shows what happens when a controller with anti-windup is applied
to the system simulated in Figure 10.10a. Because of the feedback from the ac-
tuator model, the output of the integrator is quickly reset to a value such that the
controller output is at the saturation limit. The behavior isdrastically different
from that in Figure 10.10a and the large overshoot is avoided.The tracking gain is
kt = 2 in the simulation. ∇

10.5 IMPLEMENTATION

There are many practical issues that have to be considered when implementing PID
controllers. They have been developed over time based on practical experiences.
In this section we consider some of the most common. Similar considerations also
apply to other types of controllers.

Filtering the Derivative

A drawback with derivative action is that an ideal derivative has high gain for high
frequency signals. This means that high frequency measurement noise will gener-
ate large variations of the control signal. The effect of measurement noise may be
reduced by replacing the termkds by kds/(1+ sTf ), which can be interpreted as
an ideal derivative of a low-pass filtered signal. For smalls the transfer function is
approximatelykdsand for larges it is equal tokd/Tf . The approximation acts as a
derivative for low-frequency signals and as a constant gainfor the high frequency
signals. The filtering time is chosen asTf = (kd/k)/N, with N in the range of 2 to
20. Filtering is obtained automatically if the derivative isimplemented by taking
the difference between the signal and its filtered version as shown in Figure 10.3b
(see equation (10.5)). Instead of filtering just the derivative it is also possible to
use an ideal controller and filter the measured signal. The transfer function of such
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a controller with a filter is then

C(s) = kp

(

1+
1

sTi
+sTd

)

1
1+sTf +(sTf )2/2

. (10.13)

where a second order filter is used.

Setpoint Weighting

Figure 10.1 on page 304 shows two configurations of a PID controller. The system
in Figure 10.1a shows a controller witherror feedbackwhere proportional, integral
and derivative action acts on the error. In the simulation ofPID controllers in
Figure 10.2 there is a large initial peak of the control signal, which is caused by the
derivative of the reference signal. The peak can be avoided byusing the controller
in Figure 10.1b where proportional and derivative action acts only on the process
output. An intermediate form is given by

u = kp
(

β r −y
)

+ki

∫ ∞

0

(

r(τ)−y(τ)
)

dτ +kd

(

γ
dr
dt

−
dy
dt

)

, (10.14)

where the proportional and derivative actions act on fractionsβ andγ of the ref-
erence. Integral action has to act on the error to make sure that the error goes to
zero in steady state. The closed loop systems obtained for different values ofβ
andγ respond to load disturbances and measurement noise in the same way. The
response to reference signals is different because it depends on the values ofβ and
γ, which are calledreference weightsor setpoint weights. We illustrate the effect
of setpoint weighting by an example.

Example 10.7 Cruise control
Consider the PI controller for the cruise control system derived in Example 10.3.
Figure 10.12 shows the effect of setpoint weighting on the response of the system
to a reference signal. Withβ = 1 (error feedback) there is an overshoot in velocity
and the control signal (throttle) is initially close to the saturation limit. There is no
overshoot withβ = 0 and the control signal is much smaller, clearly a much better
drive comfort. The frequency responses gives another view ofthe same effect. The
parameterβ is typically in the range of 0 to 1 andγ is normally zero to avoid large
transients in the control signal when the reference is changed. ∇

The controller given by equation (10.14) is a special case of controller with two
degrees of freedom, which will be discussed in more detail inSection 11.2.

Implementation Based on Operational Amplifiers

PID controllers have been implemented in different technologies. Figure 10.13
shows how PI and PID controllers can be implemented by feedbackaround oper-
ational amplifiers.

To show that the circuit in Figure 10.13b is a PID controller we will use the the
approximate relation between the input voltagee and the output voltageu of an
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Figure 10.12: Time and frequency responses for PI cruise control with setpoint weighting.
Step responses are shown in (a) and the gain curves of the frequencyresponses in (b). The
controller gains arekp = 0.74 andki = 0.19. The setpoint weights areβ = 0, 0.5 and 1 and
γ = 0.

operational amplifier derived in Example 8.3,

u = −
Z1

Z0
e.

In this equationZ0 is the impedance between the negative input of the amplifier
and the input voltagee, andZ1 is the impedance between the zero input of the
amplifier and the output voltageu. The impedances are given by

Z0(s) =
R0

1+R0C0s
Z1(s) = R1 +

1
C1s

,

and we find the following relation between the input voltageeand the output volt-

R0 R1 C1

e

u

(a) PI controller

R0 R1

C0

C1

e

u

(b) PID controller

Figure 10.13: Schematic diagrams for PI and PID controllers using op amps. The circuit on
the left uses a capacitor in the feedback path to store the integral of the error. The circuit on
the right ads a filter on the input to provide derivative action.
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ageu:

u = −
Z1

Z0
e= −

R1

R0

(1+R0C0s)(1+R1C1s)
R1C1s

e.

This is the input-output relation for a PID controller of the form (10.1) with pa-
rameters

kp =
R1

R0
Ti = R1C1 Td = R0C0.

The corresponding results for a PI controller is obtained by settingC0 = 0 (remov-
ing the capacitor).

Computer Implementation

In this section we briefly describe how a PID controller may be implemented using
a computer. The computer typically operates periodically, with signals from the
sensors sampled and converted to digital form by the A/D converter, the control
signal computed and then converted to analog form for the actuators. The sequence
of operation is as follows:

1. Wait for clock interrupt

2. Read input from sensor

3. Compute control signal

4. Send output to the actuator

5. Update controller variables

6. Repeat

Notice that an output is sent to the actuators as soon as it is available. The time
delay is minimized by making the calculations in Step 3 as short as possible and
performing all updates after the output is commanded. This simple way of reduc-
ing the latency is, unfortunately, seldom used in commercial systems.

As an illustration we consider the PID controller in Figure 10.11, which has
a filtered derivative, setpoint weighting and protection against integral windup.
The controller is a continuous time dynamical system. To implement it using a
computer, the continuous time system has to be approximatedby a discrete time
system.

A block diagram of a PID controller with anti-windup is shown in Figure 10.11.
The signalv is the sum of the proportional, integral and derivative terms, and the
controller output isu = sat(v) where sat is the saturation function that models the
actuator. The proportional termkp(β r − y) is implemented simply by replacing
the continuous variables with their sampled versions. Hence

P(tk) = kp(β r(tk)−y(tk)) , (10.15)

where{tk} denotes the sampling instants, i.e., the times when the computer reads
its input. We leth represent the sampling time, so thattk+1 = tk +h. The integral
term is obtained by approximating the integral with a sum

I(tk+1) = I(tk)+kihe(tk)+
h
Tt

(

sat(v)−v)
)

, (10.16)
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whereTt = h/kt represents the anti-windup term. The filtered derivative termD is
given by the differential equation

Tf
dD
dt

+D = −kdy.

Approximating the derivative with a backward difference gives

Tf
D(tk)−D(tk−1)

h
+D(tk) = −kd

y(tk)−y(tk−1)

h
,

which can be rewritten as

D(tk) =
Tf

Tf +h
D(tk−1)−

kd

Tf +h
(y(tk)−y(tk−1)) . (10.17)

The advantage of using a backward difference is that the parameterTf /(Tf +h) is
non-negative and less than one for allh > 0, which guarantees that the difference
equation is stable. Reorganizing equations (10.15)–(10.17), the PID controller can
be described by the following pseudo code:

% Precompute controller coefficients
bi=ki*h
ad=Tf/(Tf+h)
bd=kd/(Tf+h)
br=h/Tt

% Control algorithm - main loop
while (running) {

r=adin(ch1) % read setpoint from ch1
y=adin(ch2) % read process variable from ch2
P=kp*(b*r-y) % compute proportional part
D=ad*D-bd*(y-yold) % update derivative part
v=P+I+D % compute temporary output
u=sat(v,ulow,uhigh) % simulate actuator saturation
daout(ch1) % set analog output ch1
I=I+bi*(r-y)+br*(u-v) % update integral
yold=y % update old process output
sleep(h) % wait until next update interval

}

Precomputation of the coefficientsbi, ad, bd andbr saves computer time in
the main loop. These calculations have to be done only when controller parameters
are changed. The main loop is executed once every sampling period. The program
has three states:yold, I, andD. One state variable can be eliminated at the cost
of less readable code. The latency between reading the analoginput and setting the
analog output consists of 4 multiplications, 4 additions and evaluation of thesat
function. All computations can be done using fixed point calculations if necessary.
Notice that the code computes the filtered derivative of the process output, and that
it has set-point weighting and anti-windup protection.
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10.6 FURTHER READING

The history of PID control is very rich and stretches back to thebeginning of
the foundation of control theory. A very readable treatmentis given by Ben-
nett [28, 29] and Mindel [148]. The Ziegler-Nichols rules for tuning PID con-
trollers, first presented in 1942 [204], were developed basedon extensive exper-
iments with pneumatic simulators and Vannevar Bush’s differential analyzer at
MIT. An interview with Nichols gives an interesting view of the development of
the Ziegler-Nichols rules is given in an interview with Ziegler [40]. An industrial
perspective on PID control is given in [34], [176] and [200] and in the paper [58]
cited in the beginning of this chapter. A comprehensive presentation of PID con-
trol is given in [17] and [18]. Interactive learning tools for PID control can be
downloaded fromhttp://www.calerga.com/contrib.

EXERCISES

10.1 Consider the systems represented by the block diagrams in Figure ??. As-
sume that the process has the transfer functionP(s) = b/(s+ a) show that the
transfer functions fromr to y are

(a)Gyr(s) =
bkds2 +bkps+bki

(1+bkd)s2 +(a+bkd)s+bki

(b)Gyr(s) =
bki

(1+bkd)s2 +(a+bkd)s+bki

10.2 Consider a second order process with transfer function

P(s) =
b

s2 +a1s+a2
.

The closed loop system with a PI controller is a third order system. Show that
it is possible to position the closed loop poles as long as thesum of the poles is
−a1. Give equations for the parameters that give the closed loopcharacteristic
polynomial

(s+α0)(s
2 +2ζ0ω0s+ω2

0).

10.3 Consider a second order process with transfer function

P(s) =
b

s2 +a1s+a2
.

Find the gains for a PID controller that gives the closed loop system the character-
istic polynomial

(s+α0)(s
2 +2ζ0ω0s+ω2

0).

10.4 Consider a system with the transfer functionP(s) = (s+ 1)−2. Find an
integrating controller that gives a closed loop pole ats = −a and determine the
value ofa that maximizes integral gain. Determine the other poles of the system
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and judge if the pole can be considered to be dominant. Compare with the value
of the integral gain given by (10.6).

10.5 Compartment models and many systems encountered in industry have the
property that their impulse responses are positive or equivalently that their step
responses are monotone. Consider such a system with the transfer functionP(s).
Show that the impulse responsehn(t) of the normalized systemP(s)/P(0) has the
propertieshn(t)≥ 0 and

∫ ∞
0 hn(t)dt = 1. The functionhn(t) can be interpreted as a

probability density function - the probability that a particle entering the system at
time 0 will exit at timet. Let

Tar =
∫ ∞

0
thn(t)dt

be the average residence time. Show thatTar = −P′(0)/P(0) and that the tuning
formula (10.6) can be written aski = 1/(TarP(0)).

10.6 Consider a system with the transfer functionP(s) = e−s/s. Determine pa-
rameters of P,PI and PID controllers using Ziegler-Nichols step- and frequency
response methods. Compare the parameter values obtained bythe different rules
and discuss the results.

10.7 (Vehicle steering) Design a proportion-integral controller for the vehicle
steering system that gives closed loop characteristic equation

s3 +2ω0s2 +2ω0s+ω3
0 .

10.8 (Congestion control) A simplified flow model for TCP transmission is derived
in [134, 101]. The linearized dynamics are modeled by the transfer function

Gqp(s) =
b

(s+a1)(s+a2)
e−sτ∗ .

which describes the dynamics relating expected queue length q to expected packet
drop p. The parameters are given by wherea1 = 2N2/(cτ∗2), a2 = 1/τ∗ and
b = c2/(2N). The parameterc is the bottleneck capacity,N the number sources
feeding the link andτ∗ is the round trip delay time. Use the parameter values
N = 75 sources,C = 1250 packets/s andτ∗ = 0.15 and find parameters of a PI
controller using one of the Ziegler-Nichols rules and the corresponding improved
rule. Simulate the responses of the closed loop systems obtained with the PI con-
trollers.


