Chapter Nine

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tedtd gossessed the
advantages which he had predicted for it. In particular, its gain was condtam high
degree, and it was linear enough so that spurious signals caused bgtéraction of the
various channels could be kept within permissible limits. For best resulfeéuback factor
UB had to be numerically much larger than unity. The possibility of stability with afaed
factor larger than unity was puzzling.

From “The Regeneration Theory”, Harry Nyquist, 1956 [157].

In this chapter we study how stability and robustness ofeddsop systems
can be determined by investigating how sinusoidal signatiéfflerent frequencies
propagate around the feedback loop. This technique allowts vsason about
the closed loop behavior of a system through the frequennyadoproperties of
the open loop transfer function. The Nyquist stability thesoris a key result that
provides a way to analyze stability and introduce measurdegrees of stability.

9.1 THE LOOP TRANSFER FUNCTION

Determining the stability of systems interconnected bylfeek can be tricky be-
cause each system influences the other, leading to potgrdiaiular reasoning.
Indeed, as the quote from Nyquist above illustrates, thawiehof feedback sys-
tems can often be puzzling. However, using the mathemdtaalework of trans-
fer functions provides an elegant way to reason about suatBsyg, which we call
loop analysis

The basic idea of loop analysis is to trace how a sinusoidabsjgropagates in
the feedback loop and explore the resulting stability byestigating if the prop-
agated signal grows or decays. This is easy to do becauseatimrission of
sinusoidal signals through a linear dynamical system isacitarized by the fre-
qguency response of the system. The key result is the Nyquaisilist theorem,
which provides a great deal of insight regarding the stghilf a system. Unlike
proving stability with Lyapunov functions, studied in Chiap4, the Nyquist crite-
rion allows us to determine more than just whether a systestalde or unstable.
It provides a measure of the degree of stability through tfenidion of stability
margins. The Nyquist theorem also indicates how an unstaisterm should be
changed to make it stable, which we shall study in detail iagiérs 10-12.

Consider the system in Figure 9.1a. The traditional way tordeie if the
closed loop system is stable is to investigate if the cloeegd tharacteristic poly-
nomial has all its roots in the left half plane. If the procass the controller have
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Figure 9.1: The loop transfer function. The stability of the feedback system (a) ean b
determined by tracing signals around the loop. Letting PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected atainé A& has the
same magnitude and phase when it reaches B.

rational transfer function®(s) = np(s)/dp(s) andC(s) = nc(s)/dc(s), then the
closed loop system has the transfer function

PC Np(S)Nc(S)
Gyr(s) = 1+PC dp(s)dc(ps) +Np(S)ne(s)’

and the characteristic polynomial is
A(s) = dp(s)dc(s) + np(s)nc(s).

To check stability, we simply compute the roots of the chimastic polynomial
and verify that they each have negative real part. This apprisastraightforward
but it gives little guidance for design: it is not easy to taliv the controller should
be modified to make an unstable system stable.

Nyquist's idea was to investigate conditions under whidtillzgions can occur
in a feedback loop. To study this, we introduce kbep transfer function, [s) =
P(s)C(s) which is the transfer function obtained by breaking the beett loop, as
shown in Figure 9.1b. The loop transfer function is simply ttsfer function
from the input at position A to the output at position B.

We will first determine conditions for having a periodic okatibn in the loop.
Assume that a sinusoid of frequenay is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequengy It seems reasonable
that an oscillation can be maintained if the signal at B hast#ime amplitude and
phase as the injected signal, because we could then conte®&.Aracing signals
around the loop we find that the signals at A and B are idenfical i

Licn) = 1, (9.1)

which provides a condition for maintaining an oscillatiomhe key idea of the
Nyquist stability criterion is to understand when this cappen in a general set-
ting. As we shall see, this basic argument becomes moreeswiitn the loop
transfer function has poles in the right half plane.

Example 9.1 Loop transfer function for operational amplifier
Consider the op amp circuit in Figure 9.2a wh&ieandZ, are the transfer func-
tions from voltage to current of the feedback elements. Thsfiemedback because
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Figure 9.2: Loop transfer function for an op amp. The op amp circuit on the leftéhas
nominal transfer functiony /v1 = Z5(s)/Z1(s), whereZ; andZ, are the impedences of the
circuit elements. The system can be represented by its block diagrara aogtih where we
now include the op amp dynami€s). The loop transfer function iis = ;G /(Z1 + Z»).

the voltagev, is related to the voltagethrough the transfer functiorG describ-
ing the op amp dynamics and the voltage related to the voltage, through the
transfer functiorZs /(Z1 + Z2). The loop transfer function is thus
Gz
N Z1+2
Assuming that the currertis zero, the current through the elemeBtsandZ; is
the same which implies

(9.2)

Solving forv gives
Ve ZoVy + Z1Vo B Zovh — Z1Gv B Zo

= = —Lv; —Lv
Z1+ 2> Z1+2> z !
Sincevp; = —Gvthe input-output relation for the circuit becomes
Z L
Gy =—o—.
Tz 1L

A block diagram is shown in Figure 9.2b. It follows from (9.hjat the condition
for oscillation of the op amp circuit is

o A(iw)Gliw)
Liw) = Zl(liw) +2Z(iw)

(9.3)

O

One of the powerful concepts embedded in Nyquist’s appraastability anal-
ysis is that it allows us to study the stability of the feedbagstem by looking at
properties of the loop transfer function. The advantage aiglthis is that it is
easy to see how the controller should be chosen to obtainieedéise loop trans-
fer function. For example if we change the gain of the cotdrdhe loop transfer
function will be scaled accordingly. A simple way to stat@lian unstable system
is then to reduce the gain so that thé point is avoided. Another way is to in-
troduce a controller with the property that it bends the lbapsfer function away
from the critical point, as we shall see in the next sectioiffeBent ways to do
this, called loopshaping, will be developed as will be d&smd in Chapter 11.
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(a) NyquistD contour (b) Nyquist plot

Figure 9.3: The Nyquist contouF and the Nyquist plot. The Nyquist contour (a) encloses
the right half plane, with a small semicircles around any poldsgfon the imaginary axis
(illustrated here at the origin) and an arc at infinity, representeR by . The Nyquist
plot (b) is the image of the loop transfer functitls) whens traversed™ in the counter-
clockwise direction. The solid line correspondsida> 0 and the dashed line o < 0. The
gain and phase at the frequenoyareg = |L(iw)| and¢ = ZL(iw). The curve is generated
for L(s) = 1.4e7S/(s+1)2.

9.2 THE NYQUIST CRITERION

In this section we present Nyquist’s criterion for deteriminthe stability of a
feedback system through analysis of the loop transfer fomctWe begin by intro-
ducing a convenient graphical tool, the Nyquist plot, angishow it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear sysganbe represented
by its frequency response and graphically illustrated leyBlode plot. To study
the stability of a system, we will make use of a different egentation of the
frequency response called\yquist plot The Nyquist plot of the loop transfer
functionL(s) is formed by tracing € C around the Nyquist “D contour”, consist-
ing of the imaginary axis combined with an arc at infinity coctivey the endpoints
of the imaginary axis. The contour, denoted as C, is illustrated in Figure 9.3a.
The image ofL(s) whens traversed™ gives a closed curve in the complex plane
and is referred to as the Nyquist plot fofs), as shown in Figure 9.3b. Note that
if the transfer functiorlL(s) goes to zero asgets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthewsre, the portion of
the plot corresponding t@ < 0 is the mirror image of the portion witte > O.

There is a subtlety with the Nyquist plot when the loop tranffi@ction has
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poles on the imaginary axis because the gain is infinite atdhesp To solve this
problem, we modify the contour to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 9.3a (assgraipole ofL(s) at the
origin). The deviation consists of a small semicircle to tightr of the imaginary
axis pole location.

The condition for oscillation given in equation (9.1) imglithat the Nyquist
plot of the loop transfer function goes through the pairt —1, which is called
the critical point. Let w. represent a frequency at whiefl (ia;) = 180°, corre-
sponding to the Nyquist curve crossing the negative real driuitively it seems
reasonable that the system is stablf {iwx)| < 1, which means that the critical
point —1 is on the left hand side of the Nyquist curve, as indicatdeigure 9.3b.
This means that the signal at point B will have smaller amgétthan the in-
jected signal. This is essentially true, but there are séget#leties that require
a proper mathematical analysis to clear up. We defer thélsledanow and state
the Nyquist condition for the special case whe(s) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion) Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figure 9.1a) asdmae that L has
no poles in the closed right half plan&és > 0), except for single poles on the
imaginary axis. Then the closed loop system is stable if amgl ibthe closed
contour given byQ = {L(iw) : —o0 < w < «} C C has no net encirclements of
s=-1

The following conceptual procedure can be used to deternhiaethere are
no encirclements: Fix a pin at the critical pos¥= —1, orthogonal to the plane.
Attach a string with one end at the critical point and the ptrethe Nyquist plot.
Let the end of the string attached to the Nyquist curve travdre whole curve.
There are no encirclements if the string does not wind up opithehen the curve
is encircled. The number of encirclements is called the wigdiumber. (In the
theory of complex functions it is the customary to encirtle Nyquist contour in
the counter-clockwise direction, which means that the imay axis is traversed
in the direction fronmro to —o.)

Example 9.2 Third order system
Consider a third order transfer function
1
L(s)= —.
(s) (s+a)3
To compute the Nyquist plot we start by evaluating pointstaitnaginary axis
s=iw, which yields
: 1 (a—iw)® a-3aw’ . wd-32%w
Liw) = = = = +i :
(iw+a)? (2+w?)d (a2+w?)?  (a2+w?)3
This is plotted in the complex plane in Figure 9.4, with the p®itorresponding
to w > 0 drawn as solid line and < 0 as a dashed line. Notice that these curves
are mirror images of each other.
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Nyquist Diagram
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Figure 9.4: Nyquist plot for a third order transfer function. The Nyquist plot dstssof a
trace of the loop transfer functidn(s) = 1/(s+a)3. The solid line represents the portion

of the transfer function along the positive imaginary axis and the dashedh@énegative
imaginary axis. The outer arc of the D contour maps to the origin.

To complete the Nyquist plot, we computés) for s on the outer arc of the
Nyquist D contour. This arc has the fose= Re? for R — «. This gives

i 1
L(R&®)= ———— 0 as R .
( ) (Rée T a)e — — 00
Thus the outer arc of the contour maps to the origin on the Nyquist plot.

An alternative to computing the Nyquist plot explicitly sdetermine the plot
from the frequency response (Bode plot), which gives theuistgurve fors=icw,
w > 0. We start by plotting5(iw) from w = 0 to w = «, which can be read off
from the magnitude and phase of the transfer function. Wa tiet G(Re?)
with 6 € [0, 11/2] andR — o, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror imaifgiae curve thus
far (normally plotted using a dashed line style). The plot t@n be labeled
with arrows corresponding to a counter-clockwise traveasaund the D contour
(opposite the direction that the first portion of the curve plasted).

Example 9.3 Third order system with a pole at the origin
Consider the transfer function

k

L(s) = m,

where the gain has the nominal vakie 1. The Bode plot is shown in Figure 9.5a.
The system has a single polesat 1 and a double pole at= —1. The gain curve
of the Bode plot thus has the slopd. for low frequencies and at the double pole
s= 1 the slope changes te3. For smallswe havel ~ k/swhich means that the
low frequency asymptote intersects the unit gain linewat k. The phase curve
starts at—90° for low frequencies, it is-180 at the break pointo = 1, and it is
—270 at high frequencies.

Having obtained the Bode plot we can now sketch the Nyquist, ghown
in Figure 9.5b. It starts with a phase B0 for low frequencies, intersects the
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Figure 9.5: Sketching Nyquist and Bode plots. The loop transfer functidr{$$=1/(s(s+
1)2). The large semi circle is the map of the small semi circle offtt@ntour around the
pole at the origin. The closed loop is stable because the Nyquist cursendbencircle the
critical point. The point where the phase-i480° is marked with a circle.

negative real axis at the breakpoint= 1 whereL (i) = 0.5 and goes to zero along
the imaginary axis for high frequencies. The small half eiraf thel" contour at
the origin is mapped on a large circle enclosing the right plaihe. The Nyquist
curve does not encircle the critical point and it followsnrthe simplified Nyquist
theorem that the closed loop is stable. Sih¢g = —k/2 we find the system
becomes unstable if the gain is increasek +02 or beyond. O

The Nyquist criterion does not require thhatiw)| < 1 for all w. correspond-
ing to a crossing of the negative real axis. Rather, it sagsttie number of en-
circlements must be zero, allowing for the possibility ttet Nyquist curve could
cross the negative real axis and cross back at magnitudategtban 1. The fact
that it was possible to have high feedback gains surprisedahly practitioners of
feedback amplifiers, as mentioned in the quote in the begywiithis chapter.

One advantage of the Nyquist criterion is that it tells us feogystem is in-
fluenced by changes of the controller parameters. For exaibjgevery easy to
visualize what happens when the gain is changed since 8tisgales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system desciib8dction 3.4. Suppose
we haveN identical sources and a disturbandeepresenting an external data
source, as shown in Figure 9.6a. We also include a time delayeke the router
and the senders, representing the time delays betweenntierssnd receiver.

To analyze the stability of the system, we use the transfestions computed
in Exercise 8.17:

Nwee*Tfs N
Gouw(s) = ————, Gug(8) = ———————,
ou(S) TeS+eT's walS) Oe(TeS+ QeWe)

where(wg, be) is the equilibrium point for the syster, is the number of sources,
Te is the steady state round trip time andis the forward propagation time.

pr(S) =p,



280 CHAPTER 9. FREQUENCY DOMAIN ANALYSIS

Nyquist Diagram
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Figure 9.6: Internet congestion control. A set Nfsources using TCP/Reno send messages
through a single router with admission control. Link delays are includethéforward and
backward directions. The Nyquist plot for the loop transfer functiom@s to the right.

The loop transfer function is given by
p N 1
TeS+ e T'S Qo TeS+ QeWe)

Using the fact thatle ~ 2N /W2 = 2N3/(1¢c)2 andwe = be/N = TeC/N, we can
show that

—TeS

L(s) =

3.3
N ctg s

L(s)=p- :
()=p Tes+eT's 2N3(cr2s+ 2N2)

Note that we have chosen the signLg$) to use the same sign convention as Fig-
ure 9.1b. The exponential term representing the time delasgignificant phase
abovew = 1/t and the gain at the crossover frequency will determine Iittabi

To check stability, we require that the gain be sufficientlyaBiat crossover. If
we assume that the pole due to the queue dynamics is sufficfastithat the TCP
dynamics are dominant, the gain at the crossover frequency/given by

A1 pcre
2N3ct2a, 2N

L{iwx)| =p-N-

Using the Nyquist criterion, the closed loop system will Instable if this quantity

is greater than 1. In particular, for a fixed time delay, theeayswill become
unstable as the link capacityis increased. This indicates that the TCP protocol
may not scalable to high capacity networks, as pointed outdwy et al. [134].
Exercise 9.15 provides some ideas of how this might be ovezcom O

Conditional Stability

Normally, we find that unstable systems can be stabilizedIgifmpreducing the
loop gain. There are however situations where a system catabiized by in-
creasing the gain. This was first encountered by electricahergs in the design
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Figure 9.7: Nyquist curve for the loop transfer functidr(s) = 3;((35173;_ The plot on the

right is an enlargement of the area around the origin of the plot on theTég. Nyquist
curve intersections the negative real axis twice but has no net encincterof—1.

of feedback amplifiers, who coined the teoonditional stability The problem
was actually a strong motivation for Nyquist to develop hisdry. We will illus-
trate by an example.

Example 9.5 Conditional stability
Consider a feedback system with the loop transfer function
3(s+1)?

L(s) = SO (9.4)
The Nyquist plot of the loop transfer function is shown in Fig@r7. Notice that
the Nyquist curve intersects the negative real axis twice firkt intersection oc-
curs atL = —12 for w = 2 and the second &t= —4.5 for w = 3. The intuitive
argument based on signal tracing around the loop in Figutei8.4trongly mis-
leading in this case. Injection of a sinusoid with frequeBawd/s and amplitude
1 at A gives, in steady state, an oscillation at B that is insghaith the input and
has amplitude 12. Intuitively it is seems unlikely that atgsof the loop will re-
sult a stable system. However, it follows from Nyquist'daslity criterion that the
system is stable because there are no net encirclements afitibal point. [

General Nyquist Criterion

Theorem 9.1 requires thhts) has no poles in the closed right half plane. In some
situations this is not the case and a more general resuljisrezl. Nyquist origi-
nally considered this general case, which we summarizesifolfowing theorem.

Theorem 9.2(Nyquist’s stability theorem)Consider a closed loop system with
the loop transfer function (s), that has P poles in the region enclosed by the
Nyquist contour. Let wbe the net number of counter-clockwise encirclements
of —1 by L(s) when s encircles the Nyquist contdurin the counter-clockwise
direction. The closed loop system then hast#P poles in the right half plane.
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Figure 9.8: PD control of an inverted pendulum. A proportional-derivative cdigravith
transfer functionC(s) = k(s+ 2) is used to command based onf. A Nyquist plot of
the loop transfer function for gaik= 2 is shown in on the right. There is one clockwise
encirclement of the critical point, giving a winding numbey= —1.

The full Nyquist criterion states that lif(s) hasP poles in the right half plane,
then the Nyquist curve fdc(s) should have® clockwise encirclements 6f1 (so
thatw, = —P). In particular, thisrequiresthat |L(iwx)| > 1 for someaw cor-
responding to a crossing of the negative real axis. Caredae taken to get
the right sign of the winding number. The Nyquist contour la®é¢ traversed
counter-clockwise, which means thatmoves fromeo to —co andwy, is positive if
the Nyquist curve winds counter-clockwise.

As in the case of the simplified Nyquist criterion, we use sreathicircles of
radiusr to avoid any poles on the imaginary axis. By letting- 0, we can use
Theorem 9.2 to reason about stability. Note that the imageso$tall semicircles
generates a section of the Nyquist curve whose magnitudeagies infinity,
requiring care in computing the winding number. When phaftNyquist curves
on the computer, one must be careful to see that such polgsaverly handled
and often one must sketch those portions of the Nyquist glogind, being careful
to loop the right way around the poles.

Example 9.6 Stabilization of an inverted pendulum

The linearized dynamics of a normalized inverted pendulumbearepresented by
the transfer functio(s) = 1/(s* — 1), where the input is acceleration of the pivot
and the output is the pendulum an@leas shown in Figure 9.8 (Exercise 8.4). We
attempt to stabilize the pendulum with a proportional-give (PD) controller
having the transfer functio@(s) = k(s+ 2). The loop transfer function is

L(s) = kiff i).

The Nyquist plot of the loop transfer function is shown in Fg@.8b. We have
L(0) = —k andL(«) = 0, the Nyquist curve is actually an ellipse. Kf> 1 the
Nyquist curve encircles the critical poiat= —1 in the clockwise direction when
the Nyquist contouy is encircled in the counter-clockwise direction. The wirgdin
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number is thusv, = —1. Since the loop transfer function has one pole in the right
half plane P = 1) we find thatN = P+ w, = 0 and the system is thus stable for
k> 1. If k < 1 there is no encirclement and the closed loop will have oihe ipo
the right half plane. O

Derivation of Nyquist’s Stability Theorem @

We will now prove the Nyquist stability theorem for a gendaalp transfer func-
tion L(s). This requires some results from the theory of complex véggfor
which the reader can consult [6]. Since some precision isgteiedstating Nyquist's
criterion properly, we will also use a more mathematicakstf presentation. The
key result is the following theorem about functions of coexplariables.

Theorem 9.3(Principle of variation of the argument).et D be a closed region in
the complex plane and I€t be the boundary of the region. Assume the function
f : C — Cis analytic in D and o, except at a finite number of poles and zeros.
Then thewinding numberwy, is given by

Whn —A argf(z

orfrarmt( 2m f

whereAr is the net variation in the angle anng the contdurN is the number

of zeros and P the number of poles in D. Poles and zeros ofpticilly m are
counted m times.

NP

Proof. Assume thaz = ais a zero of multiplicitym. In the neighborhood aof=a

we have
f(2) = (z—a)"9(2),

where the functioy is analytic and different from zero. The ratio of the derivati
of f to itself is then given by

f'lgg _ m d@
fz  z-a 92
and the second term is analyticat a. The functionf’/f thus has a single pole

atz = a with the residuen. The sum of the residues at the zeros of the function is
N. Similarly we find that the sum of the residues of the poles eff’sand hence

/
]; dz/ log f(z)dz= Arlog f(z),
-

whereAr again denotes the variation along the contouve have
log f(z) =log|f(z)| +iargf(z)
and since the variation of (z)| around a closed contour is zero it follows that
Arlogf(z) =iArargf(z)

and the theorem is proved. O

N—-—P=
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This theorem is useful for determining the number of poles zews of a
function of complex variables in a given region. By choosamgappropriate closed
regionD with boundaryl”, we can determine the difference between the number
of poles and zeros through computation of the winding number

Theorem 9.3 can be used to prove Nyquist's stability theorgrhbosing™ as
the Nyquist contour shown in Figure 9.3a, which enclosesitid half plane. To
construct the contour, we start with part of the imaginang axjR < s< R, and
a semicircle to the right with radil® If the functionf has poles on the imaginary
axis we introduce small semicircles with radiio the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettRg- c andr — 0.

To see how we use this to compute stability, consider a clioggrisystem with
the loop transfer functioh(s). The closed loop poles of the system are the zeros of
the functionf (s) = 1+L(s). To find the number of zeros in the right half plane, we
investigate the winding number of the functiégs) = 1+ L(s) ass moves along
the Nyquist contouf in the counter-clockwise direction. The winding number
can conveniently be determined from the Nyquist plot. Adiegplication of the
Theorem 9.3 gives the Nyquist criterion. Since the image-eiL1s) is a shifted
version ofL(s), we usually state the Nyquist criterion as net encirclesmenfthe
—1 point by the image df(s).

9.3 STABILITY MARGINS

In practice it is not enough that a system is stable. There atsrsbe some margins
of stability that describe how stable the system is and itsistness to perturba-
tions. There are many ways to express this, but one of the rmpshon is the use
of gain and phase margins, inspired by Nyquist’s stabilitiedon. The key idea
is that it is easy to plot the loop transfer functibfs). An increase of controller
gain simply expands the Nyquist plot radially. An increase¢he phase of the
controller twists the Nyquist plot clockwise. Hence frone thyquist plot we can
easily pick off the amount of gain or phase that can be add#wbwi causing the
system to go unstable.

Let wpc be thephase crossover frequenahe smallest frequency where the
phase of the loop transfer functids) is —180°. Thegain marginis defined as

1
= o] ©9)
It tells us how much the controller gain can be increasedrbaaching the sta-
bility limit.
Similarly, let wyc be thegain crossover frequencihe lowest frequency where
the loop transfer functioh(s) has unit magnitude. Thehase margins

¢m = m+argl(iwyc), (9.6)

the amount of phase lag required to reach the stability lifflitese margins have
simple geometric interpretations in the Nyquist diagrarnthefloop transfer func-



9.3. STABILITY MARGINS 285

ImL(iw) gmu ______________
= 10g309m
107

107 10° 10"

-1 —1/g ReL(iw)
Sm ,” ’§—120
Pm S -150

-180

107

(@)

Figure 9.9: Stability margins. The gain margi, and phase marging, are shown on the
the Nyquist plot (left) and the Bode plot (right). The Nyquist plot alsovghthe stability
marginsm, which is the shortest distance to the critical point.

tion, as shown in Figure 9.9a.

A drawback with gain and phase margins is that it is necegsagive both of
them in order to guarantee that the Nyquist curve is not dioske critical point.
An alternative way to express margins is by a single numhestability margin
Sm, Which is the shortest distance from the Nyquist curve tatitecal point. This
number is related to disturbance attenuation as will beudsed in Section 11.3.

Gain and phase margins can be determined from the Bode filod tfop trans-
fer function. To find the gain margin we first find the phase crosséhequency
wpc Where the phase is180°. The gain margin is the inverse of the gain at that
frequency. To determine the phase margin we first determimgain crossover
frequencywyc, i.e. the frequency where the gain of the loop transfer fonats
1. The phase margin is the phase of the loop transfer functitmaa frequency
plus 180. Figure 9.9b illustrates how the margins are found in the Badeof
the loop transfer function. The margins can be computed #oally for simple
systems of low order but it is straightforward to computenthreumerically.

Example 9.7 Third order transfer function

Consider a loop transfer functidr(s) = 3/(s+ 1)3. The Nyquist and Bode plots
are shown in Figure 9.10. To compute the gain, phase andistabargins, we
can use the Nyquist plot as described in Figure 9.9a. Thisyittld following

values:

The gain and phase margin can also be determined from the Boidghpwn in
Figure 9.9b. O

The gain and phase margins are classical robustness metsatrbave been
used for a long time in control system design. The gain magyimall defined if
the Nyquist curve intersects the negative real axis oncealdgously the phase
margin is well defined if the Nyquist curve intersects the wiitle only at one
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Nyquist Diagram Bode Diagram
Gm =8.52 dB (at 1.73 rad/sec) , Pm = 41.7 deg (at 1.04 rad/sec)
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Figure 9.10: Stability margins for a third order transfer function. The Nyquist plot an th
left allows the gain, phase and stability margins to be determined by megheidistances
of relevant features. The gain and phase margins can also be feddhaf Bode plot on the
right.

point. Other more general robustness measures will bedintexd in Chapter 12.
Even if both gain and phase margins are reasonable the sysagrstithnot be
robust as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

~ 0.38(s*+0.15+0.55)
(8= S5+ 1)(F+ 0065+ 05)

A numerical calculation gives the gain margimjs= 266, the phase margin is 70
These values indicate that the system is robust but the Nycuuige is still close
to the critical point, as shown in Figure 9.11. The stabilityrgia is s, = 0.27,
which is very low. The closed loop system has two resonant s)oolee with
relative damping; = 0.81 and the other witlf = 0.014. The step response of the
system is highly oscillatory, as shown in Figure 9.11c. U

The stability margin cannot easily be found from the Bode plothe loop
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Figure 9.11: System with good gain and phase margin, but poor stability margin. Nyquist
(a) and Bode (b) plots of the loop transfer function and step respahser (@ system with
good gain and phase margins but with poor stability margin.
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Figure 9.12: Nyquist and Bode plots of the loop transfer function for the AFM systeim) (9
with an integral controller. The frequency in the Bode plot is normalized. Byhe parame-
ters arel = 0.01 andk; = 0.008.

transfer function. There are however other Bode plots thihgivie s,; these will
be discussed in Chapter 12. In general, it is best to use tl@ibslyplot to check
stability, since this provides more complete informatibart the Bode plot.

When we are designing feedback systems, it will often beulsefdefine the
robustness of the system using gain, phase and stabilitginsarThese numbers
tell us how much the system can vary from our nominal modelsiifibe stable.
Reasonable values of the margins are phase magin 30° — 60°, gain margin
Om = 2—5, and stability margirs,, = 0.5—0.8.

There are also other stability measures, such adetay margin which is the
smallest time delay required to make the system unstableloBp transfer func-
tions that decay quickly, the delay margin is closely raldtethe phase margin,
but for systems where the amplitude ratio of the loop trarfsfiection has several
peaks at high frequencies, the delay margin is a more rdlevaasure.

Example 9.9 AFM nanopositioning system

Consider the system for horizontal positioning of the samiplan atomic force
microscope. The system has oscillatory dynamics and a simqdkel is a spring-
mass system with low damping. The normalized transfer fonds given by

2
P(s)

a
P +2las+a?
where the relative damping typically is a very small numbeay, { = 0.1.
We will start with a controller that only has integral actidrhe resulting loop
transfer function is
kia?

L(s) = s(s?+2las+a?)’

wherek; is the gain of the controller. Nyquist and Bode plots of thepldransfer
function are shown in Figure 9.12. Notice that the part of tggNst curve that is
close to the critical point-1 is approximately circular.

(9.7)
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From the Bode plot in Figure 9.12b, we see that the phase craskequency
iS wpc = a, which will be independent of the gakq. Evaluating the loop transfer
function at this frequency, we hatgia) = —k;/(2{a), which means that the gain
margin isgm = 1— ki /(2¢a). To have a desired gain margingf the integral gain
should be chosen as

ki =2ad(1—gm).

Figure 9.12 shows Nyquist and Bode plots for the system with gergingm, =
0.60 and stability margiisy, = 0.597. The gain curve in the Bode plot is almost a
straight line for low frequencies and a resonance peak-at. The gain crossover
frequency is approximately equal ko The phase decreases monotonically from
—90° to —270’: it is equal to—18C at w = a. The curve can be shifted verti-
cally by changindg: increasingk; shifts the gain curve upwards and increases the
gain crossover frequency. Since the phase 180’ at the resonance peak, it is
necessary that the peak does not touch thellifiev)| = 1. 0

9.4 BODE’S RELATIONS AND MINIMUM PHASE SYSTEMS

An analysis of Bode plots reveals that there appears to berbkat@on between
the gain curve and the phase curve. Consider for exampledbe Blots for the
differentiator and the integrator (shown in Figure 8.12 ogga58). For the dif-
ferentiator the slope i1 and the phase is constamnt2 radians. For the integrator
the slope is-1 and the phase is11/2. For the first order systef@(s) = s+ a, the
amplitude curve has the slope 0 for small frequencies angltpe+1 for high
frequencies and the phase is 0 for low frequenciesrgi&dfor high frequencies.

Bode investigated the relations between the curves foesysivith no poles
and zeros in the right half plane. He found that the phase wagiely given by
the shape of the gain curve and vice versa:

LT[ dlog|G(iw)| __ mdlog|G(iw)|
argG(iap) = 2/0 f(w)idlogw dlogw ~ 2 dlogw (9.8)
wheref is the weighting kernel
2 W+ Wy
f(w) = ?Iog‘w_wO .

The phase curve is thus a weighted average of the derivatitree@fain curve. If
the gain curve has constant slapthe phase curve has the constant vailog2.

Bode’s relations (9.8) hold for systems that do not havegateal zeros in the
right half plane. Such systems are calfeshimum phase systerbscause systems
with poles and zeros in the right half plane have larger phageThe distinction
is important in practice because minimum phase systemsaarereo control than
systems with larger phase lag. We will now give a few exampfegn-minimum
phase transfer functions.

The transfer function of a time delay @f units isG(s) = e S, This transfer
function has unit gainG(iw)| = 1, and the phase is aBfiw) = —wTy. The corre-
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Figure 9.13: Bode plots of systems that are not minimum phase. (a) Time d&lay=
e ST, (b) system with a right half plane ze®(s) = (a—s)/(a+s) and (c) system with
right half plane pole. The corresponding minimum phase systems hasutiséer function
G(s) = 1in all cases, the phase curves for that system are shown dashed.

sponding minimum phase system with unit gain has the trafsfietionG(s) = 1.
The time delay thus has an additional phase lag®f. Notice that the phase lag
increases linearly with frequency. Figure 9.13a shows theeRuot of the transfer
function. (Because we use a log scale for frequency, theggfladls off much faster
than linearly in the plot.)

Consider a system with the transfer functi®(s) = (a—s)/(a+s) witha> 0,
which has a zere = a in the right half plane. The transfer function has unit gain,
|G(iw)| = 1, and the phase is aBfiw) = —2arctar{w/a). The corresponding
minimum phase system with unit gain has the transfer fundB¢s) = 1. Fig-
ure 9.13b shows the Bode plot of the transfer function.

A similar analysis of the transfer functid®(s) = (s+a)/s—a) with a > 0,
which has a pole in the right half plane, shows that its phasergG(iw) =
—2arctarfa/w). The Bode plot is shown in Figure 9.13c

The presence of poles and zeros in the right half plane impsmese limi-
tations on the achievable performance. Dynamics of this ghpuld be avoided
by redesign of the system whenever possible. While the @okeatrinsic prop-
erties of the system and they do not depend on sensors arat@stuthe zeros
depend on how inputs and outputs of a system are coupled tbates. Zeros can
thus be changed by moving sensors and actuators or by iciragnew sensors
and actuators. Non-minimum phase systems are unfortyngiiéle common in
practice.

The following example gives a system theoretic interpretatif the common
experience that it is more difficult to drive in reverse geat dlustrates some of
the properties of transfer functions in terms of their pealed zeros.

Example 9.10 Vehicle steering
The non-normalized transfer function from steering anglateral velocity for the
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Figure 9.14: Step responses from steering angle to lateral translation for simple Kieema
model when driving forward (dashed) and reverse (full). Notice tha with rear wheel
steering the center of mass first moves in the wrong direction and thavéhallaesponse
with rear wheel steering is significantly delayed compared with front Wteering. The
response in rear steering lags the response in forward steering with 4s.

simple vehicle model is

avos+V3
G(s) = —7—.
(s bs
The transfer function has a zerosat Vp/a. In normal driving this zero is in the

left half plane but it is in the right half plane when drivingrieverseyp < 0. The
unit step response is

_aw _ avt

The lateral velocity thus responds immediately to a steeramymand. For reverse
steeringy is negative and the initial response is in the wrong directiobehavior
that is representative for non-minimum phase systems. &i@u” shows the step
response for forward and reverse driving. In this simutatice have added an
extra pole with the time constamtto approximately account for the dynamics in
the steering system. The parametersaateb =1, T = 0.1, vo = 1 for forward
driving andvp = —1 for reverse driving. Notice that far> to = a/vp, wheretg is
the time required to drive the distanaéhe step response for reverse driving is that
of forward driving with the time delatp. Notice that the position of the zewy/a
depends on the location of the sensor. In our calculationave Assumed that the
sensor is at the center of mass. The zero in the transfer @mdisappears if the
sensor is located at the rear wheel. The difficulty with zerdaberight half plane
can thus be visualized by a thought experiment where we drivar in forward
and reverse and observe the lateral position through a hakeifloor of the car.
O



9.5. THE NOTIONS OF GAIN AND PHASE 291

9.5 THE NOTIONS OF GAIN AND PHASE

A key idea in frequency domain analysis it to trace the bedrani sinusoidal sig-
nals through a system. The concepts of gain and phase ref@@ssrthe transfer
function are strongly intuitive because they describe #oge and phase relations
between input and output. In this section we will see how termc the concepts
of gain and phase to more general systems, including sonmmeansystems. We
will also show that there are analogs of Nyquist's stabititiferion if signals are
approximately sinusoidal.

System Gain

We begin by considering the case of a static linear systemAu, whereA is
a matrix whose elements are complex numbers. The matrix dutdsane to be
square. Letthe inputs and outputs be vectors whose elenterdsraplex numbers
and use the Euclidean norm

lull = /Zui[2. (9.9)

The norm of the output is
Iyl|? = u*A"Au

wherex denotes the complex conjugate transpose. The mAtixis symmetric
and positive semidefinite and the right hand side is a quadiatin. The eigen-
values of the matriA*A are all real and we have

IVI1? < Amax(A“A)|Jul®.

The gain of the system can then be defined as the maximum ratie oiutput to
the input over all possible inputs:

y= ml?xm = /Amax(A*A). (9.10)
The eigenvalues of the matr&‘A are called thesingular valuesof the matrixA
and the largest singular value is denote@d).

To generalize this to the case of an input/output dynamigstlesn, we need
to think of think of the inputs and outputs not as vectors af rumbers, but as
vectors ofsignals For simplicity, consider first the case of scalar signals lahd
the signal spack, be square integrable functions with the norm

Jul=1/ [ WP

This definition can be generalized to vector signals by reptattie absolute value
with the vector norm (9.9). We can now formally define the gdia system taking
inputsu € L, and producing outputge L, as

y= supM (9.11)

uelo ||u||7
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Figure 9.15: A feedback connection of two general nonlinear systétpsandH,. The
stability of the system can be explored using the small gain theorem.

where sup is thesupremumgdefined as the smallest number that is larger than its
argument. The reason for using supremum is that the maximymmaotide defined
for u € L,. This definition of the system gain is quite general and can bearsed
for some classes of nonlinear systems, though one needsctaréfel about how
initial conditions and global nonlinearities are handled.

It turns out that the norm (9.11) has some very nice propeiti¢he case of
linear systems. In particular, given a stable linear sysisth transfer function
G(s) it can be shown that the norm of the system is given by

Y = SUpG(ie)| = Gl (9.12)

In other words, the gain of the system corresponds to the ypalale of the fre-
quency response. This corresponds to our intuition that patiproduces the
largest output when we are at the resonant frequencies afystem. |G| is
called theinfinity normof the transfer functiofi(s).

This notion of gain can be generalized to the multi-input, tmuitput case as
well. For a linear multivariable system with a real ratiotrahsfer function matrix
G(s) we can define the gain as

y=IGll =83I05(G(iw))- (9.13)

Thus we see that combine the ideas of the gain of a matrix witigén of a linear
system by looking at the maximum singular value over all diexties.

Small Gain and Passivity

For linear systems it follows from Nyquist's theorem that tiosed loop is stable
if the gain of the loop transfer function is less than one fbfraquencies. This
result can be extended to a larger class of systems by usingatincept of the
system gain defined in equation (9.11).

Theorem 9.4(Small gain theorem)Consider the closed loop system in Figure 9.15
where H and H, are stable systems and the signal spaces are properly defined
Let the gains of the systemg Bind H, be y; and y». Then the closed loop system
is input/output stable ifs y» < 1, and the gain of the closed loop system is

Y 1-yy
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Notice that if systemsl; andH> are linear it follows from the Nyquist stability
theorem that the closed loop is stable, becauseyf < 1 the Nyquist curve is
always inside the unit circle. The small gain theorem is thusxension of the
Nyquist stability theorem.

Note that although we have focused on linear systems, th# gaia theorem
actually holds nonlinear input/output systems as well. Tégndion of gain in
equation (9.11) holds for nonlinear systems as well, withesa@are needed in
handling the initial condition.

The main limitation of the small gain theorem is that it does cansider the
phasing of signals around the loop, so it can be very coneevalo define the
notion of phase we require that there is a scalar product.s§oare integrable
functions this can be defined as

(wy) = [ umy(mdr
The phase& between two signals can now be defined as

) = |lullllyl cos(9)

Systems where the phase between inputs and outputsés 8&s for all inputs are
calledpassive system# follows from the Nyquist stability theorem that a closed
loop linear system is stable if the phase of the loop trarfsfiection is between
—rmandr. This result can be extended to nonlinear systems as weH. chilled
the passivity theorerand is closely related to the small gain theorem.

Additional applications of the small gain theorem and itplagation to robust
stability are given in Chapter 12.

Describing Functions @

For special nonlinear systems like the one shown in Figuréa9 Which consists
of a feedback connection of a linear system and a static meanlity, it is possi-
ble to obtain a generalization of Nyquist’s stability criten based on the idea of
describing functions Following the approach of the Nyquist stability condition
we will investigate the conditions for maintaining an ofstibn in the system. If
the linear subsystem has low-pass character, its outpppi®gimately sinusoidal
even if its input is highly irregular. The condition for odation can then be found
by exploring the propagation of a sinusoid that correspaoadse first harmonic.

To carry out this analysis, we have to analyze how a sinuksidaal prop-
agates through a static nonlinear system. In particularnwvestigate how the
first harmonic of the output of the nonlinearity is relatedt®(sinusoidal) input.
Letting F represent the nonlinear function, we expdhg '“') in terms of its
harmonics:

Flae ™) = 3 M a)gn@t=fn(@
(ae™™) n;) n(a)

whereMp(a) and ¢n(a) represent the gain and phaserntfi harmonic, which
depend on the input amplitude since the functioms nonlinear. We define the
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@ (b)

Figure 9.16: lllustration of describing function analysis. A feedback connection d&tics
nonlinearity and a linear system is shown in (a). The linear system is ¢odzacd by its
transfer functiorl(iw), which depends on frequency, and the nonlinearity by its describing
functionN(a) which depends on the amplitude @bf its input. (b) shows the Nyquist plot

of G(iw) and the a plot of the-1/N(a). The intersection of the curves represent a possible
limit cycle.

describing function to be the complex gain of the first harraoni
N(a) = My(a)e¥@. (9.14)

The function can also be computed by assuming that the inpusisusoid and
using the first term in the Fourier series of the resulting outp

Arguing as we did when deriving Nyquist’s stability criteni we find that an
oscillation can be maintained if

L(iw)N(a) = —1. (9.15)

This equation means that if we inject a sinusoid at A in Figu 3he same
signal will appear at B and an oscillation can be maintaingadnnecting the
points. Equation (9.15) gives two conditions for finding theginencyw of the
oscillation and its amplitude: the phase must be 18@nd the magnitude must
be unity. A convenient way to solve the equation is to plotv) and—1/N(a) on
the same diagram as shown in Figure 9.16c¢. The diagram is similae Nyquist
plot where the critical point-1 is replaced by the curve1/N(a) anda ranges
from O toco.

It is possible to define describing functions for other typesputs than si-
nusoids. Describing function analysis is a simple methaoditols approximate
because it assumes that higher harmonics can be neglectlleaktreatments of
describing function techniques can be found in the textsiah&m and McRuer [89]
and Atherton [21].

Example 9.11 Relay with hysteresis

Consider a linear system with a nonlinearity consisting odlay with hysteresis.
The output has amplitudeand the relay switches when the inputts, as shown
in Figure 9.17a. Assuming that the inputis= asin(wt) we find that the output is
zero ifa< cand ifa> cthe output is a square wave with amplituzignat switches
at timeswt = arcsir(c/a) 4+ nrt. The first harmonic is they(t) = (4b/m) sin(wt —
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Figure 9.17: Describing function analysis for relay with hysteresis. The input-outgut r
lation of the hysteresis is shown in Figure 9.17a and Figure 9.17b shewsht, the
output and its first harmonic. Figure 9.17c shows the Nyquist plots af#émsfer function
G(s) = (s+1)~*and the negative of the inverse describing function for the relay it
andc=1.
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a), where sira = c¢/a. Fora > c the describing function and its inverse are

4b ¢ .¢c 1 m/az—c2 . 1c
N@ = (V1 2 i) Na@ 4 4

where the inverse is obtained after simple calculationsurgi@.17b shows the
response of the relay to a sinusoidal input with the first haimof the output
shown as a dashed line. Describing function analysis istithited in Figure 9.16b
which shows the Nyquist plot of the transfer functiGis) = 2/(s+ 1)* (dashed)
and the negative inverse describing function of a relay wita 1 andc = 0.5.
The curves intersect fax= 1 andw = 0.77 rad's indicating the amplitude and
frequency for a possible oscillation if the process and #adly are connected in a
a feedback loop. O

9.6 FURTHER READING

Nyquist's original paper giving his now famous stabilityterion was published
in the Bell Systems Technical Journal in 1932 [156]. More asitde versions are
found in the book [27], which also has other interestingyepdpers on control.
Nyquist's paper is also reprinted in an IEEE collection of seahpapers on control
[68]. Nyquist used+1 as the critical point but Bode changed it+d, which is
now the standard notation. Interesting perspectives oedhly development are
given by Black [37], Bode [42] and Bennett [29]. Nyquist didigect calculation
based on his insight of propagation of sinusoidal signatsutph systems; he did
not use results from the theory of complex functions. The ttieada short proof
can be given by using the principle of variation of the argaotrie given in the
delightful little book by MacColl [136]. Bode made extensiuse of complex
function theory in his book [41], which laid the foundatiar frequency response
analysis where the notion of minimum phase was treated aildét good source
for theory of complex functions is the classic by Ahlfors.[6fequency response
analysis was a key element in the emergence of control tredescribed in the
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early texts by Jamest al.[108], Brown and Campbell [47] and Oldenburger [67],
and it became one of the cornerstones of early control th&oeguency response
had a resurgence when robust control emerged in the 1980sl| &8 discussed
in Chapter 12.

EXERCISES

9.1 Consider the op amp circuit in Figure 8.3 show that the loopstier function
is given by
R]_G(S)
L(s) = ,
©) Ri+Ro

whereG(s) is the transfer function of the op amp itself. The closed loaip gf the
circuit is Ry /Ry which is close to unity wheR; = Ry. The loop transfer function
obtained in this case is called unit gain loop transfer fiomct See Example 8.3.
Example 6.10.

9.2 Consider an op amp circuit withy = Z, that gives a closed loop system with
nominal unit gain. Let the transfer function of the operagicemplifier be
kalaz

G(s) =
(s) (s+a)(s+a1)(s+ap)
whereag,a; >> a show that the condition for oscillation ks< sqrta;ay.

9.3 In design of op amp circuits it is a tradition to make the Bod#pof the
transfer functions(s) and (Z1(s) + Z2(s))/Za(s). Show that this is essentially
equivalent to the Bode plot of the loop transfer function tod tircuit and that
the gain crossover frequency corresponds to the inteosesctif the gain curves of
G(s) and(Zi(s) + Z2(s))/Za(S).

9.4 Use the Nyquist theorem to analyze the stability of the ergisntrol system
in Example??, but using the original Pl controller from Example 6.10.

9.5 The dynamics of the tapping mode of an atomic force microstogeminated
by the damping of the cantilever vibrations and the systerithvhverages the
vibrations. Modeling the cantilever as a spring-mass systéth low damping
we find that the amplitude of the vibrations decayeag(—{ wt) where( is the
relative damping andv the undamped natural frequency of the cantilever. The
cantilever dynamics can thus be modeled by the transfetifumc

b

G(s) = sia

wherea= { wy. The averaging process can be modeled by the input-outatitne|
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where the averaging time is a multipief the period of the oscillation72/ . The
dynamics of the piezo scanner can be neglected in the firsbeippation because

it is typically much faster thaa. A simple model for the complete system is thus
given by the transfer function

P(s) =

Plot the Nyquist curve of the system and determine the gain mfoportional
controller which brings the system to the boundary of sitgbil

a(l—e™)
st(s+a)

9.6 A simple model for heat conduction in a solid is given by tlaasfer function
P(s) = ke V5.

Sketch the Nyquist plot of the system. Determine the frequevritere the phase
of the process is-180° and the gain at that frequency. Show that the gain required
to bring the system to the stability boundarkis- €”.

9.7 In Example 9.4 we developed a linearize model of the dynamoica Eonges-
tion control mechanism on the Internet, following [134] d81]. A linearized
version of the model is represented by the transfer function

N c3r R
T*s+eT's 2N3(cT*2s+ 2N2)
wherec s the link capacity in packets/mi,load factor (number of TCP sessions),
p is the drop probability factor andis the round-trip time in seconds. Consider
the situation with the parametdxs= 80,c = 4, p = 10 2 andt* = 0.25. Find the

stability margin of the system, also determine the staitiairgin if the time delay
becomeg* = 0.5.

L(s)p-

9.8 Consider the transfer functions

a—-s
G S :eis121 G S)= ——.
(9 =€, Gys)=
Use the approximation
g7 1-sT/2
T 14sT/2

to show that the minimum phase properties of the transfestiins are similar if
Tq = 2/a. Allong time delayTy is thus equivalent to a small right half plane zero.

9.9 (Inverted pendulum) Consider the inverted pendulum in EXxarBB. Show
that the Nyquist curve is the ellipse

(x4 k)2 +4y? = k2
9.10 Consider the linearized model for vehicle steering with atiler based on
state feedback discussedi@ The transfer function of the process is

ys+1
P(s) = 2
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and the controller has the transfer function
C(s) — S(kily + kol2) 4 kal2
P +5(yky+ ko +11) + ki + 12+ kolg — kol
as computed in Example 8.6. Let the process parametgr=b0.5 and assume
that the state feedback gains d&ge= 1 andky, = 0.914, and the observer gains
arel; = 2.828 andl, = 4. Compute the stability margins numerically. The phase

margin of the system is 44and the gain margin is infinite since the phase lag is
never greater than 18Q0indicating that the closed loop system is robust.

9.11

9.12 Consider Bode’s formula (9.8) for the relation between gaid phase for a
transfer function that has all its singularities in the ledtf plane. Plot the weight-
ing function and make an assessment of the frequencies Wieepproximation
argG =~ (1r/2)dlog|G|/dlogw is valid.

9.13 Consider a closed loop system with the loop transfer functio

k
L(s) = SeT 12

Use the Nyquist criterion to determine if the closed loopeiysis stable and what
the gain, phase and stability margins are.

9.14(Loop transfer function with RHP pole) Consider a feedbackey with the
loop transfer function "

)

This transfer function has a polesat 1 which is inside the Nyquist contour. Draw
the Nyquist plot for this system and determine if the closEplsystem is stable.

9.15(Congestion control) A strongly simplified flow model of TCP loiopover-
load conditions is given by the loop transfer function

k
L(s) = —e Sk
(9= e,

where he queuing dynamics is modeled by an integrator, thewWi@&ow control

by a time delayTy is the time delay and the controller is simply a proportional
controller. A major difficulty is that the time delay may chamignificantly during
the operation of the system. Show that if we can measure the detay, it is
possible to choose a gain that gives a stability margig,of= 0.6 for all time
delaysTy.
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