
Chapter Nine

Frequency Domain Analysis

Mr. Black proposed a negative feedback repeater and proved by tests that it possessed the
advantages which he had predicted for it. In particular, its gain was constant to a high
degree, and it was linear enough so that spurious signals caused by theinteraction of the
various channels could be kept within permissible limits. For best results thefeedback factor
µβ had to be numerically much larger than unity. The possibility of stability with a feedback
factor larger than unity was puzzling.

From “The Regeneration Theory”, Harry Nyquist, 1956 [157].

In this chapter we study how stability and robustness of closed loop systems
can be determined by investigating how sinusoidal signals of different frequencies
propagate around the feedback loop. This technique allows usto reason about
the closed loop behavior of a system through the frequency domain properties of
the open loop transfer function. The Nyquist stability theorem is a key result that
provides a way to analyze stability and introduce measures of degrees of stability.

9.1 THE LOOP TRANSFER FUNCTION

Determining the stability of systems interconnected by feedback can be tricky be-
cause each system influences the other, leading to potentially circular reasoning.
Indeed, as the quote from Nyquist above illustrates, the behavior of feedback sys-
tems can often be puzzling. However, using the mathematicalframework of trans-
fer functions provides an elegant way to reason about such systems, which we call
loop analysis.

The basic idea of loop analysis is to trace how a sinusoidal signal propagates in
the feedback loop and explore the resulting stability by investigating if the prop-
agated signal grows or decays. This is easy to do because the transmission of
sinusoidal signals through a linear dynamical system is characterized by the fre-
quency response of the system. The key result is the Nyquist stability theorem,
which provides a great deal of insight regarding the stability of a system. Unlike
proving stability with Lyapunov functions, studied in Chapter 4, the Nyquist crite-
rion allows us to determine more than just whether a system isstable or unstable.
It provides a measure of the degree of stability through the definition of stability
margins. The Nyquist theorem also indicates how an unstable system should be
changed to make it stable, which we shall study in detail in Chapters 10–12.

Consider the system in Figure 9.1a. The traditional way to determine if the
closed loop system is stable is to investigate if the closed loop characteristic poly-
nomial has all its roots in the left half plane. If the processand the controller have
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Figure 9.1: The loop transfer function. The stability of the feedback system (a) can be
determined by tracing signals around the loop. LettingL = PC represent the loop transfer
function, we break the loop in (b) and ask whether a signal injected at the point A has the
same magnitude and phase when it reaches B.

rational transfer functionsP(s) = np(s)/dp(s) andC(s) = nc(s)/dc(s), then the
closed loop system has the transfer function

Gyr(s) =
PC

1+PC
=

np(s)nc(s)

dp(s)dc(s)+np(s)nc(s)
,

and the characteristic polynomial is

λ (s) = dp(s)dc(s)+np(s)nc(s).

To check stability, we simply compute the roots of the characteristic polynomial
and verify that they each have negative real part. This approach is straightforward
but it gives little guidance for design: it is not easy to tellhow the controller should
be modified to make an unstable system stable.

Nyquist’s idea was to investigate conditions under which oscillations can occur
in a feedback loop. To study this, we introduce theloop transfer function, L(s) =
P(s)C(s) which is the transfer function obtained by breaking the feedback loop, as
shown in Figure 9.1b. The loop transfer function is simply the transfer function
from the input at position A to the output at position B.

We will first determine conditions for having a periodic oscillation in the loop.
Assume that a sinusoid of frequencyω0 is injected at point A. In steady state the
signal at point B will also be a sinusoid with the frequencyω0. It seems reasonable
that an oscillation can be maintained if the signal at B has the same amplitude and
phase as the injected signal, because we could then connect Ato B. Tracing signals
around the loop we find that the signals at A and B are identical if

L(iω0) = −1, (9.1)

which provides a condition for maintaining an oscillation.The key idea of the
Nyquist stability criterion is to understand when this can happen in a general set-
ting. As we shall see, this basic argument becomes more subtle when the loop
transfer function has poles in the right half plane.

Example 9.1 Loop transfer function for operational amplifier
Consider the op amp circuit in Figure 9.2a whereZ1 andZ2 are the transfer func-
tions from voltage to current of the feedback elements. Thereis feedback because
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Figure 9.2: Loop transfer function for an op amp. The op amp circuit on the left hasa
nominal transfer functionv2/v1 = Z2(s)/Z1(s), whereZ1 andZ2 are the impedences of the
circuit elements. The system can be represented by its block diagram on the right, where we
now include the op amp dynamicsG(s). The loop transfer function isL = Z1G/(Z1 +Z2).

the voltagev2 is related to the voltagev through the transfer function−G describ-
ing the op amp dynamics and the voltagev is related to the voltagev2 through the
transfer functionZ1/(Z1 +Z2). The loop transfer function is thus

L =
GZ1

Z1 +Z2
. (9.2)

Assuming that the currentI is zero, the current through the elementsZ1 andZ2 is
the same which implies

v1−v
Z1

=
v−v2

Z2

Solving forv gives

v =
Z2v1 +Z1v2

Z1 +Z2
=

Z2v1−Z1Gv
Z1 +Z2

=
Z2

Z1
Lv1−Lv.

Sincev2 = −Gv the input-output relation for the circuit becomes

Gv2v1 = −Z2

Z1

L
1+L

.

A block diagram is shown in Figure 9.2b. It follows from (9.1) that the condition
for oscillation of the op amp circuit is

L(iω) =
Z1(iω)G(iω)

Z1(iω)+Z2(iω)
= −1 (9.3)

∇

One of the powerful concepts embedded in Nyquist’s approachto stability anal-
ysis is that it allows us to study the stability of the feedback system by looking at
properties of the loop transfer function. The advantage of doing this is that it is
easy to see how the controller should be chosen to obtain a desired the loop trans-
fer function. For example if we change the gain of the controller the loop transfer
function will be scaled accordingly. A simple way to stabilize an unstable system
is then to reduce the gain so that the−1 point is avoided. Another way is to in-
troduce a controller with the property that it bends the looptransfer function away
from the critical point, as we shall see in the next section. Different ways to do
this, called loopshaping, will be developed as will be discussed in Chapter 11.
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Figure 9.3: The Nyquist contourΓ and the Nyquist plot. The Nyquist contour (a) encloses
the right half plane, with a small semicircles around any poles ofL(s) on the imaginary axis
(illustrated here at the origin) and an arc at infinity, represented byR→ ∞. The Nyquist
plot (b) is the image of the loop transfer functionL(s) whens traversesΓ in the counter-
clockwise direction. The solid line corresponds toω > 0 and the dashed line toω < 0. The
gain and phase at the frequencyω areg = |L(iω)| andϕ = ∠L(iω). The curve is generated
for L(s) = 1.4e−s/(s+1)2.

9.2 THE NYQUIST CRITERION

In this section we present Nyquist’s criterion for determining the stability of a
feedback system through analysis of the loop transfer function. We begin by intro-
ducing a convenient graphical tool, the Nyquist plot, and show how it can be used
to ascertain stability.

The Nyquist Plot

We saw in the last chapter that the dynamics of a linear systemcan be represented
by its frequency response and graphically illustrated by the Bode plot. To study
the stability of a system, we will make use of a different representation of the
frequency response called aNyquist plot. The Nyquist plot of the loop transfer
functionL(s) is formed by tracings∈ C around the Nyquist “D contour”, consist-
ing of the imaginary axis combined with an arc at infinity connecting the endpoints
of the imaginary axis. The contour, denoted asΓ ∈ C, is illustrated in Figure 9.3a.
The image ofL(s) whens traversesΓ gives a closed curve in the complex plane
and is referred to as the Nyquist plot forL(s), as shown in Figure 9.3b. Note that
if the transfer functionL(s) goes to zero ass gets large (the usual case), then the
portion of the contour “at infinity” maps to the origin. Furthermore, the portion of
the plot corresponding toω < 0 is the mirror image of the portion withω > 0.

There is a subtlety with the Nyquist plot when the loop transfer function has
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poles on the imaginary axis because the gain is infinite at the poles. To solve this
problem, we modify the contourΓ to include small deviations that avoid any poles
on the imaginary axis, as illustrated in Figure 9.3a (assuming a pole ofL(s) at the
origin). The deviation consists of a small semicircle to the right of the imaginary
axis pole location.

The condition for oscillation given in equation (9.1) implies that the Nyquist
plot of the loop transfer function goes through the pointL = −1, which is called
thecritical point. Let ωc represent a frequency at which∠L(iωc) = 180◦, corre-
sponding to the Nyquist curve crossing the negative real axis. Intuitively it seems
reasonable that the system is stable if|L(iωc)| < 1, which means that the critical
point−1 is on the left hand side of the Nyquist curve, as indicated inFigure 9.3b.
This means that the signal at point B will have smaller amplitude than the in-
jected signal. This is essentially true, but there are several subtleties that require
a proper mathematical analysis to clear up. We defer the details for now and state
the Nyquist condition for the special case whereL(s) is a stable transfer function.

Theorem 9.1(Simplified Nyquist criterion). Let L(s) be the loop transfer function
for a negative feedback system (as shown in Figure 9.1a) and assume that L has
no poles in the closed right half plane (Res≥ 0), except for single poles on the
imaginary axis. Then the closed loop system is stable if and only if the closed
contour given byΩ = {L(iω) : −∞ < ω < ∞} ⊂ C has no net encirclements of
s= −1.

The following conceptual procedure can be used to determine that there are
no encirclements: Fix a pin at the critical points= −1, orthogonal to the plane.
Attach a string with one end at the critical point and the other on the Nyquist plot.
Let the end of the string attached to the Nyquist curve traverse the whole curve.
There are no encirclements if the string does not wind up on thepin when the curve
is encircled. The number of encirclements is called the winding number. (In the
theory of complex functions it is the customary to encircle the Nyquist contour in
the counter-clockwise direction, which means that the imaginary axis is traversed
in the direction from∞ to −∞.)

Example 9.2 Third order system
Consider a third order transfer function

L(s) =
1

(s+a)3 .

To compute the Nyquist plot we start by evaluating points on the imaginary axis
s= iω, which yields

L(iω) =
1

(iω +a)3 =
(a− iω)3

(a2 +ω2)3 =
a3−3aω2

(a2 +ω2)3 + i
ω3−3a2ω
(a2 +ω2)3 .

This is plotted in the complex plane in Figure 9.4, with the points corresponding
to ω > 0 drawn as solid line andω < 0 as a dashed line. Notice that these curves
are mirror images of each other.
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Figure 9.4: Nyquist plot for a third order transfer function. The Nyquist plot consists of a
trace of the loop transfer functionL(s) = 1/(s+ a)3. The solid line represents the portion
of the transfer function along the positive imaginary axis and the dashed line the negative
imaginary axis. The outer arc of the D contour maps to the origin.

To complete the Nyquist plot, we computeL(s) for s on the outer arc of the
Nyquist D contour. This arc has the forms= Reiθ for R→ ∞. This gives

L(Reiθ ) =
1

(Reiθ +a)3 → 0 as R→ ∞.

Thus the outer arc of theD contour maps to the origin on the Nyquist plot. ∇

An alternative to computing the Nyquist plot explicitly is to determine the plot
from the frequency response (Bode plot), which gives the Nyquist curve fors= iω,
ω > 0. We start by plottingG(iω) from ω = 0 to ω = ∞, which can be read off
from the magnitude and phase of the transfer function. We then plot G(Reiθ )
with θ ∈ [0,π/2] andR→ ∞, which almost always maps to zero. The remaining
parts of the plot can be determined by taking the mirror imageof the curve thus
far (normally plotted using a dashed line style). The plot canthen be labeled
with arrows corresponding to a counter-clockwise traversal around the D contour
(opposite the direction that the first portion of the curve wasplotted).

Example 9.3 Third order system with a pole at the origin
Consider the transfer function

L(s) =
k

s(s+1)2 ,

where the gain has the nominal valuek= 1. The Bode plot is shown in Figure 9.5a.
The system has a single pole ats= 1 and a double pole ats= −1. The gain curve
of the Bode plot thus has the slope−1 for low frequencies and at the double pole
s= 1 the slope changes to−3. For smalls we haveL ≈ k/s which means that the
low frequency asymptote intersects the unit gain line atω = k. The phase curve
starts at−90◦ for low frequencies, it is−180◦ at the break pointω = 1, and it is
−270◦ at high frequencies.

Having obtained the Bode plot we can now sketch the Nyquist plot, shown
in Figure 9.5b. It starts with a phase of−90◦ for low frequencies, intersects the
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Figure 9.5: Sketching Nyquist and Bode plots. The loop transfer function isL(s) = 1/(s(s+

1)2). The large semi circle is the map of the small semi circle of theΓ contour around the
pole at the origin. The closed loop is stable because the Nyquist curve does not encircle the
critical point. The point where the phase is−180◦ is marked with a circle.

negative real axis at the breakpointω = 1 whereL(i) = 0.5 and goes to zero along
the imaginary axis for high frequencies. The small half circle of theΓ contour at
the origin is mapped on a large circle enclosing the right half plane. The Nyquist
curve does not encircle the critical point and it follows from the simplified Nyquist
theorem that the closed loop is stable. SinceL(i) = −k/2 we find the system
becomes unstable if the gain is increased tok = 2 or beyond. ∇

The Nyquist criterion does not require that|L(iωc)| < 1 for all ωc correspond-
ing to a crossing of the negative real axis. Rather, it says that the number of en-
circlements must be zero, allowing for the possibility thatthe Nyquist curve could
cross the negative real axis and cross back at magnitudes greater than 1. The fact
that it was possible to have high feedback gains surprised the early practitioners of
feedback amplifiers, as mentioned in the quote in the beginning of this chapter.

One advantage of the Nyquist criterion is that it tells us howa system is in-
fluenced by changes of the controller parameters. For example, it is very easy to
visualize what happens when the gain is changed since this just scales the Nyquist
curve.

Example 9.4 Congestion control
Consider the Internet congestion control system describedin Section 3.4. Suppose
we haveN identical sources and a disturbanced representing an external data
source, as shown in Figure 9.6a. We also include a time delay between the router
and the senders, representing the time delays between the sender and receiver.

To analyze the stability of the system, we use the transfer functions computed
in Exercise 8.17:

Gbw(s) =
Nwee−τ f s

τes+e−τ f s
, Gwq(s) = − N

qe(τes+qewe)
, Gpb(s) = ρ,

where(we,be) is the equilibrium point for the system,N is the number of sources,
τe is the steady state round trip time andτ f is the forward propagation time.
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Figure 9.6: Internet congestion control. A set ofN sources using TCP/Reno send messages
through a single router with admission control. Link delays are included forthe forward and
backward directions. The Nyquist plot for the loop transfer function is shown to the right.

The loop transfer function is given by

L(s) = ρ ·
N

τes+e−τ f s
·

1
qe(τes+qewe)

e−τes

Using the fact thatqe ≈ 2N/w2
e = 2N3/(τec)2 andwe = be/N = τec/N, we can

show that

L(s) = ρ ·
N

τes+e−τ f s
·

c3τ3
e

2N3(cτ2
es+2N2)

e−τes

Note that we have chosen the sign ofL(s) to use the same sign convention as Fig-
ure 9.1b. The exponential term representing the time delay gives significant phase
aboveω = 1/τ and the gain at the crossover frequency will determine stability.

To check stability, we require that the gain be sufficiently small at crossover. If
we assume that the pole due to the queue dynamics is sufficiently fast that the TCP
dynamics are dominant, the gain at the crossover frequencyωc is given by

|L(iωc)| = ρ ·N ·
c3τ3

e

2N3cτ2
eωc

=
ρc2τe

2Nωc
.

Using the Nyquist criterion, the closed loop system will be unstable if this quantity
is greater than 1. In particular, for a fixed time delay, the system will become
unstable as the link capacityc is increased. This indicates that the TCP protocol
may not scalable to high capacity networks, as pointed out byLow et al. [134].
Exercise 9.15 provides some ideas of how this might be overcome. ∇

Conditional Stability

Normally, we find that unstable systems can be stabilized simply by reducing the
loop gain. There are however situations where a system can be stabilized by in-
creasing the gain. This was first encountered by electrical engineers in the design
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Figure 9.7: Nyquist curve for the loop transfer functionL(s) =
3(s+1)2

s(s+6)2 . The plot on the
right is an enlargement of the area around the origin of the plot on the left.The Nyquist
curve intersections the negative real axis twice but has no net encirclements of−1.

of feedback amplifiers, who coined the termconditional stability. The problem
was actually a strong motivation for Nyquist to develop his theory. We will illus-
trate by an example.

Example 9.5 Conditional stability
Consider a feedback system with the loop transfer function

L(s) =
3(s+1)2

s(s+6)2 . (9.4)

The Nyquist plot of the loop transfer function is shown in Figure 9.7. Notice that
the Nyquist curve intersects the negative real axis twice. The first intersection oc-
curs atL = −12 for ω = 2 and the second atL = −4.5 for ω = 3. The intuitive
argument based on signal tracing around the loop in Figure 9.1b is strongly mis-
leading in this case. Injection of a sinusoid with frequency2 rad/s and amplitude
1 at A gives, in steady state, an oscillation at B that is in phase with the input and
has amplitude 12. Intuitively it is seems unlikely that closing of the loop will re-
sult a stable system. However, it follows from Nyquist’s stability criterion that the
system is stable because there are no net encirclements of the critical point. ∇

General Nyquist Criterion

Theorem 9.1 requires thatL(s) has no poles in the closed right half plane. In some
situations this is not the case and a more general result is required. Nyquist origi-
nally considered this general case, which we summarize in the following theorem.

Theorem 9.2(Nyquist’s stability theorem). Consider a closed loop system with
the loop transfer function L(s), that has P poles in the region enclosed by the
Nyquist contour. Let wn be the net number of counter-clockwise encirclements
of −1 by L(s) when s encircles the Nyquist contourΓ in the counter-clockwise
direction. The closed loop system then has wn +P poles in the right half plane.
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Figure 9.8: PD control of an inverted pendulum. A proportional-derivative controller with
transfer functionC(s) = k(s+ 2) is used to commandu based onθ . A Nyquist plot of
the loop transfer function for gaink = 2 is shown in on the right. There is one clockwise
encirclement of the critical point, giving a winding numberwn = −1.

The full Nyquist criterion states that ifL(s) hasP poles in the right half plane,
then the Nyquist curve forL(s) should haveP clockwise encirclements of−1 (so
that wn = −P). In particular, thisrequires that |L(iωc)| > 1 for someωc cor-
responding to a crossing of the negative real axis. Care has to be taken to get
the right sign of the winding number. The Nyquist contour has to be traversed
counter-clockwise, which means thatω moves from∞ to−∞ andwn is positive if
the Nyquist curve winds counter-clockwise.

As in the case of the simplified Nyquist criterion, we use smallsemicircles of
radiusr to avoid any poles on the imaginary axis. By lettingr → 0, we can use
Theorem 9.2 to reason about stability. Note that the image of the small semicircles
generates a section of the Nyquist curve whose magnitude approaches infinity,
requiring care in computing the winding number. When plotting Nyquist curves
on the computer, one must be careful to see that such poles areproperly handled
and often one must sketch those portions of the Nyquist plot by hand, being careful
to loop the right way around the poles.

Example 9.6 Stabilization of an inverted pendulum
The linearized dynamics of a normalized inverted pendulum can be represented by
the transfer functionP(s) = 1/(s2−1), where the input is acceleration of the pivot
and the output is the pendulum angleθ , as shown in Figure 9.8 (Exercise 8.4). We
attempt to stabilize the pendulum with a proportional-derivative (PD) controller
having the transfer functionC(s) = k(s+2). The loop transfer function is

L(s) =
k(s+2)

s2−1
.

The Nyquist plot of the loop transfer function is shown in Figure 9.8b. We have
L(0) = −k andL(∞) = 0, the Nyquist curve is actually an ellipse. Ifk > 1 the
Nyquist curve encircles the critical points= −1 in the clockwise direction when
the Nyquist contourγ is encircled in the counter-clockwise direction. The winding
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number is thuswn = −1. Since the loop transfer function has one pole in the right
half plane (P = 1) we find thatN = P+ wn = 0 and the system is thus stable for
k > 1. If k < 1 there is no encirclement and the closed loop will have one pole in
the right half plane. ∇

Derivation of Nyquist’s Stability Theorem
�

We will now prove the Nyquist stability theorem for a generalloop transfer func-
tion L(s). This requires some results from the theory of complex variables, for
which the reader can consult [6]. Since some precision is needed in stating Nyquist’s
criterion properly, we will also use a more mathematical style of presentation. The
key result is the following theorem about functions of complex variables.

Theorem 9.3(Principle of variation of the argument). Let D be a closed region in
the complex plane and letΓ be the boundary of the region. Assume the function
f : C → C is analytic in D and onΓ, except at a finite number of poles and zeros.
Then thewinding number, wn, is given by

wn =
1

2π
∆Γ arg f (z) =

1
2π i

∫

Γ

f ′(z)
f (z)

dz= N−P,

where∆Γ is the net variation in the angle along the contourΓ, N is the number
of zeros and P the number of poles in D. Poles and zeros of multiplicity m are
counted m times.

Proof. Assume thatz= a is a zero of multiplicitym. In the neighborhood ofz= a
we have

f (z) = (z−a)mg(z),

where the functiong is analytic and different from zero. The ratio of the derivative
of f to itself is then given by

f ′(z)
f (z)

=
m

z−a
+

g′(z)
g(z)

and the second term is analytic atz= a. The functionf ′/ f thus has a single pole
at z= a with the residuem. The sum of the residues at the zeros of the function is
N. Similarly we find that the sum of the residues of the poles of is−P and hence

N−P =
∫

Γ

f ′(z)
f (z)

dz=
∫

Γ

d
dz

log f (z)dz= ∆Γ log f (z),

where∆Γ again denotes the variation along the contourΓ. We have

log f (z) = log| f (z)|+ i arg f (z)

and since the variation of| f (z)| around a closed contour is zero it follows that

∆Γ log f (z) = i∆Γ arg f (z)

and the theorem is proved.
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This theorem is useful for determining the number of poles andzeros of a
function of complex variables in a given region. By choosingan appropriate closed
regionD with boundaryΓ, we can determine the difference between the number
of poles and zeros through computation of the winding number.

Theorem 9.3 can be used to prove Nyquist’s stability theorem by choosingΓ as
the Nyquist contour shown in Figure 9.3a, which encloses the right half plane. To
construct the contour, we start with part of the imaginary axis − jR≤ s≤ jR, and
a semicircle to the right with radiusR. If the function f has poles on the imaginary
axis we introduce small semicircles with radiir to the right of the poles as shown
in the figure. The Nyquist contour is obtained by lettingR→ ∞ andr → 0.

To see how we use this to compute stability, consider a closedloop system with
the loop transfer functionL(s). The closed loop poles of the system are the zeros of
the functionf (s) = 1+L(s). To find the number of zeros in the right half plane, we
investigate the winding number of the functionf (s) = 1+ L(s) ass moves along
the Nyquist contourΓ in the counter-clockwise direction. The winding number
can conveniently be determined from the Nyquist plot. A direct application of the
Theorem 9.3 gives the Nyquist criterion. Since the image of 1+ L(s) is a shifted
version ofL(s), we usually state the Nyquist criterion as net encirclements of the
−1 point by the image ofL(s).

9.3 STABILITY MARGINS

In practice it is not enough that a system is stable. There mustalso be some margins
of stability that describe how stable the system is and its robustness to perturba-
tions. There are many ways to express this, but one of the most common is the use
of gain and phase margins, inspired by Nyquist’s stability criterion. The key idea
is that it is easy to plot the loop transfer functionL(s). An increase of controller
gain simply expands the Nyquist plot radially. An increase of the phase of the
controller twists the Nyquist plot clockwise. Hence from the Nyquist plot we can
easily pick off the amount of gain or phase that can be added without causing the
system to go unstable.

Let ωpc be thephase crossover frequency, the smallest frequency where the
phase of the loop transfer functionL(s) is −180◦. Thegain marginis defined as

gm =
1

|L(iωpc)|
. (9.5)

It tells us how much the controller gain can be increased before reaching the sta-
bility limit.

Similarly, letωgc be thegain crossover frequency, the lowest frequency where
the loop transfer functionL(s) has unit magnitude. Thephase marginis

ϕm = π +argL(iωgc), (9.6)

the amount of phase lag required to reach the stability limit. These margins have
simple geometric interpretations in the Nyquist diagram ofthe loop transfer func-
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Figure 9.9: Stability margins. The gain margingm and phase marginsϕm are shown on the
the Nyquist plot (left) and the Bode plot (right). The Nyquist plot also shows the stability
marginsm, which is the shortest distance to the critical point.

tion, as shown in Figure 9.9a.
A drawback with gain and phase margins is that it is necessaryto give both of

them in order to guarantee that the Nyquist curve is not closeto the critical point.
An alternative way to express margins is by a single number, thestability margin,
sm, which is the shortest distance from the Nyquist curve to thecritical point. This
number is related to disturbance attenuation as will be discussed in Section 11.3.

Gain and phase margins can be determined from the Bode plot ofthe loop trans-
fer function. To find the gain margin we first find the phase crossover frequency
ωpc where the phase is−180◦. The gain margin is the inverse of the gain at that
frequency. To determine the phase margin we first determine the gain crossover
frequencyωgc, i.e. the frequency where the gain of the loop transfer function is
1. The phase margin is the phase of the loop transfer function at that frequency
plus 180◦. Figure 9.9b illustrates how the margins are found in the Bodeplot of
the loop transfer function. The margins can be computed analytically for simple
systems of low order but it is straightforward to compute them numerically.

Example 9.7 Third order transfer function
Consider a loop transfer functionL(s) = 3/(s+1)3. The Nyquist and Bode plots
are shown in Figure 9.10. To compute the gain, phase and stability margins, we
can use the Nyquist plot as described in Figure 9.9a. This yields the following
values:

gm = 2.67, ϕm = 41.7◦, sm = 0.464.

The gain and phase margin can also be determined from the Bode plot shown in
Figure 9.9b. ∇

The gain and phase margins are classical robustness measuresthat have been
used for a long time in control system design. The gain margin is well defined if
the Nyquist curve intersects the negative real axis once. Analogously the phase
margin is well defined if the Nyquist curve intersects the unitcircle only at one
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.

point. Other more general robustness measures will be introduced in Chapter 12.
Even if both gain and phase margins are reasonable the system may still not be

robust as is illustrated by the following example.

Example 9.8 Good gain and phase margins but poor stability margins
Consider a system with the loop transfer function

L(s) =
0.38(s2 +0.1s+0.55)

s(s+1)(s2 +0.06s+0.5)
.

A numerical calculation gives the gain margin isgm= 266, the phase margin is 70◦.
These values indicate that the system is robust but the Nyquist curve is still close
to the critical point, as shown in Figure 9.11. The stability margin is sm = 0.27,
which is very low. The closed loop system has two resonant modes, one with
relative dampingζ = 0.81 and the other withζ = 0.014. The step response of the
system is highly oscillatory, as shown in Figure 9.11c. ∇

The stability margin cannot easily be found from the Bode plotof the loop
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Figure 9.11: System with good gain and phase margin, but poor stability margin. Nyquist
(a) and Bode (b) plots of the loop transfer function and step response (c) for a system with
good gain and phase margins but with poor stability margin.
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Figure 9.12: Nyquist and Bode plots of the loop transfer function for the AFM system (9.7)
with an integral controller. The frequency in the Bode plot is normalized bya. The parame-
ters areζ = 0.01 andki = 0.008.

transfer function. There are however other Bode plots that will give sm; these will
be discussed in Chapter 12. In general, it is best to use the Nyquist plot to check
stability, since this provides more complete information than the Bode plot.

When we are designing feedback systems, it will often be useful to define the
robustness of the system using gain, phase and stability margins. These numbers
tell us how much the system can vary from our nominal model andstill be stable.
Reasonable values of the margins are phase marginϕm = 30◦−60◦, gain margin
gm = 2−5, and stability marginsm = 0.5−0.8.

There are also other stability measures, such as thedelay margin, which is the
smallest time delay required to make the system unstable. For loop transfer func-
tions that decay quickly, the delay margin is closely related to the phase margin,
but for systems where the amplitude ratio of the loop transfer function has several
peaks at high frequencies, the delay margin is a more relevant measure.

Example 9.9 AFM nanopositioning system
Consider the system for horizontal positioning of the sample in an atomic force
microscope. The system has oscillatory dynamics and a simplemodel is a spring-
mass system with low damping. The normalized transfer function is given by

P(s) =
a2

s2 +2ζas+a2 (9.7)

where the relative damping typically is a very small number,e.g.ζ = 0.1.
We will start with a controller that only has integral action. The resulting loop

transfer function is

L(s) =
kia2

s(s2 +2ζas+a2)
,

whereki is the gain of the controller. Nyquist and Bode plots of the loop transfer
function are shown in Figure 9.12. Notice that the part of the Nyquist curve that is
close to the critical point−1 is approximately circular.
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From the Bode plot in Figure 9.12b, we see that the phase crossover frequency
is ωpc = a, which will be independent of the gainki . Evaluating the loop transfer
function at this frequency, we haveL(ia) = −ki/(2ζa), which means that the gain
margin isgm = 1−ki/(2ζa). To have a desired gain margin ofgm the integral gain
should be chosen as

ki = 2aζ (1−gm).

Figure 9.12 shows Nyquist and Bode plots for the system with gain margingm =
0.60 and stability marginsm = 0.597. The gain curve in the Bode plot is almost a
straight line for low frequencies and a resonance peak atω = a. The gain crossover
frequency is approximately equal toki . The phase decreases monotonically from
−90◦ to −270◦: it is equal to−180◦ at ω = a. The curve can be shifted verti-
cally by changingki : increasingki shifts the gain curve upwards and increases the
gain crossover frequency. Since the phase is−180◦ at the resonance peak, it is
necessary that the peak does not touch the line|L(iω)| = 1. ∇

9.4 BODE’S RELATIONS AND MINIMUM PHASE SYSTEMS

An analysis of Bode plots reveals that there appears to be be arelation between
the gain curve and the phase curve. Consider for example the Bode plots for the
differentiator and the integrator (shown in Figure 8.12 on page 258). For the dif-
ferentiator the slope is+1 and the phase is constantπ/2 radians. For the integrator
the slope is−1 and the phase is−π/2. For the first order systemG(s) = s+a, the
amplitude curve has the slope 0 for small frequencies and theslope+1 for high
frequencies and the phase is 0 for low frequencies andπ/2 for high frequencies.

Bode investigated the relations between the curves for systems with no poles
and zeros in the right half plane. He found that the phase was uniquely given by
the shape of the gain curve and vice versa:

argG(iω0) =
π
2

∫ ∞

0
f (ω)

d log|G(iω)|
d logω

d logω ≈ π
2

d log|G(iω)|
d logω

, (9.8)

where f is the weighting kernel

f (ω) =
2

π2 log
∣

∣

∣

ω +ω0

ω −ω0

∣

∣

∣
.

The phase curve is thus a weighted average of the derivative ofthe gain curve. If
the gain curve has constant slopen the phase curve has the constant valuenπ/2.

Bode’s relations (9.8) hold for systems that do not have poles and zeros in the
right half plane. Such systems are calledminimum phase systemsbecause systems
with poles and zeros in the right half plane have larger phaselag. The distinction
is important in practice because minimum phase systems are easier to control than
systems with larger phase lag. We will now give a few examplesof non-minimum
phase transfer functions.

The transfer function of a time delay ofTd units isG(s) = e−sTd . This transfer
function has unit gain,|G(iω)|= 1, and the phase is argG(iω) =−ωTd. The corre-



9.4. BODE’S RELATIONS AND MINIMUM PHASE SYSTEMS 289

10
−1

10
0

10
1

10
−1

10
0

10
1

10
−1

10
0

10
1

−360

−180

0

ωT

|G
(i

ω
)|

∠
G

(i
ω

)

(a) Time de-
lay

10
−1

10
0

10
1

10
−1

10
0

10
1

10
−1

10
0

10
1

−360

−180

0

ω/a

|G
(i

ω
)|

∠
G

(i
ω

)

(b) RHP zero

10
−1

10
0

10
1

10
−1

10
0

10
1

10
−1

10
0

10
1

−360

−180

0

ω/a

|G
(i

ω
)|

∠
G

(i
ω

)

(c) RHP pole

Figure 9.13: Bode plots of systems that are not minimum phase. (a) Time delayG(s) =

e−sT, (b) system with a right half plane zeroG(s) = (a− s)/(a+ s) and (c) system with
right half plane pole. The corresponding minimum phase systems has thetransfer function
G(s) = 1 in all cases, the phase curves for that system are shown dashed.

sponding minimum phase system with unit gain has the transfer functionG(s) = 1.
The time delay thus has an additional phase lag ofωTd. Notice that the phase lag
increases linearly with frequency. Figure 9.13a shows the Bode plot of the transfer
function. (Because we use a log scale for frequency, the phase falls off much faster
than linearly in the plot.)

Consider a system with the transfer functionG(s) = (a−s)/(a+s) with a> 0,
which has a zeros= a in the right half plane. The transfer function has unit gain,
|G(iω)| = 1, and the phase is argG(iω) = −2arctan(ω/a). The corresponding
minimum phase system with unit gain has the transfer function G(s) = 1. Fig-
ure 9.13b shows the Bode plot of the transfer function.

A similar analysis of the transfer functionG(s) = (s+ a)/s− a) with a > 0,
which has a pole in the right half plane, shows that its phase is argG(iω) =
−2arctan(a/ω). The Bode plot is shown in Figure 9.13c

The presence of poles and zeros in the right half plane imposessevere limi-
tations on the achievable performance. Dynamics of this type should be avoided
by redesign of the system whenever possible. While the polesare intrinsic prop-
erties of the system and they do not depend on sensors and actuators, the zeros
depend on how inputs and outputs of a system are coupled to thestates. Zeros can
thus be changed by moving sensors and actuators or by introducing new sensors
and actuators. Non-minimum phase systems are unfortunately quite common in
practice.

The following example gives a system theoretic interpretation of the common
experience that it is more difficult to drive in reverse gear and illustrates some of
the properties of transfer functions in terms of their polesand zeros.

Example 9.10 Vehicle steering
The non-normalized transfer function from steering angle tolateral velocity for the
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Figure 9.14: Step responses from steering angle to lateral translation for simple kinematics
model when driving forward (dashed) and reverse (full). Notice that the with rear wheel
steering the center of mass first moves in the wrong direction and that the overall response
with rear wheel steering is significantly delayed compared with front wheel steering. The
response in rear steering lags the response in forward steering with 4s.

simple vehicle model is

G(s) =
av0s+v2

0

bs
.

The transfer function has a zero ats= v0/a. In normal driving this zero is in the
left half plane but it is in the right half plane when driving in reverse,v0 < 0. The
unit step response is

y(t) =
av0

b
+

av2
0t

b

The lateral velocity thus responds immediately to a steeringcommand. For reverse
steeringγ is negative and the initial response is in the wrong direction, a behavior
that is representative for non-minimum phase systems. Figure 9.14 shows the step
response for forward and reverse driving. In this simulation we have added an
extra pole with the time constantT to approximately account for the dynamics in
the steering system. The parameters area = b = 1, T = 0.1, v0 = 1 for forward
driving andv0 = −1 for reverse driving. Notice that fort > t0 = a/v0, wheret0 is
the time required to drive the distancea the step response for reverse driving is that
of forward driving with the time delayt0. Notice that the position of the zerov0/a
depends on the location of the sensor. In our calculation we have assumed that the
sensor is at the center of mass. The zero in the transfer function disappears if the
sensor is located at the rear wheel. The difficulty with zeros inthe right half plane
can thus be visualized by a thought experiment where we drivea car in forward
and reverse and observe the lateral position through a hole in the floor of the car.

∇
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9.5 THE NOTIONS OF GAIN AND PHASE
�

A key idea in frequency domain analysis it to trace the behavior of sinusoidal sig-
nals through a system. The concepts of gain and phase represented by the transfer
function are strongly intuitive because they describe amplitude and phase relations
between input and output. In this section we will see how to extend the concepts
of gain and phase to more general systems, including some nonlinear systems. We
will also show that there are analogs of Nyquist’s stabilitycriterion if signals are
approximately sinusoidal.

System Gain

We begin by considering the case of a static linear systemy = Au, whereA is
a matrix whose elements are complex numbers. The matrix does not have to be
square. Let the inputs and outputs be vectors whose elements are complex numbers
and use the Euclidean norm

‖u‖ =
√

Σ|ui |2. (9.9)

The norm of the output is
‖y‖2 = u∗A∗Au,

where∗ denotes the complex conjugate transpose. The matrixA∗A is symmetric
and positive semidefinite and the right hand side is a quadratic form. The eigen-
values of the matrixA∗A are all real and we have

‖y‖2 ≤ λmax(A
∗A)‖u‖2.

The gain of the system can then be defined as the maximum ratio of the output to
the input over all possible inputs:

γ = max
u

‖y‖
‖u‖ =

√

λmax(A∗A). (9.10)

The eigenvalues of the matrixA∗A are called thesingular valuesof the matrixA
and the largest singular value is denotedσ̄(A).

To generalize this to the case of an input/output dynamical system, we need
to think of think of the inputs and outputs not as vectors of real numbers, but as
vectors ofsignals. For simplicity, consider first the case of scalar signals andlet
the signal spaceL2 be square integrable functions with the norm

‖u‖2 =

√

∫ ∞

0
|u|2(τ)dτ .

This definition can be generalized to vector signals by replacing the absolute value
with the vector norm (9.9). We can now formally define the gain of a system taking
inputsu∈ L2 and producing outputsy∈ L2 as

γ = sup
u∈L2

‖y‖
‖u‖ , (9.11)
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H2

Σ H1

Figure 9.15: A feedback connection of two general nonlinear systemsH1 and H2. The
stability of the system can be explored using the small gain theorem.

where sup is thesupremum,defined as the smallest number that is larger than its
argument. The reason for using supremum is that the maximum may not be defined
for u∈ L2. This definition of the system gain is quite general and can evenbe used
for some classes of nonlinear systems, though one needs to becareful about how
initial conditions and global nonlinearities are handled.

It turns out that the norm (9.11) has some very nice properties in the case of
linear systems. In particular, given a stable linear systemwith transfer function
G(s) it can be shown that the norm of the system is given by

γ = sup
ω

|G(iω)| =: ‖G‖∞. (9.12)

In other words, the gain of the system corresponds to the peakvalue of the fre-
quency response. This corresponds to our intuition that an input produces the
largest output when we are at the resonant frequencies of thesystem. ‖G‖∞ is
called theinfinity normof the transfer functionG(s).

This notion of gain can be generalized to the multi-input, multi-output case as
well. For a linear multivariable system with a real rationaltransfer function matrix
G(s) we can define the gain as

γ = ‖G‖∞ = sup
ω

σ̄(G(iω)). (9.13)

Thus we see that combine the ideas of the gain of a matrix with the gain of a linear
system by looking at the maximum singular value over all frequencies.

Small Gain and Passivity

For linear systems it follows from Nyquist’s theorem that the closed loop is stable
if the gain of the loop transfer function is less than one for all frequencies. This
result can be extended to a larger class of systems by using the concept of the
system gain defined in equation (9.11).

Theorem 9.4(Small gain theorem). Consider the closed loop system in Figure 9.15
where H1 and H2 are stable systems and the signal spaces are properly defined.
Let the gains of the systems H1 and H2 beγ1 andγ2. Then the closed loop system
is input/output stable ifγ1γ2 < 1, and the gain of the closed loop system is

γ =
γ1

1− γ1γ2
.
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Notice that if systemsH1 andH2 are linear it follows from the Nyquist stability
theorem that the closed loop is stable, because ifγ1γ2 < 1 the Nyquist curve is
always inside the unit circle. The small gain theorem is thus an extension of the
Nyquist stability theorem.

Note that although we have focused on linear systems, the small gain theorem
actually holds nonlinear input/output systems as well. The definition of gain in
equation (9.11) holds for nonlinear systems as well, with some care needed in
handling the initial condition.

The main limitation of the small gain theorem is that it does not consider the
phasing of signals around the loop, so it can be very conservative. To define the
notion of phase we require that there is a scalar product. Forsquare integrable
functions this can be defined as

〈u,y〉 =
∫ ∞

0
u(τ)y(τ)dτ

The phaseϕ between two signals can now be defined as

〈x,y〉 = ‖u‖‖y‖cos(ϕ)

Systems where the phase between inputs and outputs is 90◦ or less for all inputs are
calledpassive systems. It follows from the Nyquist stability theorem that a closed
loop linear system is stable if the phase of the loop transferfunction is between
−π andπ. This result can be extended to nonlinear systems as well. It is called
thepassivity theoremand is closely related to the small gain theorem.

Additional applications of the small gain theorem and its application to robust
stability are given in Chapter 12.

Describing Functions
�

For special nonlinear systems like the one shown in Figure 9.16a, which consists
of a feedback connection of a linear system and a static nonlinearity, it is possi-
ble to obtain a generalization of Nyquist’s stability criterion based on the idea of
describing functions. Following the approach of the Nyquist stability condition,
we will investigate the conditions for maintaining an oscillation in the system. If
the linear subsystem has low-pass character, its output is approximately sinusoidal
even if its input is highly irregular. The condition for oscillation can then be found
by exploring the propagation of a sinusoid that correspondsto the first harmonic.

To carry out this analysis, we have to analyze how a sinusoidal signal prop-
agates through a static nonlinear system. In particular we investigate how the
first harmonic of the output of the nonlinearity is related to its (sinusoidal) input.
Letting F represent the nonlinear function, we expandF(e−iωt) in terms of its
harmonics:

F(ae−ωt) =
∞

∑
n=0

Mn(a)einωt−ϕn(a),

whereMn(a) and ϕn(a) represent the gain and phase ofnth harmonic, which
depend on the input amplitude since the functionF is nonlinear. We define the
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Figure 9.16: Illustration of describing function analysis. A feedback connection of a static
nonlinearity and a linear system is shown in (a). The linear system is characterized by its
transfer functionL(iω), which depends on frequency, and the nonlinearity by its describing
functionN(a) which depends on the amplitude ofa of its input. (b) shows the Nyquist plot
of G(iω) and the a plot of the−1/N(a). The intersection of the curves represent a possible
limit cycle.

describing function to be the complex gain of the first harmonic:

N(a) = M1(a)eiϕn(a). (9.14)

The function can also be computed by assuming that the input isa sinusoid and
using the first term in the Fourier series of the resulting output.

Arguing as we did when deriving Nyquist’s stability criterion we find that an
oscillation can be maintained if

L(iω)N(a) = −1. (9.15)

This equation means that if we inject a sinusoid at A in Figure 9.16 the same
signal will appear at B and an oscillation can be maintained by connecting the
points. Equation (9.15) gives two conditions for finding the frequencyω of the
oscillation and its amplitudea: the phase must be 180◦ and the magnitude must
be unity. A convenient way to solve the equation is to plotL(iω) and−1/N(a) on
the same diagram as shown in Figure 9.16c. The diagram is similar to the Nyquist
plot where the critical point−1 is replaced by the curve−1/N(a) anda ranges
from 0 to∞.

It is possible to define describing functions for other types of inputs than si-
nusoids. Describing function analysis is a simple method but it is approximate
because it assumes that higher harmonics can be neglected. Excellent treatments of
describing function techniques can be found in the texts by Graham and McRuer [89]
and Atherton [21].

Example 9.11 Relay with hysteresis
Consider a linear system with a nonlinearity consisting of arelay with hysteresis.
The output has amplitudeb and the relay switches when the input is±c, as shown
in Figure 9.17a. Assuming that the input isu = asin(ωt) we find that the output is
zero ifa≤ c and ifa> c the output is a square wave with amplitudeb that switches
at timesωt = arcsin(c/a)+nπ. The first harmonic is theny(t) = (4b/π)sin(ωt−
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Figure 9.17: Describing function analysis for relay with hysteresis. The input-output re-
lation of the hysteresis is shown in Figure 9.17a and Figure 9.17b shows the input, the
output and its first harmonic. Figure 9.17c shows the Nyquist plots of thetransfer function
G(s) = (s+1)−4 and the negative of the inverse describing function for the relay withb = 1
andc = 1.

α), where sinα = c/a. Fora > c the describing function and its inverse are

N(a) =
4b
aπ

(

√

1− c2

a2 − i
c
a

)

,
1

N(a)
=

π
√

a2−c2

4b
+ i

πc
4b

,

where the inverse is obtained after simple calculations. Figure 9.17b shows the
response of the relay to a sinusoidal input with the first harmonic of the output
shown as a dashed line. Describing function analysis is illustrated in Figure 9.16b
which shows the Nyquist plot of the transfer functionG(s) = 2/(s+1)4 (dashed)
and the negative inverse describing function of a relay withb = 1 andc = 0.5.
The curves intersect fora = 1 andω = 0.77 rad/s indicating the amplitude and
frequency for a possible oscillation if the process and the really are connected in a
a feedback loop. ∇

9.6 FURTHER READING

Nyquist’s original paper giving his now famous stability criterion was published
in the Bell Systems Technical Journal in 1932 [156]. More accessible versions are
found in the book [27], which also has other interesting early papers on control.
Nyquist’s paper is also reprinted in an IEEE collection of seminal papers on control
[68]. Nyquist used+1 as the critical point but Bode changed it to−1, which is
now the standard notation. Interesting perspectives on theearly development are
given by Black [37], Bode [42] and Bennett [29]. Nyquist did adirect calculation
based on his insight of propagation of sinusoidal signals through systems; he did
not use results from the theory of complex functions. The ideathat a short proof
can be given by using the principle of variation of the argument is given in the
delightful little book by MacColl [136]. Bode made extensive use of complex
function theory in his book [41], which laid the foundation for frequency response
analysis where the notion of minimum phase was treated in detail. A good source
for theory of complex functions is the classic by Ahlfors [6]. Frequency response
analysis was a key element in the emergence of control theoryas described in the
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early texts by Jameset al. [108], Brown and Campbell [47] and Oldenburger [67],
and it became one of the cornerstones of early control theory. Frequency response
had a resurgence when robust control emerged in the 1980s, aswill be discussed
in Chapter 12.

EXERCISES

9.1 Consider the op amp circuit in Figure 8.3 show that the loop transfer function
is given by

L(s) =
R1G(s)
R1 +R2

,

whereG(s) is the transfer function of the op amp itself. The closed loop gain of the
circuit is R1/R2 which is close to unity whenR1 = R2. The loop transfer function
obtained in this case is called unit gain loop transfer function. See Example 8.3.
Example 6.10.

9.2 Consider an op amp circuit withZ1 = Z2 that gives a closed loop system with
nominal unit gain. Let the transfer function of the operational amplifier be

G(s) =
ka1a2

(s+a)(s+a1)(s+a2)

wherea1,a1 >> a show that the condition for oscillation isk < sqrta1a2.

9.3 In design of op amp circuits it is a tradition to make the Bode plots of the
transfer functionsG(s) and (Z1(s) + Z2(s))/Z1(s). Show that this is essentially
equivalent to the Bode plot of the loop transfer function of the circuit and that
the gain crossover frequency corresponds to the intersections of the gain curves of
G(s) and(Z1(s)+Z2(s))/Z1(s).

9.4 Use the Nyquist theorem to analyze the stability of the cruise control system
in Example??, but using the original PI controller from Example 6.10.

9.5 The dynamics of the tapping mode of an atomic force microscopeis dominated
by the damping of the cantilever vibrations and the system which averages the
vibrations. Modeling the cantilever as a spring-mass system with low damping
we find that the amplitude of the vibrations decay asexp(−ζ ωt) whereζ is the
relative damping andω the undamped natural frequency of the cantilever. The
cantilever dynamics can thus be modeled by the transfer function

G(s) =
b

s+a
.

wherea= ζ ω0. The averaging process can be modeled by the input-output relation

y(t) =
1
τ

∫ t

t−τ
u(v)dv,
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where the averaging time is a multiplen of the period of the oscillation 2π/ω. The
dynamics of the piezo scanner can be neglected in the first approximation because
it is typically much faster thana. A simple model for the complete system is thus
given by the transfer function

P(s) =
a(1−e−sτ)

sτ(s+a)
.

Plot the Nyquist curve of the system and determine the gain of aproportional
controller which brings the system to the boundary of stability.

9.6 A simple model for heat conduction in a solid is given by the transfer function

P(s) = ke−
√

s.

Sketch the Nyquist plot of the system. Determine the frequency where the phase
of the process is−180◦ and the gain at that frequency. Show that the gain required
to bring the system to the stability boundary isk = eπ .

9.7 In Example 9.4 we developed a linearize model of the dynamics for a conges-
tion control mechanism on the Internet, following [134] and[101]. A linearized
version of the model is represented by the transfer function

L(s)ρ ·
N

τ∗s+e−τ f s
·

c3τ∗3

2N3(cτ∗2s+2N2)
e−τ∗s

wherec is the link capacity in packets/ms,N load factor (number of TCP sessions),
ρ is the drop probability factor andτ is the round-trip time in seconds. Consider
the situation with the parametersN = 80,c= 4, ρ = 10−2 andτ∗ = 0.25. Find the
stability margin of the system, also determine the stability margin if the time delay
becomesτ∗ = 0.5.

9.8 Consider the transfer functions

G1(s) = e−sTd , G2(s) =
a−s
a+s

.

Use the approximation

e−sT ≈ 1−sT/2
1+sT/2

.

to show that the minimum phase properties of the transfer functions are similar if
Td = 2/a. A long time delayTd is thus equivalent to a small right half plane zero.

9.9 (Inverted pendulum) Consider the inverted pendulum in Example 9.6. Show
that the Nyquist curve is the ellipse

(x+k)2 +4y2 = k2

9.10 Consider the linearized model for vehicle steering with a controller based on
state feedback discussed in??. The transfer function of the process is

P(s) =
γs+1

s2
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and the controller has the transfer function

C(s) =
s(k1l1 +k2l2)+k1l2

s2 +s(γk1 +k2 + l1)+k1 + l2 +k2l1− γk2l2
,

as computed in Example 8.6. Let the process parameter beγ = 0.5 and assume
that the state feedback gains arek1 = 1 andk2 = 0.914, and the observer gains
arel1 = 2.828 andl2 = 4. Compute the stability margins numerically. The phase
margin of the system is 44◦ and the gain margin is infinite since the phase lag is
never greater than 180◦, indicating that the closed loop system is robust.

9.11

9.12 Consider Bode’s formula (9.8) for the relation between gainand phase for a
transfer function that has all its singularities in the lefthalf plane. Plot the weight-
ing function and make an assessment of the frequencies wherethe approximation
argG≈ (π/2)d log|G|/d logω is valid.

9.13 Consider a closed loop system with the loop transfer function

L(s) =
k

s(s+1)2 .

Use the Nyquist criterion to determine if the closed loop system is stable and what
the gain, phase and stability margins are.

9.14(Loop transfer function with RHP pole) Consider a feedback system with the
loop transfer function

L(s) =
k

s(s−1)(s+5)
.

This transfer function has a pole ats= 1 which is inside the Nyquist contour. Draw
the Nyquist plot for this system and determine if the closed loop system is stable.

9.15(Congestion control) A strongly simplified flow model of TCP loopin over-
load conditions is given by the loop transfer function

L(s) =
k
s
e−sTd ,

where he queuing dynamics is modeled by an integrator, the TCPwindow control
by a time delayTd is the time delay and the controller is simply a proportional
controller. A major difficulty is that the time delay may change significantly during
the operation of the system. Show that if we can measure the time delay, it is
possible to choose a gain that gives a stability margin ofsn >= 0.6 for all time
delaysTd.

9.16


